Нулевой защитный проводник


Как отмечается нулевой защитный проводник

Электрическое питание  квартиры выполняется электрическим током с напряжением, номиналом 220-230 вольт.

  1. При этом один рабочий проводник считается фазным (или же просто “фаза”), а второй  рабочий проводник считается нулевым (иначе “рабочий ноль”). На схемах “фаза” отмечается -L,”ноль” обозначается-N. Подобная электрическая проводка зовется двухпроводная.
  2. Кроме двухпроводной электрической проводки квартиры, применяется трехпроводная . 3-ий провод  считается нулевым защитным проводом (или “земля”), обозначается-PE. Окрас жилы заземления в кабеле жёлто-зеленый.

На схеме и приборах нулевой защитный проводник (земля) отмечается так.

Нулевой защитный проводник

Назначение нулевого защитного проводника


Предназначается нулевой защитный проводник  для изготовления краткосрочного тока короткого замыкания и срабатывания защитного выключения повреждённого электрического прибора  от питающей сети, для обеспечения вашей  электрической безопасности .

Система питания и система заземления

В зданиях жилого фонда  электрическое питание выполняется от электрических установок в которых нейтраль(ноль) источника питания глухозаземленна, а открытые проводящие части электрической установки присоединены  к данной глухозаземленной нейтрали. Отмечается данная система электропитания-TN.

Нулевой защитный проводник

Система электроснабжения TN  для вашей жилой площади может быть одной из 3-х видов.

1.Система заземления TN-C

С и с т е м а TN-С – это система TN, в которой нулевой защитный и нулевой рабочий проводники объединены в одном проводнике на всем ее протяжении линии от источника до квартиры.

Нулевой защитный проводник

Система электроснабжения квартиры TN-C

Главное! Данная система электрического питания применяется во всех устаревших домах. С 2007 года в соответствии с ПУЭ (правила устройства электрических установок) схема проводки TN-C во вновь строящихся домах воспрещена.

При серьезном квартирном ремонте нужно перевести схему электрической проводки TN квартиры на систему TN-C-S (смотри ниже).

2.Система заземления TN-S


С и с т е м а электрического питания TN-S -это измененная система электроснабжения TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении линии от источника до квартиры.

Нулевой защитный проводник

Система электроснабжения квартиры TN-S

Главное! Не путать в течении всей электрической проводки квартиры проводники PE (земля) и N (ноль).

3.Система заземления TN-C-S

С и с т е м а электрического питания TN-C-S – это измененная электрическая система TN, в которой функции нулевого защитного и нулевого рабочего проводников объединены в одном проводнике в какой-то ее части, начиная от источника питания.

Нулевой защитный проводник

Система электроснабжения квартиры TN-C-S

Другими словами  в квартире проводники PE (земля) и N (ноль) разделены, а в этажном щите объединены и присоединены к одной клемме (смотри схему выше).

Эта схема заземления в особенности важна при серьезном квартирном ремонте с системой питания  TN-C  и переходе электрической проводки на систему электроснабжения TN-C-S.

Правила во время монтажа трехпроводной  системы электропитания квартиры


  1. Нулевой защитный проводник  не должен прерываться никакими предохранителями и автоматами защиты.
  2. Если есть наличие в щите устройство защитного отключения (УЗО) нулевой защитный провод(земля) не должен нигде ,на линии электрического питания,иметь контакта с N проводником(ноль). В противном случае будет включаться устройство защитного отключения (УЗО).
  3. Нулевой защитный проводник   в квартире, обязан иметь сечение равное сечению рабочих проводников.
  4. Нулевой защитный проводник  должен прокладываться очень близко от рабочих проводников.Говоря иначе в одном кабеле.
  5. Прокладка нулевого защитного проводника отдельно от рабочих проводов воспрещена!
  6. Нельзя применять для заземления электрической проводки квартиры коммуникации общего назначения(отопительные трубы,водообеспечения, арматуру в стенках)
  7. Нельзя подсоединять нулевой защитный проводник  к независимым (“чужим”) шинам заземления. Если такие есть у вас на лестнице.
  8. Сопротевление изоляции обязано отвечать данным таблице ниже:

В соответствии с ПТЭЭП (правила технической эксплуатации электрических установок потребителей), приложение 3; 3.1 (часть таблицы 37), минимально возможные значения сопротивления изоляции электрических установок напряжением до 1000 В :

  1. Название элемента

  1. Напряжение мегомметра, В
  1. Самое меньшее допустимое значение сопротивления изоляции, мом
распределительные устройства, щиты и токопроводы 1000-2500 1,0
электрической проводки, также сети освещения 1000 0,5
стационарного типа варочные поверхности 1000 1,0
силовые линии кабелей 2500 0,5
обмотки статора синхронных электрических двигателей 1000 1,0

Конкретно для сайта: все про квартирный ремонт

Иные публикации сайта близкие по теме

oracal.net

Что такое электроустановка? Какой основной документ определяет требования к электроустановкам?

Электроустановка — совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения, потребления электрической энергии и преобразования её в другой вид энергии.

По ГОСТ 19431-84: "Энергоустановка, предназначенная для производства или преобразования, передачи, распределения или потребления электроэнергии".


Основным нормативным документом для

создания электроустановок являются «Правила устройства электроустановок» (ПУЭ),

а при эксплуатации — «Правила технической эксплуатации электроустановок потребителей» (ПТЭЭП).

Электроустановки разделяют по назначению (генерирующие, потребительские и преобразовательно-распределительные), роду тока (постоянного и переменного) и напряжению (до 1000 В и выше 1000 В).

Что такое номинальное значение параметра?

Номинальным параметром называется указанное изготовителем электротехнического устройства значение параметра, являющееся исходным для отсчета отклонений от этого значения при эксплуатации и испытаниях устройства.

Какие номинальные значения напряжений переменного тока вам известны?

Шкала действующих значений номинальных межфазных напряжений приемников электроэнергии и линий электропередачи
U , кВ: 0,22; 0,38; 0,66; 3; 6; 10; 20; 35; 110; 220; 330; 500; 750; 1150.

Что такое действующее значение переменного тока?

Действующим значением силыпеременного токаназывают некоторое значение постоянного тока, действие которого произведёт такую же работу (тепловой или электродинамический эффект), что и рассматриваемый переменный ток за время одного периода.

Где применяются понятия «линейное напряжение» и «фазное напряжение», как они отличаются?


В трехфазной электрической сети различают линейное и фазное напряжения. Линейное (его называют также междуфазным или меж­фазным) напряжение – это напряжение между двумя фазными про­водами. Фазное напряжение – это напряжение между нулевым про­водом и одним из фазных.

Как подразделяются электроустановки по условиям электробезопасности?

По степени опасности поражения персонала электрическим током электроустановки подразделяются на электроустановки до 1000 Вольт и выше 1000 Вольт.

7. Назначение и обозначение нулевого рабочего проводника, нулевого защитного проводника сети 0.4 кВ.

Нулевым защитным проводникомназывается проводник, соединяющий зануляемые части (открытые проводящие части) с глухозаземленной нейтральной точкой источника питания трехфазного тока или с заземленным выводом источника питания однофазного тока, или с заземленной средней точкой источника питания в сетях постоянного тока.

Нулевой рабочий проводник– проводник в электроустановках напряжением до 1 кВ, предназначенный для питания электроприемников соединенный с глухозаземленной нейтральной точкой генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в сетях постоянного тока.

Нулевой рабочий проводник Нулевой защитный проводник


Обозначение

Нулевой рабочий провод обозначается буквой N. Если нулевой рабочий провод одновременно выполняет функцию нулевого защитного провода (В системе заземления TN-C), то он обозначается как PEN. Согласно ПУЭ цвет нулевого рабочего провода должен быть голубым или бело-голубым[1]. Такая же расцветка принята в Европе. В США цвет нулевого рабочего провода может быть серым или белым.

нулевого защитного проводник

Пусть мы имеем схему без нулевого защитного проводника, роль которого выполняет земля (рис. 4.11). Будет ли работать такая схема?

При замыкании фазы на корпус по цепи, образовавшейся через землю, будет проходить ток:

Нулевой защитный проводник ,

где U – фазное напряжение сети, В; r0, rк – сопротивления заземления нейтрали и корпуса, Ом.

Сопротивления обмоток источника тока (например, трансформатора, питающего данную сеть) и проводов сети малы по сравнению с r0 и rк, поэтому их в расчет не принимаем.

В результате протекания тока через сопротивление rк в землю на корпусе возникает напряжение относительно земли Uкравное падению напряжения на сопротивлении rк:

Нулевой защитный проводник .


Ток Iз может оказаться недостаточным, чтобы вызвать срабатывание максимальной токовой защиты, т. е. установка может не отключиться.

Чтобы устранить эту опасность, надо обеспечить быстрое автоматическое отключение установки, т. е. увеличить ток, проходящий через защиту, что достигается уменьшением сопротивления цепи этого тока путем введения в схему нулевого защитного проводника соответствующей проводимости.

Следовательно, из сказанного вытекает еще один вывод: в трехфазной сети напряжением до 1 кВ с заземленной нейтралью без нулевого защитного проводника невозможно обеспечить безопасность при косвенном прикосновении, поэтому такая сеть применяться не должна.

 

megaobuchalka.ru

Одними из эффективных средств защиты от поражения электрическим током являются защитное заземление и зануление электроустановок. В соответствии с ГОСТ 12.1.009–76:

защитное заземление это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением;

зануление это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.


В вопросах применения и практического выполнения защитного заземления и зануления следует руководствоваться требованиями не только ПУЭ, но и ГОСТ Р 50571. В ГОСТ Р 50571.2– 94 «Электроустановки зданий. Часть 3. Основные характеристики» приводится классификация систем заземления электрических сетей: IT, TT, TN–С, TN–C–S, TN–S (рис.2).

Применительно к сетям переменного тока напряжением до 1 кВ обозначения имеют следующий смысл.

Первая буква – характер заземления источника питания (режим нейтрали вторичной обмотки трансформатора):

  • I – изолированная нейтраль;

  • Т – глухозаземленная нейтраль.

Вторая буква – характер заземления открытых проводящих частей (металлических корпусов) электроустановки:

  • Т – непосредственная связь открытых проводящих частей (ОПЧ) с землей (защитное заземление);

  • N – непосредственная связь ОПЧ с заземленной нейтралью источника питания (зануление).

Последующие буквы (если они имеются) – устройство нулевого рабочего и нулевого защитного проводников:

  • С – нулевой рабочий (N) и нулевой защитный (РЕ) проводники объединены по всей сети;

  • CS – проводники N и РЕ объединены в части сети;

  • S – проводники N и РЕ работают раздельно во всей сети

Нулевой защитный проводник

Рис. 2. Разновидности систем заземления

Проводники, используемые в различных типах сетей, должны иметь определенные обозначения и расцветку (табл. 1).

Таблица 1

Обозначение проводников


Наименование проводника

Обозначение

Расцветка

буквенное

графическое

Нулевой рабочий

N

Нулевой защитный проводник

Голубой

Нулевой защитный (защитный)

PE

Нулевой защитный проводник

Желто-зеленый

Совмещенный нулевой рабочий и нулевой защитный

PEN

Нулевой защитный проводник

Желто-зеленый с голубыми по концам метками, наносимыми при монтаже

Фазный

в трехфазной сети

L1, L2, L3

Все цвета, кроме вышеперечисленных

в однофазной сети

L

Область применения этих способов защиты определяется режимом нейтрали и классом напряжения электроустановки.

Защитное заземление состоит (рис.3) из заземлителя 3 (металлических проводников, находящихся в земле с хорошим контактом с ней) и заземляющего проводника 2, соединяющего металлический корпус электроустановки 1 с заземлителем.

Нулевой защитный проводник

Рис. 3. Схема защитного заземления:

1 — электроустановка; 2 — заземляющий проводник; 3 — заземлитель

Совокупность заземлителя и заземляющих проводов называют заземляющим устройством. Защитное заземление применяют в трехфазных трехпроводных и однофазных двухпроводных сетях переменного тока напряжением до 1000 В с изолированной нейтралью, а также в сетях напряжением выше 1000 В переменного и постоянного тока с любым режимом нейтрали.

Защитное действие заземляющего устройства основано на снижении до безопасной величины тока, проходящего через человека в момент касания им поврежденной электроустановки.

При попадании напряжения на корпус электроустановки человек, коснувшись ее и имея хороший контакт с землей, замыкает собой электрическую цепь: фаза L1 — корпус электроустановки 1 — человек — земля — емкостные ХL3, ХL2 и активные RL3, RL2 сопротивления связи проводов с землей, фазы L3 и L2. По человеку пойдет ток. Несмотря на то что электрические провода сети установлены на изолированных опорах, между ними и землей существует электрическая связь. Она происходит за счет несовершенства изоляции проводов, опор и т. п. и наличия емкости между проводами и землей. При большом протяжении проводов эта связь становится значительной, а ее активное R и емкостное X сопротивления снижаются и становятся соизмеримыми с сопротивлением тела человека. Вот почему, несмотря на отсутствие видимой связи, человек, находящийся под напряжением и имеющий контакт с землей, замыкает собой электрическую цепь между различными фазами сети.

При наличии заземляющего устройства образуется дополнительная цепь: фаза L1 — корпус электроустановки — заземляющее устройство — земля — сопротивления ХL3, RL3, XL2, RL2 — фазы L3 и L2. В результате этого ток замыкания распределяется между заземляющим устройством и человеком. Так как сопротивление заземлителя (оно должно быть не более 10 Ом) во много раз меньше сопротивления человека (1000 Ом), то через тело человека будет проходить малый ток, не вызывающий его поражения. Основная часть тока пойдет по цепи через заземлитель.

Заземлители могут быть естественными и искусственными. В качестве естественных заземлителей используют металлические конструкции и арматуру зданий и сооружений, имеющие хорошее соединение с землей, проложенные в земле водопроводные, канализационные и другие трубопроводы (за исключением трубопроводов горючих жидкостей, горючих и взрывоопасных газов и трубопроводов, покрытых изоляцией для защиты от коррозии).

В качестве искусственных заземлителей применяют одиночные или соединенные в группы металлические электроды, забитые вертикально или уложенные горизонтально в землю. Электроды изготавливают из отрезков металлических труб диаметром не менее 32 мм и толщиной стенок не менее 3,5мм, угловой стали с толщиной полок не менее 4 мм, полосы сечением не менее 100 мм2, а также из отрезков швеллеров, прутковой стали диаметром не менее 10мм. Электроды, выполненные из более тонких профилей, вследствие коррозии быстро выходят из строя. Кроме того, тонкие профили имеют малый контакт с землей, поэтому их применение нежелательно. Длину электродов и расстояние между ними принимают не менее 2,5–3,0 м.

Между собой вертикальные электроды в групповом заземлителе соединяют с помощью сварки перемычкой, выполненной из аналогичных материалов и тех же сечений, что и сами электроды. Заземляющее устройство должно иметь вывод наружу (на поверхность земли), выполненное на сварке из таких же материалов. Оно служит для подсоединения заземляющего проводника.

Для осуществления заземляющих функций сопротивление заземляющего устройства в электроустановках напряжением до 1000 В в сети с изолированной нейтралью должно быть не более 4 Ом.

Необходимое сопротивление достигают установкой соответствующего количества электродов в заземлителе, определяемых расчетом.

Сопротивление заземляющего устройства — это отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю. Различают выносное и контурное заземляющие устройства.

Выносное устройство располагают за пределами площадки с заземляемым оборудованием. Его достоинство состоит в возможности выбора грунта с наименьшим удельным сопротивлением.

Контурное заземление выполняют забивкой электродов по контуру заземляемого оборудования и между ним. Такая установка электродов создает дополнительный защитный эффект за счет повышения и выравнивания (более равномерного распределения) потенциалов земли в зоне нахождения человека.

Занулениеэто преднамеренное электрическое соединение металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением, с глухозаземленной нейтралью источника тока (генератора или трансформатора).

В четырехпроводных сетях с нулевым проводом и глухозаземленной нейтралью источника тока напряжением до 1000 В зануление — основное средство защиты.

Подсоединение корпусов электроустановок к нейтрали источника тока осуществляют с помощью нулевого защитного проводника (РЕ — проводника). Его нельзя путать с нулевым рабочим проводом (N — проводником), который также соединен с нейтралью источника, но служит для питания однофазных электроустановок. Нулевой защитный проводник прокладывают по трассе фазных проводов, в непосредственной близости от них.

Защитное действие зануления основано на снижении до безопасной величины тока, проходящего через человека в момент касания им поврежденной электроустановки, и последующем отключении этой установки от сети.

Работает зануление следующим образом: при попадании напряжения на корпус зануленной электроустановки 8 (рис. 4) большая часть тока с него пойдет в сеть через нулевой защитный провод 6. По цепи: корпус электроустановки 8 — человек — земля — заземляющее устройство 9 — нулевой рабочий провод 5 — пойдет незначительный ток, не вызывающий поражения (ввиду более высокого сопротивления этой цепи по сравнению с сопротивлением цепи через нулевой защитный провод 6).Одновременно с этим замыкание на корпус фазного провода при такой схеме защиты автоматически превращается в однофазное короткое замыкание между фазным и нулевым рабочим проводом 5 сети, в результате чего через 0,2—7 с срабатывает токовая защита (перегорает предохранитель 7, срабатывает автоматический выключатель и т. п.), и электроустановка, а вместе с ней и человек, полностью обесточиваются.

Таким образом, в первоначальный момент зануление работает аналогично защитному заземлению, а в последующем оно полностью прекращает действие тока на человека. Только при этом ток, проходящий через тело человека до срабатывания защиты, будет в несколько раз меньше, т.к. сопротивление зануляющего проводника обычно не превышает 0,3 Ом, а сопротивление заземлителя допускается до 4 Ом.

Нулевой защитный проводник

Рис. 4. Схема зануления:

1 — заземлитель нейтрали трансформатора; 2 — источник тока (трансформатор); 3 — нейтраль источника тока; 4 — зануление корпуса трансформатора; 5 — нулевой рабочий (он же и нулевой защитный) провод сети; 6 — нулевой защитный провод электроустановки; 7 — предохранитель; 8 — электроустановка; 9 — повторное заземление нулевого защитного провода сети

В зануленных электроустановках до 1 кВ с глухозаземленной нейтралью с целью надежного обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых защитных проводников и их соединений должна обеспечить ток короткого замыкания, превышающий не менее чем в 3 раза номинальный ток плавкого элемента ближайшего предохранителя или автоматического выключателя, имеющего расцепитель с обратнозависимой от тока характеристикой (тепловой расцепитель), в 1,4 раза — для автоматических выключателей с электромагнитными расцепителями с силой номинального тока до 100 А и в 1,25 раза — с величиной тока более 100 А.

В зануленных электроустановках до 1 кВ с глухозаземленной нейтралью (с целью надежного обеспечения автоматического отключения аварийного участка) проводимость фазных и нулевых защитных проводников и их соединений должна обеспечить ток короткого замыкания.

Нулевой защитный провод 5 сети (рис. 4) должен обеспечивать надежное соединение корпусов электроустановок с нейтралью источника, поэтому все соединения выполняют сварными. В нем запрещается установка предохранителей и выключателей (за исключением случая одновременного отключения и фазных проводов).

Нулевой защитный провод 5 сети заземляют: у источника тока с помощью заземлителя 1; на концах воздушных линий (или ответвлений от них) длиной более 200 м; а также на вводах воздушной линии к электроустановкам. Повторные заземления 9 необходимы для уменьшения опасности поражения электрическим током при обрыве нулевого провода и замыкании фазы на корпус электроустановки за местом обрыва, а также для снижения напряжения на корпусе в момент срабатывания токовой защиты.

Согласно ПУЭ сопротивление заземляющего устройства, к которому присоединена нейтраль источника тока, с учетом естественных и повторных заземлителей нулевого провода должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях источника трехфазного тока 660, 380 и 220 В.

Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN–проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях.

При удельном сопротивлении земли ρо > 100 Ом∙м допускается увеличивать указанные нормы в 0,01 ρо раз, но не более десятикратного.

Зануление (заземление) металлических корпусов переносных электроустановок осуществляют третьей жилой для однофазных или четвертой жилой для трехфазных электроприемников, находящейся в одной оболочке с фазными проводами.

Жилы этих проводов должны быть гибкими, медными, их сечение должно быть равно сечению фазных проводников и быть не менее 1,5 мм2.

Втычные соединители (вилки и розетки) должны быть выполнены так, чтобы соединение заземляющих и нулевых защитных проводников происходило до соединения фазных проводников, а рассоединение происходило в обратной последовательности. Обычно это достигают применением у вилки более длинного штыря для защитного проводника, чем для фазных проводов. Во всех случаях вилку подсоединяют к электроприемнику, розетку — к сети.

    1. Средства индивидуальной защиты от поражения электрическим то­ком

Средства индивидуальной защиты от поражения электрическим то­ком — электрозащитные сред­ства (ЭЗС), которые делятся на ос­новные и дополнительные.

Основные ЭЗС — это средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановок, что позволяет с помощью их прикасаться к токоведущим частям, находящимся под напряжением.

Для работы на электроустанов­ках до 1000 В к ним относятся: изолирующие штанги, изолирую­щие и электроизмерительные клещи, диэлектрические перчатки, слесарно-монтажный инструмент с изолированными рукоятка­ми, указатели напряжения.

При напряжении электроустановки свыше 1000 В основные средства включают изолирующие штан­ги, изолирующие и электроизмерительные клещи, указатели на­пряжения.

Дополнительные ЭЗС — это средства защиты, изоляция ко­торых не может длительно выдерживать рабочее напряжение электроустановок. Они применяются для защиты от напряжения прикосновения и шага, а при работе под напряжением исключи­тельно с основными ЭЗС.

К ним относятся: при напряжении до 1000 Вдиэлектрические галоши, коврики, изолирующие подставки; свыше 1000 Вдиэлектрические перчатки, боты, ков­рики, изолирующие подставки. ЭЗС должны иметь маркировку с указанием напряже­ния, на которое они рассчитаны, их изолирующие свойства под­лежат периодической проверке в установленные нормативами сроки.

Сроки испытаний защитных средств от поражения электрическим током представлены в табл.2.

Таблица 2

Сроки испытаний защитных средств от поражения электрическим током (фрагмент)

Защитное средство

Напряжение электроуста-новки

Срок периодичес-ких испытаний, мес.

Срок периодических осмотров, мес.

Изолирующие клещи

до 1000В

24

12

Указатели напряжения, работающие на принципе протекания активного тока

до 500В

12

перед употреблением

Инструмент с изолирующими рукоятками

до 1000В

12

то же

Перчатки резиновые диэлектрические

до 1000В

6

то же

Галоши резиновые диэлектрические

до 1000В

12

6

Коврики резиновые диэлектрические

до 1000В

24

12

studfiles.net

       Вернутся на страницу:        «Электрика»

        В ПУЭ 7-го издания требования к выполнению групповых сетей сформулированы следующим образом (пп. 7.1.36, 7.1.45):

7.1.36. Во всех зданиях линии групповой сети, прокладываемые от групповых, этажных и квартирных щитков до светильников общего освещения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный – L, нулевой рабочий – N, и нулевой защитный – РЕ проводники). Не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий.

Нулевой рабочий и нулевой защитный проводники не допускается подключать под общий контактный зажим.
Сечения проводников должны отвечать требованиям п. 7.1.45.

7.1.45. Выбор сечения проводников следует проводить согласно требованиям соответствующих глав ПУЭ.

Однофазные двух- и трехпроводные линии, а также трехфазные четырех- и пятипроводные линии при питании однофазных нагрузок, должны иметь сечение нулевых рабочих N проводников, равное сечению фазных проводников.

Трехфазные четырех- и пятипроводные линии при питании трехфазных симметричных нагрузок должны иметь сечение нулевых рабочих N проводников, равное сечению фазных проводников, если фазные проводники имеют сечение до 16 мм2 по меди и 25 мм2 по алюминию, а при больших сечениях – не менее 50 % сечения фазных проводников, но не менее 16 мм2 по меди и 25 мм2 по алюминию.

Сечение РЕN проводников должно быть не менее сечения N проводников и не менее 10 мм2 по меди и 16 мм2 по алюминию независимо от сечения фазных проводников.

Сечение РЕ проводников должно равняться сечению фазных при сечении последних до 16 мм2, 16 мм2 при сечении фазных проводников от 16 до 35 мм2 и 50 % сечения фазных проводников при бoльших сечениях.

Сечение РЕ проводников, не входящих в состав кабеля, должно быть не менее 2,5 мм2 – при наличии механической защиты и 4 мм2 – при ее отсутствии.

Классификация систем заземления представлена в п. 312.2 ГОСТ Р 50571.2-94. Система заземления является общей характеристикой питающей электрической сети и электроустановки здания.

В ПУЭ 7-е издание приведены следующие системы заземления: ТN-С, ТN-S, ТN-С-S, ТТ, IТ (рис. 1).

Нулевой защитный проводник

 

 

Рис 1.1. Система TN-C

 

 

Нулевой защитный проводник

 

Рис 1.2. Система TN-S

 

 

Нулевой защитный проводник

 

 

Рис 1.3. Система TN-C-S

 

Нулевой защитный проводник

 

 

Рис 1.4. Система TT

 

 

Нулевой защитный проводник

 

 

 

Рис 1.5. Система IT

 

 

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

Т – непосредственное соединение нейтрали источника питания c землей;

I – все токоведущие части изолированы от земли.

Вторая буква определяет характер заземления открытых проводящих частей электроустановки здания:
Т – непосредственная связь открытых проводящих частей электроустановки здания с землей, независимо от характера связи источника питания с землей;

N – непосредственная связь открытых проводящих частей электроустановки здания с точкой заземления источника питания.

Буквы, следующие через черточку за N, определяют характер этой связи – функциональный способ устройства нулевого защитного и нулевого рабочего проводников:

S – функции нулевого защитного РЕ и нулевого рабочего N проводников обеспечиваются раздельными проводниками;

С – функции нулевого защитного и нулевого рабочего проводников обеспечиваются одним общим проводником РЕN.

В России до настоящего времени применяется система подобная ТN-С (рис. 1.1), в которой открытые проводящие части электроустановки (корпуса, кожухи электрооборудования) соединены с заземленной нейтралью источника совмещенным нулевым защитным и рабочим проводником РЕN, т.е. “занулены”. Эта система относительно простая и дешевая. Однако она не обеспечивает необходимый уровень электробезопасности.

Системы ТN-S (рис. 1.2), и ТN-С-S (рис. 1.3) широко применяются в европейских странах – Германии, Австрии, Франции и др. В системе ТN-S все открытые проводящие части электроустановки здания соединены отдельным нулевым защитным проводником РЕ непосредственно с заземляющим устройством источника питания.
При монтаже электроустановок правила предписывают применять для нулевого защитного проводника РЕ провод с желто-зеленой маркировкой изоляции.

В системе ТN-С-S (рис. 1.3) во вводном устройстве электроустановки совмещенный нулевой защитный и рабочий проводник РЕN разделен на нулевой защитный РЕ и нулевой рабочий N проводники.

В системе ТN-С-S нулевой защитный проводник PE соединен со всеми открытыми проводящими частями и может быть многократно заземлен, в то время как нулевой рабочий проводник N не должен иметь соединения с землей.

Наиболее перспективной для нашей страны является система ТN-С-S, позволяющая в комплексе с широким внедрением УЗО обеспечить высокий уровень электробезопасности в электроустановках без их коренной реконструкции.

В электроустановках с системами заземления ТN-S и ТN-С-S электробезопасность потребителя обеспечивается не собственно системами, а устройствами защитного отключения (УЗО), действующими более эффективно в комплексе с этими системами заземления и системой уравнивания потенциалов.

   В данной статье не рассматривается заземление и заземляющее устройство устройство, т.к. эти разделы опубликованы ранее на сайте, см.  статьи:   ⇒   «Заземление ЭУ»    ⇔    «Паспорт заземляющего устройства«.

 

Данная статья публикуется как черновой вариант, следите за обновлениями.

 Вернутся на страницу:        «Электрика»

energetik.com.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.