Методы исследования воды

Микроорганизмы – мельчайшие, главным образом одноклеточные существа, широко распространенные в природе. Они обнаруживаются во всех средах (воздухе, почве, воде), в организме человека и животных, в растениях.

Качественное разнообразие и количество микроорганизмов зависят в первую очередь от питательных соединений. Однако немаловажное значение имеют также влажность, температурный режим, аэрация, действие солнечных лучей и прочие факторы.

Методы санитарно-микробиологического исследования природных сред позволяют выявить наличие патогенных микроорганизмов, определить их количество и, в соответствии с полученными результатами, выработать меры по устранению или предупреждению инфекционных заболеваний. Кроме того, количественный учет необходим для моделирования экосистем и разработке принципов управления естественными процессами. Рассмотрим далее, какими бывают методы микробиологического исследования.

Почва

Она рассматривается учеными как один из возможных путей передачи инфекционных патологий.
выделениями больных людей или животных в почву проникают патогенные микроорганизмы. Некоторые из них, в частности, споровые, способны сохраняться в грунте продолжительное время (иногда несколько десятков лет). В почву попадают возбудители таких опасных инфекций, как столбняк, сибирская язва, ботулизм и пр. Методы санитарно-микробиологического исследования почвы позволяют определить «микробное число» (кол-во микроорганизмов в грамме грунта), а также коли-индекс (количество кишечных палочек).

Анализ грунта: общие сведения

К методам микробиологического исследования почвы следует в первую очередь отнести прямое микроскопирование и посев на плотную питательную среду. Популяции микроорганизмов и их группы, населяющие грунт, различаются по таксономическому положению и экологическим функциям. В науке они объединены под общим термином «почвенная биота». Грунт – среда обитания огромного числа микроорганизмов. В грамме почвы присутствует от 1 до 10 млрд их клеток. В этой среде активно протекает разложение органических веществ при участии разнообразных сапрофитных микроорганизмов.

Микроскопический метод микробиологического исследования: этапы

Анализ среды начинается с отбора образцов. Для этого используют предварительно очищенный и протертый спиртом нож (можно использовать лопату). После этого осуществляется подготовка образца. Следующий этап – подсчет клеток на окрашенных мазках. Рассмотрим каждую стадию в отдельности.

Отбор образцов


При анализе пахотной почвы, как правило, пробы берут с глубины всего слоя. Сначала удаляется 2-3 см сверху грунта, так как в нем может присутствовать посторонняя микрофлора. После этого с изучаемого участка грунта берут монолиты. Длина каждого из них должна соответствовать толщине слоя, из которого нужно взять образец.

На участке в 100-200 кв. м отбирается 7-10 проб. Вес каждой – порядка 0.5 кг. Пробы необходимо тщательно перемешать в мешке. После этого берут средний образец, весом приблизительно 1 кг. Его следует поместить в пергаментный (стерильный) пакет, вложенный в тканевый мешок. До непосредственного анализа образец хранится в холодильнике.

Подготовка к исследованию

Перемешанная почва высыпается на сухое стекло. Предварительно его необходимо протереть спиртом и обжечь над горелкой. При помощи шпателя почва тщательно перемешивается и раскладывается ровным слоем. В обязательном порядке необходимо удалить корешки, прочие посторонние элементы. Для этого используется пинцет. Перед работой пинцет и шпатель прокаливают над горелкой и остужают.

Из различных участков почвы, распределенной по стеклу, отбираются небольшие порции. Их взвешивают в фарфоровой чашке на технических весах. Обязательным этапом микроскопического метода микробиологического исследования является специальная обработка образца. Заранее необходимо подготовить 2 стерильные колбы. Их емкость не должна превышать 250 мл. В одну из колб наливают 100 мл водопроводной воды. Из нее берут 0.4-0.8 мл жидкости и увлажняют навеску почвы до пастообразного состояния. Смесь необходимо растереть пальцем или резиновым пестиком в течение 5 мин.


Водой из первой колбы почвенную массу переносят в пустую колбу. Далее ее снова растирают. После этого масса переносится в колбу возле пламени горелки. Емкость с почвенной суспензией встряхивают на качалке на протяжении 5 мин. После этого ее оставляют отстаиваться около 30 с. Это необходимо для того, чтобы крупные частицы осели. Через полминуты массу используют для приготовления препарата.

Подсчет клеток на фиксированных мазках

Прямое микроскопическое изучение грунта осуществляется по методу микробиологического исследования, разработанному Виноградским. В определенном объеме приготовленной суспензии подсчитывается число клеток микроорганизмов. Изучение фиксированных мазков позволяет сохранять препараты в течение длительного срока и выполнять подсчеты в любое удобное время.

Приготовление препарата осуществляется следующим образом. Определенный объем суспензии (как правило, 0.02-0.05 мл) наносится с помощью микропипетки на предметное стекло. К нему добавляют каплю раствора агар-агара (смеси полисахаридов агаропектина и агарозы, извлеченных из бурых и красных водорослей Черного моря), быстро перемешивают и распределяют на площади 4-6 кв. см. Мазок высушивается на воздухе и фиксируется 20-30 мин. спиртом (96 %). Далее препарат увлажняют дистиллированной водой, помещают в р-р карболового эритрозина на 20-30 мин.

После окрашивания его промывают и высушивают на воздухе. Подсчет клеток осуществляется с иммерсионным объективом.

Посев на плотные среды


Микроскопические методы микробиологического исследования позволяют выявить большое количество микроорганизмов. Но, несмотря на это, метод посева считается наиболее распространенным в практике. Суть его состоит в высеве объема препарата (почвенной суспензии) в чашке Петри на плотную среду.

Этот метод микробиологического исследования позволяет учитывать не только количество, но и групповой, а в ряде случаев и видовой состав микроскопической флоры. Подсчет числа колоний производится, как правило, со дна чашки Петри в проходящем свете. На подсчитанном участке ставится точка маркером либо чернилами.

Анализ воды

Микрофлора водного объекта, как правило, отражает микробный состав почвы около него. В этой связи методы санитарно-микробиологического исследования воды и почвы имеют особое практическое значение при изучении состояния конкретной экосистемы. В пресных водоемах содержатся, как правило, кокки, палочковидные бактерии.

Анаэробы в воде обнаруживаются в малом количестве. Как правило, они размножаются на дне водоемов, в иле, принимая участие в процессах очищения. Микрофлора океанов и морей представлена преимущественно солелюбивыми (галофильными) бактериями.

В воде артезианских скважин микроорганизмов практически нет. Это обуславливается фильтрующей способностью почвенного слоя.


Общепринятыми методами микробиологического исследования воды считаются определение микробного числа и коли-титра либо коли-индекса. Первый показатель характеризует количество бактерий в 1 мл жидкости. Коли-индекс представляет собой количество кишечных палочек, присутствующих в литре воды, а коли-титр – минимальное количество или максимальное разведение жидкости, в котором их еще можно обнаружить.

Определение микробного числа

Этот метод санитарно микробиологического исследования воды состоит в следующем. В 1 мл воды определяют количество факультативных анаэробов и мезофильных (промежуточных) аэробов, способных на мясопептонном агаре (основной питательной среде) при 37 град. на протяжении суток формировать колонии, видимые при увеличении в 2-5 р. или невооруженным глазом.

Ключевой стадией рассматриваемого метода микробиологического исследования воды является посев. Из каждой пробы делается посев не менее 2-х разных объемов. При анализе водопроводной воды в каждую чашку вносят по 1-0.1 мл чистой жидкости и по 0.01-0.001 мл загрязненной. Для посева 0.1 мл или меньшего объема жидкость разводится дистиллированной (стерильной) водой. Последовательно готовят десятикратные разведения. По 1 мл от каждого из них вносят в две чашки Петри.

Разведения заливаются питательным агаром. Его необходимо предварительно растопить и остудить до 45 град. После активного перемешивания среду оставляют на горизонтальной поверхности для застывания. При 37 град. посевы выращивают на протяжении суток. Рассматриваемый метод микробиологического исследования воды позволяет учитывать результаты на тех чашках, где количество колоний находится в пределах от 30 до 300.

Воздух


Он считается транзитной средой для микроорганизмов. Основными методами микробиологического исследования воздуха являются седиментация (оседание) и аспирация.

Микрофлора воздушной среды условно разделяется на переменную и постоянную. К первой относятся дрожжи, пигментообразующие кокки, спороносные бациллы, палочки и прочие микроорганизмы, устойчивые к высыханию, воздействию света. Представители переменной микрофлоры, проникая в воздух из привычной для них среды обитания, недолго сохраняют свою жизнеспособность.

В воздухе крупных мегаполисов микроорганизмов намного больше, чем в воздушной среде сельской местности. Над морями, лесами бактерий очень мало. Очищению воздуха способствуют осадки: снег и дождь. В закрытых помещениях микробов намного больше, чем на открытых пространствах. Их количество повышается в зимний период при отсутствии регулярного проветривания.

Седиментация

Этот метод микробиологического исследования в микробиологии считается простейшим. Он основывается на оседании капель и частиц на поверхности агара в открытой чашке Петри под действием силы тяжести. Метод седиментации не позволяет точно определить число бактерий в воздухе. Дело в том, что на открытой чашке уловить мелкие фракции пылевых частиц и бактериальных капель довольно сложно. На поверхности задерживаются преимущественно крупные частицы.


Этот метод не используется при анализе атмосферного воздуха. Этой среде свойственны большие колебания скорости движения воздушных потоков. Седиментация, однако, может использоваться при отсутствии более совершенных приборов или источника электроэнергии.

Определение микробного числа осуществляется по методу Омелянского. В соответствии с ним, за 5 минут на поверхности агара площадью 100 кв. см оседает такое число бактерий, которое присутствует в 10 л воздуха.

Приказ 535 «Об унификации микробиологических методов исследования»

Бактериологический анализ занимает важнейшее место в комплексе клинико-лабораторных мероприятий, направленных на диагностику, профилактику и лечение разнообразных инфекционных заболеваний. Однако исследованием окружающей среды они не ограничиваются.

Особое значение имеет бактериологический анализ биологического материала в лечебных учреждениях. К исследованиям, проводимым в медучреждениях, предъявляются повышенные требования. Целью Приказа «Об унификации микробиологических методов исследования» является совершенствование бактериологического анализа, повышение качества и эффективности микробиологической диагностики.

Микроскопическое исследование мазков у женщин

Оно является ключевым методом анализа при диагностике инфекций, передающихся половым путем, и оппортунистических заболеваний (вызываемых условно-патогенными бактериями).


Микроскопический анализ позволяет оценить качественный и количественный состав микрофлоры, проверить правильность взятия пробы. К примеру, наличие вагинального эпителия в мазке, взятом из цервикального канала, указывает на нарушение правил отбора биологической пробы.

Стоит сказать, что микробиологическое обследование в данном случае вообще сопровождается определенными проблемами. Они связаны с тем, что в нижних отделах полового тракта в норме присутствует разнообразная микрофлора, изменяющаяся в различные возрастные периоды. Для повышения эффективности исследования и были разработаны унифицированные правила.

Диагностика вирусных инфекций

Она осуществляется методами выявления РНК и ДНК-возбудителей. Они базируются преимущественно на определении нуклеотидных последовательностей в патологическом материале. Для этого используются молекулярные зонды. Они представляют собой искусственно полученные нуклеиновые кислоты, комплементарные (дополняющие) вирусным кислотам, меченные радиоактивной меткой или биотином.

Особенность метода состоит в многократном копировании конкретного фрагмента ДНК, включающего в себя несколько сотен (или десятков) нуклеотидных пар. Механизм репликации (копирования) заключается в том, что достраивание может начаться исключительно в определенных блоках. Для их создания используются праймеры (затравки). Они представляют собой синтезированные олигонуклеотиды.


ПЦР-диагностика (полимеразная цепная реакция) проста в исполнении. Этот метод позволяет быстро получить результат при использовании небольшого объема патологического материала. С помощью ПЦР-диагностики выявляются острые, хронические и латентные (скрытые) инфекции.

При чувствительности этот метод считается более предпочтительным. Однако в настоящее время тест-системы недостаточно надежны, поэтому ПЦР-диагностика не может полностью заменить традиционные методики.

fb.ru

Какие сегодня методики анализа воды существуют?

Процедура контроля и процессы водоочистки в жилых и загородных домах, на производственных и промышленных предприятиях начинается с мероприятий по выявлению и подсчету количества содержащихся в потребляемой (используемой) воде компонентов и соединений. Современная методика анализа воды позволяет с высокой точность идентифицировать вещество в составе образца и его объем на единицу массы. Все тесты проводятся в лабораторных условиях при помощи специального оборудования, химических реагентов и препаратов.

Существуют следующие типы исследований проб сточных и питьевых вод:

  • Химический — применяется весовой и объемный методы анализа.
  • Электрохимический — процедура использует полярографический и потенциометрический методы анализа.
  • Оптический — образец исследуется посредством фотометрических, люминесцентных и спектрометрических методик. Считаются самыми результативными, но за счет необходимости использовать очень редкое и сложное оборудование являются и наименее применяемыми, дорогостоящими. Используются для покомпонентного тестирования как питьевых, сточных, так и хозяйственно-бытовых, промышленных вод.

Методы анализа воды, контроля воды – питьевой и сточной

  • Санитарно-микробиологический, паразитологический и бактериологический — применяются титрационный, АТФ, чашечный подсчет, мембранная фильтрация выращивание и прочие методы анализа: сточная вода, питьевая и хозяйственно-бытовая проверяются комплексами, составленными из перечисленных тестов.
  • Фотохимический — покомпонентный состав пробы определяется фотохимическим методом.
  • Хроматографический — один из самых сложных типов исследования, который использует метод тонкослойной хроматографии, жидкостной колоночной хроматографии и высокоэффективной жидкостной хроматографии. Чтобы оценить пробу также необходимо использовать сложное и редкое оборудование.
  • Органолептический — эталонный метод исследования проб. Применяется исключительно к питьевым видам образцов.
  • Токсикологический и радиационный — приборные способы проверки наличия в предъявленном образце вредных для здоровья токсинов, α и β-частичек.

Перечисленные типы исследований разработаны для проверки качества жидкости применяемой для приготовления пищи, питья и используемой в хозяйственно-бытовых нуждах. Однако многие методы анализа питьевой воды пригодны и для установления степени загрязненности сточных вод прошедших через очистные сооружения. Наша лаборатория проводит все существующие виды тестов жидкостей по доступной стоимости. Чтобы сдать воду на анализ в лабораторию, мы рекомендуем купить специальную тару для ее забора, хранения и транспортировки.

Какие параметры оценивают методы анализа питьевой воды и сточных вод?

  • Содержание в пробе природных веществ и их концентрации. Обязательный тест для образцов, взятых из естественных водоемов: скважина, колодец, водопроводная вода.
  • Содержание в пробе химических элементов и соединений, попавших в образец в результате очистки воды. Данные методы контроля воды применяются ко всем видам проб: сточные, хозяйственно-бытовые, промышленные, питьевые воды;
  • Наличие в пробе бактерий и патогенных микробов, вирусных микроорганизмов и палочек. Тест, которым исследуется питьевая вода и образцы, взятые с поверхностных источников: озера, водохранилища, реки и так далее. Присутствие бактерий в жидкости, с которой контактирует человек (не пьет), также может вызвать ряд заболеваний.
  • Присутствие запаха. Органолептические и санитарно-микробиологические тесты позволяют выявить «виновников» запаха. Ими являются микроорганизмы и продукты их жизнедеятельности. Важное исследование питьевой и хозяйственно-бытовой воды.
  • Степень жесткости, мутности. Анализу обязательно подвергают хозяйственно-бытовые и питьевые образцы.

Полученные результаты сравнивают с нормативами СанПиН, в которых оговорено допустимое и нормальное присутствие в воде макро- и микроэлементов, солей, природных веществ и прочего. Если количественные величины примесей, минералов и солей попали в разрешенный СанПиН диапазон, тестируемый образец можно считать пригодным для питья, бытовых, промышленных целей. Аналогично оцениваются сточные воды. Если их физико-химический и токсический состав соответствует установленным нормам, то очищенную системой загрязненную жижу можно выбрасывать в окружающую среду. Она не станет причиной ее загрязнения и отравления людей. По каждому виду вод разработаны свои критерии оценки и нормы.

Методы анализа воды, контроля воды – питьевой и сточной

Контроль качества воды следует проводить не только предприятиям, но и людям, использующим водопроводную, колодезную и скважинную воду. По результатам теста можно с легкостью определить, какие системы фильтрации и очистки будут наиболее эффективны. В нашей независимой компании можно по доступной цене заказать любые типы анализов различных классов вод.

oskada.ru

Одним из важных процессов производства пищевой продукции является контроль качества воды. В статье представлены основные методы исследований питьевой воды. Проанализированы результаты оценки питьевой воды.

Ключевые слова: безопасность, питьевая вода, исследования.

 

Одним из важных процессов производства продукции и питьевой воды является контроль качества. Расширение ассортимента выпускаемой продукции, изменение экологической ситуации в регионе, формирование основ биотехнологий обуславливает необходимость обзора применяемых методов исследования сырья и продукции, включая питьевую воду [1–16].

Качество питьевой воды должно соответствовать требованиям действующих санитарных правил и норм, утвержденных в установленном порядке. Исследуемая проба была доставлена в аккредитованную лабораторию. Отбор пробы был произведен по ГОСТ ГОСТ Р 51232 «Вода питьевая. Общие требования к организации и методам контроля качества». Анализ проводили по основным физико-химическим и органолептическим показателям питьевой воды. Для анализа использовали следующие показатели и методы.

Определение запаха. Питьевая вода должна иметь благоприятные органолептические свойства, безвредна по химическому составу, быть безопасна в эпидемическом и paдиационном отношении.

Определение привкуса. Органолептическим методом определяли характер и интенсивность вкуса.

Цветность воды определяли фотометрическим путем сравнения проб испытуемой жидкости с растворами, имитирующими цвет природной воды.

Мутность воды определяли фотометрическим методом.

рН воды определяли потенциометрическим методом с использованием pH-метра со стеклянным электродом. Изменение рН воды свидетельствует о загрязнении ее продуктам распада органических соединений, стоками химических заводов и другими веществами.

Для определения общей жесткости воду титровали раствором трилона Б в присутствии индикатора (кислотный хромтемносиний или эриохромчерный Т). В точке эквивалентности при титровании индикатор изменяет окраску розовую (в присутствии ионов жесткости — Са2+ и Mg2+) на синюю (в отсутствии этих ионов).

Комплексонометрический метод сульфатов дает наиболее надежные результаты. Сущность этого метода состоит в том, в исследуемую воду вводят ионы Ba2+(раствор BaCl2), которые связывают ионы SO42- в трудно растворимые соединения, выпадающие в осадок:

Массовую концентрацию аммиака и ионов аммония определяли методом, основанном на способности аммиака и ионов аммония образовывать окрашенное в желто-коричневый цвет соединение с реактивом Несслера. Интенсивность окраски раствора, пропорциональная массовой концентрации аммиака и ионов аммония, измеряется на фотоколориметре при длине волны 400–425 нм.

Определение массовой концентрации нитритов. Метод основан на способности нитритов диазотировать сульфаниловую кислоту и на образовании красно-фиолетового красителя диазосоединения с 1-нафтиламином. Интенсивность окраски, пропорциональная содержанию нитритов, измеряется на фотоколориметре при длине волны 520 нм.

Нитраты определяли методом, основанном на реакции между нитратами и фенолдисульфоновой кислотой с образованием нитропроизводных фенола, которые со щелочами образуют соединения, окрашенные в желтый цвет.

Кремний определяли фотометрическим методом, основанном на взаимодействии кремнекислоты с молибдатом аммония в кислой среде с образованием желтой кремнемолибденовой гетерополикислоты. Оптическую плотность растворов определяют при l = 410 нм.

Также представляет интерес показатель перманганатной окисляемости воды. Данная величина служит для оценки содержания легкоокисляемой органики. Перманганатный индекс воды — общая концентрация кислорода, соответствующая количеству иона перманганата, потребляемому при обработке данным окислителем в данных условиях конкретной пробы воды.

Сущность метода определения перманганатной окисляемости воды заключается в использовании перманганата калия в качестве сильного окислителя для разложения органических загрязнителей в исследуемой воде. Проба воды кипятится с заданным, заведомо избыточным объемом KMnO4, после чего его избыток оттитровывается щавелевой кислотой.

Реакция окисления примесей перманганатом калия проводится в кислой среде и протекает следующим образом:

Методы исследования воды

В щелочной или нейтральной среде ион Mn2+ переходит в Mn4+, образуя окись марганца — бурый осадок:

Методы исследования воды

Избыток перманганата калия реагирует с вводимой в раствор щавелевой кислотой:

Методы исследования воды

В результате проведенных исследований получили данные, представленные в таблице 1.

Таблица 1

Результаты оценки питьевой воды

Показатель

Исследуемая проба

ПДК

Привкус

1

2 балла

Мутность

Менее 0,1

1,5мг/дм³

Запах, баллы

1

2 балла

Цветность, градусы

1.5

20 °

Водородный показатель (рН)

7,55

6–9 еДрН

Нитриты

Менее 0,003

3,0 мг/дм³

Жёсткость, мг-экв/л

2,9

7,0

Нитраты

2,7

45,0 мг/дм³

Фториды

0,064

1,5 мг/дм³

Аммиак

Менее 0,05

1,5 мг/дм³

Кремний

7,5

10 мг/дм³

Сульфаты

16,3

500,0 мг/дм³

 

Как видно из таблицы 1, питьевая вода соответствует всем требованиям СанПиН 2.1.4.1074–01. На основании всех проведенных анализов пробы воды, выдаётся протокол с заключением, заверенный печатью и подписями.

 

Литература:

 

1.         Белокаменская А. М., Ребезов М. Б., Ребезов Я. М., Максимюк Н. Н. Исследование проб воды на содержание йода методом инверсионной вольтамперометрии. Инновационные технологии в пищевой промышленности: наука, образование и производство: материалы конференции. 2013. С. 736–740.

2.         Белокаменская А. М., Ребезов М. Б., Ребезов Я. М., Максимюк Н. Н. Исследование проб воды на содержание селена методом инверсионной вольтамперометрии. Инновационные технологии в пищевой промышленности: наука, образование и производство: материалы конференции. 2013. С. С. 741–744.

3.         Белокаменская А. М., Зинина О. В., Наумова Н. Л., Максимюк Н. Н., Соловьева А. А., Солнцева А. А., Ребезов М. Б. Контроль качества результатов исследований продовольственного сырья и пищевых продуктов на содержание свинца. Известия вузов. Прикладная химия и биотехнология. 2012. № 1. Т. 2. С. 157–162.

4.         Белокаменская А. М., Максимюк Н. Н., Наумова Н. Л., Зинина О. В. Оценка методов инверсионной вольтамерометрии, атомно-абсорбционного и фотометрического анализа токсичных элементов в продовольственном сырье и пищевых продуктах. Челябинск: ИЦ ЮУрГУ, 2012. 94 с.

5.         Белокаменская А. М., Ребезов М. Б., Мазаев А. Н., Ребезов Я. М., Зинина О. В. Применение физико-химических методов исследований в лабораториях Челябинской области. Молодой ученый. 2013. № 4. С. 48–53.

6.         Белокаменская А. М., Ребезов М. Б., Мазаев А. Н., Ребезов Я. М., Максимюк Н. Н., Асенова Б. К. Исследование пищевых продуктов и продовольственного сырья на содержание ртути атомно-абсорбционным методом. Молодой ученый. 2013. № 10. С. 98–101.

7.         Белокаменская А. М., Ребезов М. Б., Мухамеджанова Э. К. Подбор современного оборудования для определения токсичных элементов с целью обеспечения качества испытаний. Торгово-экономические проблемы регионального бизнес-пространства. 2013. № 1. С. 292–296.

8.         Боган В. И., Ребезов М. Б. Совершенствование потенциометрического метода определения токсичных элементов на примере определения свинца, кадмия и меди. Вестник Южно-Уральского государственного университета. Серия: Пищевые и биотехнологии. 2014. Т. 2. № 3. С. 53–60.

9.         Боган В. И., Ребезов М. Б., Гайсина А. Р., Максимюк Н. Н., Асенова Б. К. Совершенствование методов контроля качества продовольственного сырья и пищевой продукции. Молодой ученый. 2013. № 10. С. 101–105.

10.     Ребезов М. Б., Зыкова И. В., Белокаменская А. М., Ребезов Я. М. Контроль качества результата анализа при реализации методик фотоэлектрической фотометрии и инверсионной вольтамперометрии в исследовании проб пищевых продуктов на содержание мышьяка. Вестник Новгородского государственного университета имени Ярослава Мудрого. 2013. № 71. Т. 2. С. 43–48.

11.     Ребезов М. Б., Наумова Н. Л., Альхамова Г. К., Лукин А. А., Хайруллин М. Ф. Экология и питание. Проблемы и пути решения. Фундаментальные исследования. 2011. № 8–2. С. 393–396.

12.     Прохасько Л. С., Ребезов М. Б., Асенова Б. К., Зинина О. В., Залилов Р. В., Ярмаркин Д. А. Применение гидродинамических кавитационных устройств для дезинтеграции пищевых сред. Сборник научных трудов SWorld. 2013. Том 7. № 2. С. 62–67.

13.     Прохасько Л. С. Технология кавитационной дезинтеграции пищевых сред. В сборнике: Наука. Южно-Уральский государственный университет. Материалы 65–1 Научной конференции. 2013. С. 32–35.

14.     Ярмаркин Д. А., Прохасько Л. С., Мазаев А. Н., Асенова Б. К., Зинина О. В., Залилов Р. В. Кавитационные технологии в пищевой промышленности. Молодой ученый. 2014. № 8. С. 312–315.

15.     Прохасько Л. С., Ярмаркин Д. А. Использование гидродинамической кавитации в пищевой промышленности.Сборник научных трудов Sworld. 2014. Т. 7. № 3. С. 27–31.

16.     Ярмакин Д. А., Прохасько Л. С., Мазаев А. Н., Переходова Е. А., Асенова Б. К., Залилов Р. В. Перспективные направления кавитационной дезинтеграции. Молодой ученый. 2014. № 9 (68). С. 241–244.

moluch.ru

Под окисляемостъю понимают способность органических веществ, нахо­дящихся в воде, окисляться атомарным кислородом. Величину окисляемости выражают количеством кислорода (мг), необходимого для окисления органи­ческих веществ, содержащихся в 1 л воды. Источником атомарного кислоро­да в этих реакциях служит перманганат калия или бихромат, а окисляемость соответственно называется перманганатной или бихроматной. Обычно окис­ляемость определяют в кислой воде, но при содержании в воде хлоридов более 300 мг/л и очень загрязненной исследование проводят в щелочной среде.

Перманганатный метод (по Кубелю). Основан на способности перман­ганата калия в кислой среде выделять кислород. По количеству затраченно­го кислорода судят об окисляемости воды.

Приборы и посуда: бюретки, пипетки на 5 мл, колбы на 250-300 мл, мерные цилиндры на 100 мл, пробирки, стеклянные бусы, воронки диаметром 5-7 см.

Реактивы:

  1. раствор перманганата калия (0,01 н) — для этого в 1 л дистиллиро­ванной воды растворяют 0,316 г препарата; 1 мл такого раствора соответствует 0,08 мг кислорода. Раствор хранят в темной склянке с притертой крышкой и проверяют при каждой серии исследований;

  2. раствор щавелевой кислоты (0,01 н) — для приготовления его отвешивают 0,63 г кислоты и растворяют в 1 л дистиллированной воды; 1 мл раствора требует для своего окисления 0,08 мг кислорода;

  3. раствор серной кислоты (25%) плотностью 1,84 г/см кубический по объему (1 : 3) в дистиллированной воде.

Метод исследования.

1) В коническую колбу емкостью 250 мл помещают несколько стеклян­ных шариков и наливают 100 мл воды, добавляют 5 мл серной кислоты (1 : 3) и 10 мл раствора перманганата калия (0,01 н). Смесь быстро нагрева­ют до кипения (за 5 мин) и выдерживают на слабом огне около 10 мин. После этого колбу снимают (раствор должен иметь розовый цвет) и к горяче­му раствору добавляют 10 мл раствора щавелевой кислоты (0,01 н). Обесцве­ченный горячий раствор (при температуре 800С) титруют раствором перман­ганата калия (0,01 н) до устойчивого слабо-розового окрашивания. Если исследуемая жидкость во время кипячения обесцветится или станет светло-бурой, то дальнейшее исследование прекращают и раствор выливают. Берут новую порцию воды и предварительно ее разбавляют дистиллированной во­дой в 2 или 5 раз и повторяют анализы, как было указано выше.

2) Нормальность раствора перманганата калия (величина К) устанавли­вают следующим образом. В колбу емкостью 250 мл наливают 100 мл дис­тиллированной воды, добавляют 5 мл серной кислоты (25%) и 10 мл раство­ра перманганата калия (0,01 н). Жидкость нагревают и кипятят в течение 10 мин на малом огне. Затем в горячую жидкость добавляют 10 мл раствора щавелевой кислоты (0,01 н), в результате чего наступает обесцвечивание. После этого в горячем состоянии ее титруют раствором перманганата калия (0,01 н) до бледно-розового окрашивания.

Поправочный коэффициент (К) титра 0,01 н раствора перманганата ка­лия вычисляют по формуле:

Методы исследования воды

где 10 — количество 0,01 н раствора щавелевой кислоты, мл; b — количе­ство 0,01 н раствора перманганата калия, прилитое до кипячения и затем пошедшее на титрование, мл.

3) Окисляемость воды вычисляется по формуле:

Методы исследования воды

где X — окисляемость кислорода в мг на 1 л воды; а — количество КМпО4 в мл, прилитое до кипячения; b — количество КМпО4, израсходованное на титрование в мл; К — поправочный коэффициент к нормальности КМпО4; 10 — количество КМпО4, израсходованное на окисление щавелевой кислоты; 0,08 — количество кислорода, соответствующее 1 мл 0,01 н раствора КМпО4; 1000 — перевод на 1 л воды; С — объем воды, взятой для анализа, мл.

Примечание: если исследуемую пробу воды разводят дистиллирован­ной водой, то необходимо проверить ее на содержание органических веществ и при расчете окисляемости вычитать то количество КМпО4, которое пошло на окисление органических веществ в дистиллированной воде.

В связи с тем, что в воде могут окисляться и некоторые минеральные (закисные) соединения — железо, марганец, нитриты, сероводород, при зна­чительном их содержании необходимо учитывать влияние на величину окис­ляемости (опыт проводят без подогревания).

Определение окисляемости в щелочной среде (по Шульцу). Этот метод применим для определения окисляемости воды, загрязненной хлоридами и др.

Реактивы:

  1. раствор перманганата калия (0,01 н) — для этого в 1 л дистиллированной воды растворяют 0,316 г препарата;

  1. 50%-й раствор едкого натра;

  1. раствор щавелевой кислоты (0,01 н) — для приготовления его отвешивают 0,63 г кислоты и растворяют в 1 л дистиллированной воды;

4)20% -й раствор серной кислоты.

Метод исследования.

В коническую колбу наливают 100 мл воды, добавляют 0,5 мл 50%-го раствора едкого натра и 10 мл раствора перманганата калия (0,01 н). Жид­кость нагревают и кипятят 10 мин от начала появления первых пузырьков, охлаждают до 50-60°С, добавляют 5 мл серной кислоты, 10 мл 0,01 н ра­створа щавелевой кислоты (жидкость должна обесцвечиваться; если этого нет, то добавляют еще несколько мл щавелевой кислоты). Затем титруют 0,01 н раствором перманганата калия до появления слабо-розовой окраски, которая не исчезает в течение 3-5 мин. Расчет производят по той же форму­ле, что и по методике Кубеля, результат выражают в мг кислорода на литр.

Экспресс-метод определения окисляемости. В пробирку наливают 10 мл воды и добавляют 0,5 мл раствора серной кислоты в разведении 1 : 3 и 1 мл 0,01 н раствора перманганата калия. Смесь основательно перемешивают и оставляют в покое на 20 мин при температуре 200С и на 40 мин при темпера­туре 10-200С. После этого раствор рассматривают сбоку и сверху и по окрас­ке определяют окисляемость, которая зависит от цветности. Так, яркий медово-розовый цвет соответствует 1, лилово-розовый — 2, слабый лилово-розовый — 4, бледно-лилово-розовый — 6, бледно-розовый — 8, розово-жел­тый — 12, желтый — 16 мг О2/л и выше.

Азот аммиака и аммонийных солей. Количество азота аммиака и аммо­ния в воде определяют колориметрическим способом, сущность которого состоит в том, что при добавлении к исследуемой воде реактива Несслера образуется йодистый меркураммоний, окрашивающий воду в желтый цвет различной интенсивности в зависимости от содержания аммиака. Пробу воды после добавления реактива Несслера сравнивают со стандартным ра­створом хлористого аммония, содержащим заведомо известное количество азота аммония. Для колориметрирования пригодна вода с концентрацией аммиака в пределах 0,1-10 мг/л.

Приборы и посуда: фотоэлектроколориметр — ФЭК, пипетки на 1 и 5 мл, колбы на 100 мл, мерный цилиндр на 100 мл и пробирки.

Реактивы:

  1. реактив Несслера;

  1. стандартный раствор хлорида аммония, с содержанием азота 0,001 мг в 1 мл;

  1. 50%-й водный раствор сегнетовой соли;

  2. щелочная смесь, состоящая из 50 г едкого натра и 100 г углекислого натра, растворенная в 300 мл дистиллированной воды (приготовленный раствор кипятят 15 мин и фильтруют через асбестовую вату);

  3. гидроокись алюминия.

Подготовка воды к анализу: на точность определения содержания азота аммиака и аммонийных солей в воде оказывают влияние ее цветность и жесткость, содержащиеся железо, сульфиты и свободная углекислота. Для обесцвечивания 500 мл воды добавляют 0,5 г гидроокиси алюминия и отста­ивают осадок в течение 2 ч,

Сульфиды определяют так: в 10 мл воды вносят 1 мл реактива Несслера и затем 2 мл раствора серной кислоты (1 : 3). Если муть не исчезнет после подкисления воды, то в ней содержатся сульфиды, которые следует удалить, добавив на 100 мл воды 10 капель 30%-го раствора уксуснокислого цинка. После этого воду отстаивают 2 ч, сливают прозрачную часть и отбирают из нее пробы для исследований.

При жесткости воды более 3,5 мг/экв. л ее умягчают, для этого к 100 мл воды добавляют 2 мл едкого натра и отстаивают раствор 2 ч.

Методика исследования. В одну колбу наливают 100 мл стандарт­ного раствора хлорида аммония, а в другую — 100 мл испытуемой воды. Затем в обе колбы добавляют по 3 мл 50% -го раствора сегнетовой соли и по 2 мл реактива Несслера. Содержимое колб взбалтывают и оставляют в покое около 10 мин до появления окраски.

Колориметрию проводят на ФЭК при синем светофильтре (№ 4) в кюве­тах толщиной 1-5 см. На ФЭК определяют оптическую плотность стандарт­ного раствора исследуемой воды точно через 10 мин после добавления реак­тива Несслера (учитывают очередность внесения реактивов и их колоримет­рию). Расчет ведут по формуле:

Методы исследования воды

где С2 — концентрация азота аммиака и аммония в исследуемой воде, мг/л; С1 — то же в стандартном растворе хлорида аммония, мг/л; А1 — оптичес­кая плотность стандартного раствора хлорида аммония (по красной шкале); А2 — оптическая плотность исследуемой воды (по красной шкале); 1000 — перевод на 1 л.

Определение аммиака приближенным методом. В пробирку наливают 10 мл исследуемой воды, добавляют 0,2-0,3 мл 50%-го раствора сегнетовой соли, хорошо перемешивают и вносят реактив Несслера. Определение аммиака ведут по таблице 38.

Азот нитритов. Принцип исследования состоит в том, что вода, содер­жащая нитриты, при добавлении реактива Грисса окрашивается в розовый цвет. Для выявления нитритов пользуются реактивом Грисса — раствор альфа-нафталамина и сульфаниловой кислоты в уксусной кислоте. При со­держании в воде нитритов больше, чем 0,3 мг/л вода окрашивается в жел­тый цвет. Предел чувствительности реактива — 0,01 мг/л нитритов.

Таблица 38

studfiles.net


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector