Открытое распределительное устройство это


Производство ОРУРаспределительная установка – это электрическое устройство, предназначенное для приема и последующего распределения электрической энергии. В зависимости от конкретных потребностей и состояния окружающей среды используются распределительные устройства закрытого и открытого типа.

Конструктивные особенности открытого распределительного устройства

Электроустановка, все оборудование которой располагается на огороженном пространстве под открытым небом, называется открытое распределительное устройство (ОРУ).

Компоненты металлоконструкции должны быть размещены на специальных, выполненных из металла или бетона основаниях, на расстояниях регламентированных правилами устройства электроустановок.

Сборные шины распределительного устройства могут быть выполнены в виде жестких труб, закрепленных на стойках при помощи опорных изоляторов или гибких проводов, подвешенных на порталы посредством подвесных изоляторов.

На напряжении от 110 кВ для повышения мер пожарной безопасности и снижения повреждений при аварии под масляными трансформаторами и другими устройствами, использующими для работы масло, оборудуются заполненные гравием углубления – маслоприемники.

Преимущества использования открытых распределительных устройств


На высоких классах напряжения, подразумевающих использование как можно больших электрических устройств, при условии отсутствия препятствий в виде загрязненной атмосферы или неблагоприятных погодных условий, экономически целесообразно использовать открытое распределительное устройство (ОРУ), так как это значительно упрощает монтаж и пусконаладочные работы и не требует возведение дополнительных построек.

При необходимости расширения и модернизации установки это осуществляется без лишних финансовых и трудовых затрат на строительство нового помещения.

В любое время все аппараты распределительного устройства доступны для визуального наблюдения и, осуществления необходимых ремонтных или профилактических мероприятий.

Недостатки открытых распределительных устройств

Находясь под постоянным воздействием окружающей среды элементы, из которых состоит открытое распределительное устройство (ОРУ) быстрее изнашиваются, требуют постоянного контроля и профилактики.


Кроме того, изменения погодных условий на неблагоприятные могут затруднить эффективное использование распределительного устройства или привести к выходу электроустановки из строя.

Так же, в сравнении с закрытыми распределительными устройствами, ОРУ занимают большую площадь, что затрудняет их использование в условиях плотной городской застройки или неблагоприятного природного ландшафта.

www.szzmk.ru

Конструкция закрытых распределительных устройств (ЗРУ)

  1. Строительная часть ЗРУ выполняется из стандартных железобетонных элементов. Габариты зданий ЗРУ должны быть кратны: длина — 6 м, ширина — 3 м, высота — 0,6 м.
  2. Электрические аппараты и токоведущие части размещаются так, чтобы выдерживались установленные   наименьшие изоляционные расстояния в воздухе между проводниками разных фаз, а также от проводников до заземлённых конструкций и частей здания. Не огражденные токоведущие части должны быть недоступны для случайного прикосновения.

Практически рекомендуемые расстояния между осями фаз составляют:
для 6 кВ — 250—500 мм; для 10 кВ — 300—700 мм; для 35 кВ — 500—700 мм; для 110 кВ — 1250—1600 мм; для 220 кВ — 3000 мм.
Неизолированные токоведущие части, расположенные над полом на высоте меньше 2,5 м в установках 6—10 кВ и 2,7 м в установках 35 кВ, должны ограждаться сетками, причём высота прохода под сеткой должна быть не менее 1,9 м.

  1. Длина ЗРУ определяется его схемой, принятой конфигурацией сборных шин, количеством и размером ячеек.

Для обслуживания сборных ЗРУ и перемещения оборудования предусматриваются коридоры обслуживания и коридоры управления. Ширина коридоров обслуживания в свету между ограждениями принимается не менее 1 м при одностороннем расположении оборудования и 1,2 м при двухстороннем. В коридорах управления указанные размеры должны быть увеличены соответственно до 1,5 и 2 м. Количество выходов из ЗРУ принимается исходя из его длины: при длине РУ до 7 м допускается один выход, расположенный таким образом, чтобы расстояние от любой точки коридора до выхода было не более 30 м.
Отечественные заводы изготавливают КРУ с односторонним и двухсторонним обслуживанием. При двухстороннем обслуживании КРУ ширина прохода с задней стороны КРУ должна быть не менее 0,8 м. Расположение шкафов КРУ в здании РУ может быть однорядным и двухрядным. При однорядном расположении КРУ ширина коридора управления должна быть больше длины выкатной тележки не менее чем на 0,6 м, но не менее 1,5 м, а при двухрядном расположении больше длины тележки на 0,8 м, но не менее 2 м.

  1. Токоограничивающие реакторы располагаются в отдельных камерах ЗРУ. Размещение реакторов в цепях трансформаторов может быть выполнено в пристройках к зданию РУ с горизонтальным расположением фаз в один ряд или по треугольнику. Линейные и групповые реакторы размещаются в ячейках вертикально в виде колонн из трёх фаз. Наличие линейных реакторов, как правило, приводит к необходимости сооружения ЗРУ смешанного типа.

  2. Силовые и контрольные кабели на понижающих подстанциях небольшой и средней мощности могут выводиться из РУ либо через трубы, либо до выхода их наружу могут быть проложены в кабельных каналах, закрытых съёмными плитами. При большом количестве кабелей устраиваются специальные кабельные сооружения: тоннели, кабельные подвалы. Кабели прокладываются вдоль стен на конструкциях, выполненных в виде полок. Высота тоннеля в свету должна быть не менее 1,8 м. Наименьшее расстояние в свету между конструкциями для прокладки кабелей при двухрядном их расположении — 1 м, от конструкций до стены при однорядном расположении конструкций — 0,9 м.
  3. Подводка от трансформатора до ЗРУ выполняется шинами: посредством гибких связей или в виде шинного моста. Вводы в здание РУ осуществляются через проходные изоляторы. Для трансформаторов небольшой мощности может быть выполнен кабельный ввод.

Вводы в шкафы КРУ выполняются по-разному: сверху, сбоку или сзади. Схемы вводов также могут быть весьма разнообразными: глухое присоединение к сборным шинам КРУ, через разъединитель или штепсельные разъединяющие контакты и выключатель. В связи с этим выбор вводов следует производить обязательно по каталогам.

Разработка компоновки и конструкции ЗРУ

ЗРУ

  1. Разработка конструкции исследует за выбором типа РУ и сводится, главным образом, к компоновке электрооборудования в распределительных устройствах и в ячейках.

Компоновка электрооборудования в РУ складывается из размещения секций сборных шин в здании РУ, распределения ячеек всех присоединений в пределах каждой секции и в размещении электрооборудования в пределах каждой ячейки (для сборных РУ). При этом не должно быть никаких отступлений от разработанной ранее электрической схемы.
Работа по компоновке электрооборудования в РУ оформляется в виде эскизов — разрезов по ячейкам, поэтажных планов и схем заполнения, выполненных карандашом от руки на миллиметровой бумаге.
Приступая к компоновке, нужно сначала определить общее количество вcex присоединений и их шинных разъединителей для каждой секции сборных шин, включая межсекционные и междушинные соединения, заземляющие разъединители на сборных шинах, трансформаторы напряжения и все другие присоединения, предусмотренные схемой электрических соединений. Для каждой секции выявляется потребное количество ячеек или камер для размещения шинных разъединителей, выключателей, реакторов (с учетом способа их установки), измерительных трансформаторов напряжения, разрядников и другого оборудования. Составляется схема заполнения ЗРУ.

      1. Схема заполнения наглядно связывает схему электрических соединений с конструкцией РУ.

        а выполняется карандашом на миллиметровой бумаге. Все аппараты и соединения между ними показываются в условных обозначениях, принятых для схем, в пределах контуров тех камер РУ, в которых они устанавливаются. Чертеж выполняется не в масштабе. На нем показывают в плане все камеры, а также коридоры и проходы. Стенки и перегородки, отделяющие камеры друг от друга и от проходов и коридоров, и перекрытия между этажами наносятся тонкими сплошными линиями. Все этажи условно объединяются в одном чертеже.

На рис. 2 показана схема заполнения ЗРУ, соответствующая упрощённой схеме электрических соединений подстанции, изображённой на рис. 1.
Схема электрических соединений ЗРУ 6—10 кВ
Рис. 1. Схема электрических соединений ЗРУ 6—10 кВ комплектных подстанций

Схема заполнения ЗРУ 6-10 кВ
Рис. 2. Схема заполнения ЗРУ 6-10 кВ

При определении конфигурации сборных шин и расположения секций следует учитывать удобство эксплуатации и требования надежности. В частности, как при однорядном, так и при двухрядном расположении камер РУ, секции вдоль здания располагаются одна за другой, что позволяет отделить секции одну от другой поперечными перегородками и избежать распространения аварии на другие секции.
Вместе с расположением секции следует наметить и расположение шинных перемычек между сборными шинами одной секции, находящимися по разные стороны коридора управления, а также межсекционные связи.
Следующей весьма важной частью компоновки является определение местоположения вводов в РУ трансформатора.


сположение камер для этих присоединений должно быть выбрано так, чтобы соединения шинами получились короткими и прямыми. Ячейки для отходящих линий желательно распределить по обе стороны от вводов, чтобы потоки мощности от них распределились в сборных шинах примерно поровну в обе стороны от вводов.
Камеры для трансформаторов напряжения, разрядников, трансформаторов с.н. размещают в последнюю очередь, занимая свободные камеры.
Заключительным этапом в разработке конструкции является план ЗРУ, выполненный в масштабе на листе № 2 графической части проекта.

Конструкция открытых распределительных устройств (ОРУ)

ОРУ

      1. В проектах закладываются, как правило, типовые конструкции ОРУ с учётом возможности дальнейшего расширения ОРУ и использования на всех этапах строительства и эксплуатации современных средств механизации работ [7,9].
      2. В ОРУ аппараты устанавливаются как можно ниже, чтобы облегчить обслуживание, но вместе с тем так, чтобы исключить возможность случайного прикосновения к токоведущим частям. Многообъёмные масляные выключатели 110—220 кВ могут быть установлены на фундаментах высотой 0,6—0,8 м. Малообъёмные масляные и воздушные выключатели, разъединители, измерительные трансформаторы тока и напряжения устанавливаются на стальных или железобетонных основаниях высотой 2—4,5 м. Для транспорта тяжёлого оборудования на площадке ОРУ предусматриваются бетонированные или рельсовые дороги.

      3. В качестве проводников для сборных шин ОРУ и ответвлений от них применяются многопроволочные провода марок А и АС, а также жёсткие трубчатые шины. При напряжениях 220 кВ и выше необходимо расщепление проводов, чтобы уменьшить потери на коронирование.

Минимально допустимые изоляционные расстояния в воздухе между проводниками разных фаз, а также от проводников до заземлённых конструкций и частей здания регламентируются ПУЭ.
Практически рекомендуемые расстояния между осями фаз приведены в табл. 1 в мм.
Таблица 1

Тип ошиновки ОРУ

Напряжение, кВ

6-10

35

110

220

Жёсткая

400

1000

1400-1900

2500-4000

Гибкая

400-600

1200-2000

2000-3000

3500-6000


      1. Длина ОРУ определяется его схемой, принятой конфигурацией сборных шин, количеством и размером ячеек. Шаг ячейки зависит от типа используемого оборудования. Рекомендуемый шаг ячейки составляет: для 35 кВ — 6 м, для 110 кВ — 8 м, для 220 кВ — 11 м. Полная длина ОРУ, с учётом размеров до ограды, ориентировочно определяется как произведение шага ячейки на число ячеек, увеличенное на единицу.

Ширина ОРУ зависит от выбранной схемы подстанции, расположения выключателей (однорядное, двухрядное и т.д.) и линий электропередачи. Кроме того, должны быть учтены подъездные пути для автомобильного или железнодорожного транспорта.
ОРУ должно иметь ограду высотой не менее 2,4 м.

      1. Опорные конструкции ОРУ изготавливаются из профильной стали, а также из стандартизированных железобетонных конструкций — колонн, траверс и т.д.

В ОРУ токоведущие части аппаратов, проводники сборных шин и ответвления от сборных шин во избежание пересечений размещают на различной высоте в два и три яруса. При гибких проводах сборные шины размещают во втором ярусе, а провода ответвлений в третьем.
Минимальное расстояние от проводников первого яруса до земли для 35 кВ — 3100 мм, 110 кВ — 3600 мм, 220 кВ — 4500 мм.
Минимальное расстояние по вертикали между проводами первого и второго ярусов с учётом провеса проводов для 35 кВ — 440 мм, для 110 кВ — 1000 мм, для 220 кВ — 2000 мм.
Минимальное расстояние между проводами второго и третьего ярусов для 35 кВ — 1150 мм, для 110 кВ — 1650 мм, для 220 кВ — 3000 мм.


      1. Под силовыми трансформаторами и баковыми выключателями 110 кВ и выше укладывается слой гравия толщиной не менее 250 мм, и предусматривается сток масла в систему отвода ливневых вод. Между трансформаторами при расстоянии между ними менее 15 м устанавливаются железобетонные или кирпичные перегородки, предотвращающие распространения пожара.

Кабели оперативных цепей, цепей управления, релейной защиты и автоматики прокладываются в каналах, расположенных вдоль рядов оборудования, а также без заглубления их в почву.

Разработка компоновки и конструкции ОРУ

Для выбора конструкции ОРУ необходимо иметь следующие данные:
Схему электрических соединений на всех напряжениях; типы электрических аппаратов и сечений проводников; направления подхода линий электропередачи; климатические условия и характер загрязнения среды; ограничения по территории, конфигурации ОРУ, рельефу местности (если они заданы).
При компоновке ОРУ сначала определяется общее количество присоединений, количество ячеек и их размеры.
Составляется схема заполнения ОРУ. При составлении схемы заполнения должны быть учтены направления подходящих линий электропередачи, возможность подъезда к тяжёлому оборудованию подъёмно-транспортных машин.
В схеме заполнения определяется взаимное расположение систем шин и электрических аппаратов, расположение аппаратов в каждой ячейке. Обращается особое внимание на выполнение кратчайших связей между РУ различных напряжений.
Принципы расположения выключателей в ОРУ (однорядное или двухрядное), конфигурация систем шин, а также количество ярусов проводников по высоте ОРУ оценивается по площади занимаемой территории ОРУ, а также его высотой и удобством обслуживания выключателей.
Работа по компоновке ОРУ оформляется в виде эскизов- разрезов по ячейкам и схем заполнения, выполненных карандашом от руки на миллиметровой бумаге.
Заключительным этапом в разработке конструкции является план ОРУ и разрез по одной из ячеек. В чертежах используются упрощённые графические изображения элементов конструкций и аппаратов РУ, которые в масштабе отражают габаритные размеры оборудования и расстояния до токоведущих частей. На плане наносятся также дороги, вспомогательные сооружения и ограждение ОРУ.

 

« Распределительные устройства   Распределительные устройства 6-35РєР’ Alstom Grid »

leg.co.ua

Классификация

По месту расположения

  • Открытые распределительные устройства (ОРУ) — это такие распределительные устройства, которые располагаются на открытом воздухе. Обычно в виде ОРУ выполняются распределительные устройства на напряжение от 27,5 кB.
  • Закрытые распределительные устройства (ЗРУ) — распределительные устройства, оборудование которых располагается в закрытых помещениях. Такие распределительные устройства применяют на напряжения до 10 кB. В случаях, когда РУ располагается в местности с агрессивной средой (морской воздух, повышенное запыление), допускают применение ЗРУ на напряжение вплоть до 220 кB.

По выполнению секционирования

РУ с одной секцией сборных шин (без секционирования)

К преимуществам такого РУ можно отнести простоту и низкую себестоимость. К основным недостаткам относятся неудобства в эксплуатации, из-за которых такая система не получила широкого применения:

  • Профилактический ремонт любого элемента РУ должен сопровождаться отключением всего РУ — а значит лишением всех питающихся от РУ потребителей электроэнергии.
  • Авария на сборных шинах так же выводит из строя всё РУ.

РУ с двумя и более секциями

Такие РУ выполняются в виде нескольких секций, каждая из которых имеет своё питание и свою нагрузку, соединённых между собой секционными выключателями. На станциях секционный выключатель обычно замкнут, из-за необходимости параллельной работы генераторов. В случае повреждения на одной из секций секционный выключатель отключается, отсекая повреждённую секцию от РУ. В случае аварии на самом секционном выключателе из строя выходят обе секции, но вероятность такого повреждения относительно мала. На низковольтных РУ (6-10кВ) секционный выключатель обычно оставляют отключенным, так что связанные между собой секции работают независимо друг от друга. В случае если по каким-либо причинам питание одной из секций пропадёт, сработает устройство АВР, которое отключит вводной выключатель секции и включит секционный выключатель. Потребители секции с отключенным питанием будут получать электроэнергию от питания смежной секции через секционный выключатель. Подобная система используется в РУ 6 — 35 кВ подстанций и 6 — 10 кВ станций типа ТЭЦ.

РУ с секционированием сборных шин и обходным устройством

Простое секционирование не решает проблемы планового ремонта отдельных выключателей секции. В случае если необходимо провести ремонт или замену выключателя любого отходящего присоединения, приходится отключать всю секцию, что в некоторых случаях недопустимо. Для решения проблемы используется обходное устройство. Обходное устройство представляет собой один или два обходных выключателя на две секции, обходные разъединители и обходную систему шин. Обходную систему шин подключают через обходные разъединители к разъединителям выключателей присоединений с противоположной от основной системы шин стороны. В случае, когда необходимо провести плановый ремонт или замену какого-либо выключателя, включают обходной выключатель, включают соответствующий нужному выключателю обходной разъединитель, затем этот выключатель вместе с его разъединителями отключают. Теперь питание отходящего присоединения осуществляется через обходной выключатель. Подобные системы получили распространение в РУ на напряжении 110—220 кВ.

По числу систем сборных шин

С одной системой сборных шин

К этим РУ относятся описанные выше.

С двумя системами сборных шин

Подобное РУ похоже по устройству на РУ с секционированием сборных шин и обходным устройством, но, в отличие от него, обходная система шин используется как рабочая, нагрузки на систему распределяют между обеими системами шин. Это делается для повышения надёжности электроснабжения. Отсутствие питания на одной из систем шин допускается только временно, пока ведутся ремонтные работы на другой системе шин.

К достоинствам этой системы относятся:

  • Возможность планового ремонта любой системы шин, без вывода из эксплуатации всего РУ.
  • Возможность разделения системы на две части, для повышения надёжности электроснабжения.
  • Возможность ограничения тока короткого замыкания

К основным недостаткам следует отнести:

  • Сложность схемы
  • Увеличение вероятности повреждений на сборных шинах из-за частых переключений разъединителей.

Наибольшее распространение система получила в РУ на напряжение 110—220 кВ

По структуре схемы

Радиального типа

Этому типу присущи следующие признаки:

  • Источники энергии и присоединения сходятся на сборных шинах, поэтому авария на шинах приводит к выводу всей секции (или всей системы)
  • Вывод из эксплуатации одного выключателя из присоединения приводит к отключению соответствующего присоединения.
  • Разъединители кроме своей основной функции (изоляция отключенных элементов от РУ), участвуют в изменениях схемы (например, ввод обходных выключателей), что снижает надёжность системы.

Кольцевого типа

Кольцевой тип схемы отличается следующими признаками:

  • Схема выполнена в виде кольца с ответвлениями присоединений и подводов питания
  • Отключение каждого присоединения осуществляется двумя или тремя выключателями.
  • Отключение одного выключателя никак не отражается на питании присоединений
  • При повреждениях (КЗ или отключениях) на РУ, выходит из строя лишь незначительная часть системы.
  • Разъединители выполняют только основную функцию — изолируют выведенный из эксплуатации элемент.
  • Кольцевые схемы удобнее радиальных в плане развития системы и добавления новых элементов в систему.

Открытое распределительное устройство (ОРУ)

Конструктивные особенности

Все элементы ОРУ размещаются на бетонных или металлических основаниях. Расстояния между элементами выбираются согласно ПУЭ. На напряжении 110 кВ и выше под устройствами, которые используют для работы масло (масляные трансформаторы, выключатели, реакторы) создаются маслоприемники — заполненные гравием углубления. Эта мера направлена на снижение вероятности возникновения пожара и уменьшение повреждений при аварии на таких устройствах.

Сборные шины ОРУ могут выполняться как в виде жёстких труб, так и в виде гибких проводов. Жёсткие трубы крепятся на стойках с помощью опорных изоляторов, а гибкие подвешиваются на порталы с помощью подвесных изоляторов.

Территория, на которой располагается ОРУ, в обязательном порядке огораживается.

Преимущества

  • ОРУ позволяют использовать сколь угодно большие электрические устройства, чем, собственно, и обусловлено их применение на высоких классах напряжений.
  • Изготовление ОРУ не требует дополнительных затрат на строительство помещений.
  • ОРУ удобнее ЗРУ в плане расширения и модернизации
  • Возможно визуальное наблюдение всех аппаратов ОРУ

Недостатки

  • Эксплуатация ОРУ затруднена в неблагоприятных погодных условиях, кроме того, окружающая среда сильнее воздействует на элементы ОРУ, что приводит к их раннему износу.
  • ОРУ занимают намного больше места, чем ЗРУ.

Комплектное распределительное устройство (КРУ)

КРУ — такое РУ, оборудование которого располагается в полностью или частично закрытых металлических шкафах. Каждый шкаф называется ячейкой КРУ.

Область применения

Комплектные распределительные устройства могут использоваться как для внутренней, так и для наружной установки (в этом случае их называют КРУН). КРУ широко применяются в тех случаях, где необходимо компактное размещение распределительного устройства. В частности, КРУ применяют на электрических станциях, городских подстанциях, для питания объектов нефтяной промышленности (нефтепроводы, буровые установки), в схемах энергопотребления судов.

Если основное оборудование КРУ заключено в оболочку, заполненную элегазом, то РУ сокращённо обозначают КРУЭ.

КРУ, у которого возможно только одностороннее обслуживание, называется камерой сборной одностороннего обслуживания (КСО).

Устройство КРУ

Типовая ячейка КРУ состоит из четырёх основных отсеков: линейного (кабельного), релейного (низковольтного), отсека выключателя (высоковольтного) и отсека сборных шин.

  • В релейном отсеке (3) располагается низковольтное оборудование: устройства РЗиА, переключатели, рубильники. На двери релейного отсека, как правило, располагаются светосигнальная арматура, устройства учёта и измерения электроэнергии, элементы управления ячейкой.
  • В высоковольтном отсеке (4) располагается силовой выключатель. Иногда отсек выполняют с выкатным элементом, на котором и устанавливается выключатель.
  • В отсеке сборных шин (6) располагаются силовые шины (8), из которых состоит секция РУ.
  • Линейный отсек (5) служит для размещения измерительных трансформаторов тока (7) , трансформаторов напряжения, ОПН.

Источники

  • ПУЭ
  • Рожкова Л. Д., Козулин В. С. Электрооборудование станций и подстанций: Учебник для техникумов. — М.: Энергоатомиздат, 1987.
  • Неклепаев Б. Н., Крючков И. С. Электрическая часть станций и подстанций. — М.: Энергоатомиздат, 1989.

dic.academic.ru

Открытое распределительное устройство (ОРУ) — распределительное

устройство, оборудование которого располагается на открытом воздухе. Все

элементы ОРУ размещаются на бетонных или металлических основаниях.

Расстояния между элементами выбираются согласно ПУЭ. На напряжении 110 кВ и выше под устройствами, которые используют для работы масло

(масляные трансформаторы, выключатели, реакторы) создаются маслоприемники — заполненные гравием углубления. Эта мера направлена на снижение вероятности возникновения пожара и уменьшение повреждений при

аварии на таких устройствах. Сборные шины ОРУ могут выполняться как в виде жёстких труб, так и в виде гибких проводов. Жёсткие трубы крепятся на стойках с помощью опорных изоляторов, а гибкие подвешиваются на порталы с помощью подвесных изоляторов. Территория, на которой располагается ОРУ, в обязательном порядке огораживается.

Открытое распределительное устройство это

Преимущества ОРУ:

– ОРУ позволяют использовать сколь угодно большие электрические

устройства, чем, собственно, и обусловлено их применение на высоких классах напряжений.

-При производство ОРУ не требуется лишних затрат на строительство

помещений.

– Открытые распределительные устройства практичнее, чем ЗРУ в плане модернизации и расширения

– Визуальный контроль всех аппаратов ОРУ

Недостатки ОРУ:

– Затруднённая работа с ОРУ при неблагоприятных погодных условиях.

– ОРУ намного больше, чем ЗРУ.

В качестве проводников для сборных шин ОРУ и ответвлений от них

применяются многопроволочные провода марок А и АС, а также жёсткие

трубчатые шины. При напряжениях 220 кВ и выше необходимо расщепление

проводов, чтобы уменьшить потери на коронирование.

Длинна и Ширина ОРУ зависит от выбранной схемы станции, расположения

выключателей (однорядное, двухрядное и т.д.) и линий электропередачи. Кроме того, должны быть учтены подъездные пути для автомобильного или

железнодорожного транспорта. ОРУ должно иметь ограду высотой не менее 2,4 м. В ОРУ токоведущие части аппаратов, проводники сборных шин и

ответвления от сборных шин во избежание пересечений размещают на

различной высоте в два и три яруса. При гибких проводах сборные шины

размещают во втором ярусе, а провода ответвлений в третьем.

Минимальное расстояние от проводников первого яруса до земли для 110 кВ

3600 мм, 220 кВ — 4500 мм. Минимальное расстояние по вертикали между

проводами первого и второго ярусов с учётом провеса проводов для 110 кВ — 1000 мм, для 220 кВ — 2000 мм. Минимальное расстояние между проводами второго и третьего ярусов для 110 кВ — 1650 мм, для 220 кВ — 3000 мм.

Минимальные допустимые изоляционные расстояния (в сантиметрах) в свету

на воздухе открытых установок между неизолированными проводами разных

фаз, между токоведущими частями или элементами изоляции, находящимися

под напряжением, и заземленными частями конструкций:

Комплектное распределительное устройство с элегазовой изоляцией

(КРУЭ)

Комплектное распределительное устройство с элегазовой изоляцией представляют собой ячейки, чье пространство заполнено элегазом под давлением, соединённые в различные схемы распределительных устройств согласно нормам технического проектирования. Ячейки КРУЭ изготавливают из унифицированных деталей, что делает возможным сборку ячеек различного назначения из одних и тех же элементов. К ним относятся: полюсы выключателей, разъединителей и заземлителей; измерительные

трансформаторы тока и напряжения; соединительные и промежуточные отсеки; секции сборных шин; полюсные и распределительные шкафы, шкафы системы контроля давления и шкафы трансформаторов напряжения. Ячейка каждого типа состоит из трех одинаковых полюсов и шкафов управления. Каждый полюс линейной, секционной или шинной соединительной ячейки имеет выключатель с приводом и элементами его управления, разъединитель с дистанционным электрическим приводом, заземлители с ручным приводом,

трансформаторы тока и полюсные шкафы. Ячейки трансформаторов напряжения не имеют выключателей и трансформаторов тока. Ячейки и их

полюсы соединяются одной или двумя системами однополюсных или трехполюсных шин.

Линейные ячейки имеют выводы для присоединения к токопроводам и

отходящим кабелям. Соединение ячеек с силовыми кабелями производится при помощи кабельных вводов специальной конструкции, а с воздушными линиями с помощью газонаполненных вводов.

Безопасность и надежность электроснабжения зависит от выключателей,

защищающих электрические сети от короткого замыкания. Традиционно на

электростанциях и подстанциях устанавливались выключатели с воздушной

изоляцией. В зависимости от номинального напряжения воздушного

выключателя, расстояние между токоведущими частями и землей может

составлять десятки метров, в результате чего для установки такого аппарата

требуется очень много места. Напротив, элегазовый выключатель очень компактен, и поэтому КРУЭ занимает сравнительно небольшой полезный объем. Площадь подстанции с КРУЭ в десять раз меньше площади подстанции с воздушными выключателями. Токопровод представляет собой алюминиевую трубу, в которой устанавливается токоведущая шина, и предназначен для соединения между собой отдельных ячеек и элегазового оборудования подстанции. Так же в ячейку КРУЭ встраиваются измерительные трансформаторы тока и напряжения, ограничители напряжения (ОПН), заземлители и разъединители.

Таким образом, ячейка содержит в себе все необходимое оборудование и

приборы для передачи и распределения электроэнергии различных напряжений. И все это заключено в компактный надежный корпус. Управление ячейками осуществляется в шкафах установленных на боковой стенки.

Распределительный шкаф вмещает в себя всю аппаратуру цепей дистанционного электрического управления, сигнализации и блокировки

элементами ячеек.

Применение КРУЭ позволяет значительно уменьшить площади и объемы,

занимаемые распределительным устройством и обеспечить возможность более легкого расширения КРУЭ по сравнению с традиционными РУ. К другим важным преимуществам КРУЭ можно отнести:

-Многофункциональность — в одном корпусе совмещены сборные шины,

выключатель, разъединители с заземляющими разъединителями, трансформаторы тока, что существенно уменьшает размеры и повышает

надежность ОРУ;

-Взрыво – и пожаробезопасность;

-Высокая надежность и стойкость к воздействию внешней среды;

-Возможность установки в сейсмически активных районах и зонах с повышенной загрязненностью;

-Отсутствие электрических и магнитных полей;

-Безопасность и удобство эксплуатации, простота монтажа и демонтажа.

-Небольшие габариты

-Стойкость к загрязнению.

Ячейки, отдельные модули и элементы допускают возможность компоновки КРУЭ по различным электрическим схемам. Ячейки состоят из трех полюсов, шкафов и сборных шин. В шкафах размещена аппаратура цепей сигнализации, блокировки, дистанционного электрического управления, контроля давления элегаза и подачи его в ячейку, питания приводов сжатым воздухом.

Ячейки на номинальное напряжение 110—220 кВ имеют трехполюсное

или пополюсное управление, а ячейки на 500 кВ — только пополюсное

управление.

В полюс ячейки входят:

– Коммутационные аппараты: выключатели, разъединители, заземлители;

– Измерительные трансформаторы тока и напряжения;

– Соединительные элементы: сборные шины, кабельные вводы («масло элегаз»), проходные вводы («воздух—элегаз»), элегазовые токопроводы и

др.

Стоимость КРУЭ достаточно велико перед традиционными видами РУ, поэтому применение нашлось только в случаях, где ее преимущества крайне необходимы- это при строительстве в стесненных условиях, в городских условиях для снижения уровня шума и для архитектурной эстетичности, в местах, где технически не возможно разместить ОРУ или ЗРУ, и на площадях где стоимость земли очень велика, а так же в условиях агрессивной среды для защиты токоведущих частей и увеличению сроку эксплуатации оборудования и в сейсмически активных зонах.

http://smartenergo.net/articles/199.html

studfiles.net

4.2.45. В ОРУ 110 кВ и выше должен быть предусмотрен проезд для передвижных монтажно-ремонтных механизмов и приспособлений, а также передвижных лабораторий.

4.2.46. Соединения гибких проводов в пролетах должно выполняться опрессовкой с помощью соединительных зажимов, а соединения в петлях у опор, присоединение ответвлений в пролете и присоединение к аппаратным зажимам – опрессовкой или сваркой. При этом присоединение ответвлений в пролете выполняется, как правило, без разрезания проводов пролета.

Пайка и скрутка проводов не допускаются.

Болтовые соединения допускаются только на зажимах аппаратов и на ответвлениях к разрядникам, ОПН, конденсаторам связи и трансформаторам напряжения, а также для временных установок, для которых применение неразъемных соединений требует большого объема работ по перемонтажу шин.

Гирлянды изоляторов для подвески шин в ОРУ могут быть одноцепными. Если одноцепная гирлянда не удовлетворяет условиям механических нагрузок, то следует применять двухцепную.

Разделительные (врезные) гирлянды не допускаются, за исключением гирлянд, с помощью которых осуществляется подвеска высокочастотных заградителей.

Закрепление гибких шин и тросов в натяжных и подвесных зажимах в отношении прочности должны соответствовать требованиям, приведенным в 2.115.

4.2.47. Соединения жестких шин в пролетах следует выполнять сваркой, а соединение шин соседних пролетов следует выполнять с помощью компенсирующих устройств, присоединяемых к шинам, как правило, сваркой. Допускается присоединение компенсирующих устройств к пролетам с помощью болтовых соединений.

Ответвления от жестких шин могут выполняться как гибкими, так и жесткими, а присоединение их к пролетам следует выполнять, как правило, сваркой. Присоединение с помощью болтовых соединений разрешается только при обосновании.

4.2.48. Ответвления от сборных шин ОРУ, как правило, должны располагаться ниже сборных шин.

Подвеска ошиновки одним пролетом над двумя и более секциями или системами сборных шин не допускается.

4.2.49. Нагрузки на шины и конструкции от ветра и гололеда, а также расчетные температуры воздуха должны определяться в соответствии с требованиями строительных норм и правил. При этом прогиб жестких шин не должен превышать 1/80 длины пролета.

При определении нагрузок на конструкции дополнительно следует учитывать вес человека с инструментами и монтажными приспособлениями при применении:

натяжных гирлянд изоляторов – 2,0 кН;

поддерживающих гирлянд – 1,5 кН;

опорных изоляторов – 1,0 кН.

Тяжение спусков к аппаратам ОРУ не должно вызывать недопустимых механических напряжений и недопустимого сближения проводов при расчетных климатических условиях.



4.2.50. Расчетные механические усилия, передающиеся при КЗ жесткими шинами на опорные изоляторы, следует принимать в соответствии с требованиями гл. 1.4.

4.2.51. Коэффициент запаса механической прочности при нагрузках, соответствующих 4.2.49, следует принимать:

для гибких шин – не менее 3 по отношению к их временному сопротивлению разрыва;

для подвесных изоляторов – не менее 4 по отношению к гарантированной минимальной разрушающей нагрузке целого изолятора (механической или электромеханической в зависимости от требований стандартов на примененный тип изолятора);

для сцепной арматуры гибких шин – не менее 3 по отношению к минимальной разрушающей нагрузке;

для опорных изоляторов жесткой ошиновки – не менее 2,5 по отношению к гарантированной минимальной разрушающей нагрузке изолятора.

4.2.52. Опоры для крепления шин ОРУ должны рассчитываться как промежуточные или концевые в соответствии с гл. 2.5.

4.2.53. Компоновки ОРУ 35 кВ и выше рекомендуется выполнять без верхнего яруса шин, проходящего над выключателями.

4.2.54. Наименьшие расстояния в свету между неизолированными токоведущими частями разных фаз, от неизолированных токоведущих частей до земли, заземленных конструкций и ограждений, а также между неизолированными токоведущими частями разных цепей следует принимать по табл. 4.2.5 (рис. 4.2.3 – 4.2.12).

В случае, если в установках, расположенных в высокогорье, расстояния между фазами увеличиваются по сравнению с приведенными в табл. 4.2.5 по результатам проверки на корону, соответственно должны быть увеличены и расстояния до заземленных частей.

4.2.55. Наименьшие расстояния в свету при жестких шинах (см. рис. 4.2.3.) между токоведущими и заземленными частями Аф-з и между токоведущими частями разных фаз Аф-ф следует принимать по табл. 4.2.5, а при гибких (см. рис. 4.2.4) – следует определять следующим образом:

Открытое распределительное устройство это

где a = f sin α; f – стрела провеса проводов при температуре + 15 °С, м; α = arctg P/Q; Q – расчетная нагрузка от веса провода на 1 м длины провода, даН/м; Р – расчетная линейная ветровая нагрузка на провод, даН/м; при этом скорость ветра принимается равной 60 % значения, выбранного при расчете строительных конструкций.

Открытое распределительное устройство это

Рис. 4.2.3. Наименьшие расстояния в свету при жестких шинах между токоведущими и заземленными частями (Аф-з, Открытое распределительное устройство это ) и между токоведущими частями разных фаз (Аф-ф)

Открытое распределительное устройство это

Рис. 4.2.4. Наименьшие расстояния в свету при гибких шинах между токоведущими и заземленными частями и между токоведущими частями разных фаз, расположенными в одной горизонтальной плоскости

Таблица 4.2.5.

Наименьшие расстояния в свету от токоведущих частей до различных элементов ОРУ (подстанций) 10 – 750 кВ, защищенных разрядниками, и ОРУ 220 – 750 кВ, защищенных ограничителями перенапряжений, (в знаменателе) (рис. 4.2.3 – 4.2.12)

Номер рисунка Наименование расстояния Обозначение Изоляционное расстояние, мм, для номинального напряжения, кВ
до 10
4.2.3 4.2.4 4.2.5 От токоведущих частей, элементов оборудования и изоляции, находящихся под напряжением, до протяженных заземленных конструкций и до постоянных внутренних ограждений высотой не менее 2 м, а также до стационарных межячейковых экранов и противопожарных перегородок Аф-з 1800 2500 3750 5500
4.2.3 4.2.4 От токоведущих частей, элементов оборудования и изоляции, находящихся под напряжением, до заземленных конструкций: головка аппарата-опора, провод-стойка, траверса, провод-кольцо, стержень Открытое распределительное устройство это 1600 2200 3300 5000
4.2.3 4.2.4 4.2.11 Между токоведущими частями разных фаз Аф-ф 2000 1800 4200 8000
4.2.5 4.2.7 От токоведущих частей, элементов оборудования и изоляции, находящихся под напряжением, до постоянных внутренних ограждений высотой до 1,6 м и до транспортируемого оборудования Б 2550 3250 4500 6300
4.2.8 Между токоведущими частями разных цепей в разных плоскостях при обслуживаемой нижней цепи и неотключенной верхней В 3000 4000 5000 7000
4.2.6 4.2.12 От неогражденных токоведущих частей до земли или до кровли зданий при наибольшем провисании проводов Г 4500 5000 6450 8200
4.2.8 4.2.9 Между токоведущими частями разных цепей в разных плоскостях, а также между токоведущими частями разных цепей по горизонтали при обслуживании одной цепи и неотключенной другой Д1 3600 4200 5200 7000
4.2.10 4.2.12 От токоведущих частей до верхней кромки внешнего забора или до здания и сооружения Д 3800 4500 5750 7500
4.2.11 От контакта и ножа разъединителя в отключенном положении до ошиновки, присоединенной ко второму контакту Ж 2200 3100 4600 7500

Примечания:

1. Для элементов изоляции, находящихся под распределенным потенциалом, изоляционные расстояния следует принимать с учетом фактических значений потенциалов в разных точках поверхности. При отсутствии данных о распределении потенциала следует условно принимать прямолинейный закон падения потенциала вдоль изоляции от полного номинального напряжения (со стороны токоведущих частей) до нуля (со стороны заземленных частей).

2. Расстояние от токоведущих частей или элементов изоляции (со стороны токоведущих частей), находящихся под напряжением, до габаритов трансформаторов, транспортируемых по железнодорожным путям, допускается принять менее размера Б, но не менее размера Открытое распределительное устройство это .

3. Расстояния Аф-з, Открытое распределительное устройство это , и Аф-ф для ОРУ 220 кВ и выше, расположенных на высоте более 1000 м над уровнем моря, должны быть увеличены в соответствии с требованиями государственных стандартов, а расстояния Аф-ф, В и Д1 должны быть проверены по условиям ограничения короны.

4. Для напряжения 750 кВ в таблице даны расстояния Аф-ф между параллельными проводами длиной более 20 м; расстояния Аф-ф, между экранами, скрещивающимися проводами, параллельными проводами длиной до 20 м для ОРУ 750 кВ с разрядниками равны 7000 мм, а для ОРУ 750 кВ с ОПН – 5500 мм.

5. Ограничители перенапряжений имеют защитный уровень ограничения коммутационных перенапряжений фаза-земля 1,8 Uф.

4.2.56. Наименьшие допустимые расстояния в свету между находящимися под напряжением соседними фазами в момент их наибольшего сближения под действием токов КЗ должны быть не менее приведенных в табл. 2.5.17, принимаемым по наибольшему рабочему напряжению.

В гибкой ошиновке, выполненной из нескольких проводов в фазе, следует устанавливать внутрифазовые дистанционные распорки.

4.2.57. Наименьшие расстояния от токоведущих частей и изоляторов, находящихся под напряжением, до постоянных внутренних ограждений должны быть (табл. 4.2.5, рис. 4.2.5);

по горизонтали – не менее размера Б при высоте ограждения 1,6 м и не менее размера Аф-з при высоте ограждения 2,0 м. Второй вариант рекомендуется для применения в стесненных условиях площадки ПС;

по вертикали – не менее размера Аф-з, отмеряемого в плоскости ограждения от точки, расположенной на высоте 2,7 м от земли.

4.2.58. Токоведущие части (выводы, шины, спуски и т.п.) могут не иметь внутренних ограждений, если они расположены над уровнем планировки или наземных коммуникационных сооружений на высоте не менее значений, соответствующих размеру Г по табл. 4.2.5 (рис. 4.2.6).

Неогражденные токоведущие части, соединяющие конденсатор устройств высокочастотной связи, телемеханики и защиты с фильтром, должны быть расположены на высоте не менее 2,5 м. При этом рекомендуется устанавливать фильтр на высоте, позволяющей производить ремонт (настройку) фильтра без снятия напряжения с оборудования присоединения.

Трансформаторы и аппараты, у которых нижняя кромка фарфора (полимерного материала) изоляторов расположена над уровнем планировки или наземных коммуникационных сооружений на высоте не менее 2,5 м, разрешается не ограждать (см. рис. 4.2.6). При меньшей высоте оборудование должно иметь постоянные ограждения, удовлетворяющие требованиям 4.2.29, располагаемые от трансформаторов и аппаратов на расстояниях не менее приведенных в 4.2.57. Вместо постоянных ограждений допускается устройство козырьков, предотвращающих прикосновение обслуживающего персонала к изоляции и элементам оборудования, находящимся под напряжением.

Открытое распределительное устройство это

Рис. 4.2.5. Наименьшие расстояния от токоведущих частей и элементов изоляции, находящихся под напряжением, до постоянных внутренних ограждений

Открытое распределительное устройство это

Рис. 4.2.6. Наименьшие расстояния от неогражденных токоведущих частей и от нижней кромки фарфора изоляторов до земли

4.2.59. Расстояния от неогражденных токоведущих частей до габаритов машин, механизмов и транспортируемого оборудования должны быть не менее размера Б по табл. 4.2.5 (рис. 4.2.7).

Открытое распределительное устройство это

Рис. 4.2.7. Наименьшие расстояния от токоведущих частей до транспортируемого оборудования

4.2.60. Расстояния между ближайшими неогражденными токоведущими частями разных цепей должны выбираться из условия безопасного обслуживания одной цепи при неотключенной второй. При расположении неогражденных токоведущих частей разных цепей в разных (параллельных или перпендикулярных) плоскостях расстояния по вертикали должны быть не менее размера В, а по горизонтали – размера Д1 по табл. 4.2.5 (рис. 4.2.8). При наличии разных напряжений размеры В и Д1 принимаются по более высокому напряжению.

Размер В определен из условия обслуживания нижней цепи при неотключенной верхней, а размер Д1 – обслуживания одной цепи при неотключенной другой. Если такое обслуживание не предусматривается, расстояние между токоведущими частями разных цепей в разных плоскостях должно приниматься в соответствии с 4.2.53; при этом должна быть учтена возможность сближения проводов в условиях эксплуатации (под влиянием ветра, гололеда, температуры).

Открытое распределительное устройство это

Рис. 4.2.8. Наименьшие расстояния между токоведущими частями разных цепей, расположенными в различных плоскостях с обслуживанием нижней цепи при неотключенной верхней

Открытое распределительное устройство это

Рис. 4.2.9. Наименьшие расстояния по горизонтали между токоведущими частями разных цепей с обслуживанием одной цепи при неотключенной другой

4.2.61. Расстояния между токоведущими частями и верхней кромкой внешнего забора должны быть не менее размера Д по табл. 4.2.5 (рис. 4.2.10).

Открытое распределительное устройство это

Рис. 4.2.10. Наименьшие расстояния от токоведущих частей до верхней кромки внешнего ограждения

4.2.62. Расстояния от подвижных контактов разъединителей в отключенном положении до заземленных частей должны быть не менее размеров Аф-з и Открытое распределительное устройство это ; до ошиновки своей фазы, присоединенной ко второму контакту – не менее размера Ж; до ошиновки других присоединений – не менее размера Аф-ф по табл. 4.2.5 (рис. 4.2.11).

Открытое распределительное устройство это

Рис. 4.2.11. Наименьшие расстояния от подвижных контактов разъединителей в отключенном положении до заземленных и токоведущих частей

4.2.63. Расстояния между токоведущими частями ОРУ и зданиями или сооружениями (ЗРУ, помещение щита управления, трансформаторная башня и др.) по горизонтали должны быть не менее размера Д, а по вертикали при наибольшем провисании проводов – не менее размера Г по табл. 4.2.5 (рис. 4.2.12).

Открытое распределительное устройство это

Рис. 4.2.12. Наименьшие расстояния между токоведущими частями и зданиями и сооружениями

4.2.64. Прокладка воздушных осветительных линий, воздушных линий связи и цепей сигнализации над и под токоведущими частями ОРУ не допускается.

4.2.65. Расстояния от складов водорода до ОРУ, трансформаторов, синхронных компенсаторов должны быть не менее 50 м; до опор ВЛ – не менее 1,5 высоты опоры; до зданий ПС при количестве хранимых на складе баллонов до 500 шт. – не менее 20 м, свыше 500 шт. – не менее 25 м; до внешней ограды ПС – не менее 5,5 м.

4.2.66. Расстояния от открыто установленных электротехнических устройств до водоохладителей ПС должны быть не менее значений, приведенных в табл. 4.2.6.

Для районов с расчетными температурами наружного воздуха ниже минус 36 °С приведенные в табл. 4.2.6. расстояния должны быть увеличены на 25 %, а с температурами выше минус 20 °С – уменьшены на 25 %. Для реконструируемых объектов приведенные в табл. 4.2.6. расстояния допускается уменьшать, но не более чем на 25 %.

Таблица 4.2.6

Наименьшее расстояние от открыто установленных электротехнических устройств до водоохладителей ПС

Водоохладитель Расстояние, м
Брызгальные устройства и открытые градирни
Башенные и одновентиляторные градирни
Секционные вентиляторные градирни

4.2.67. Расстояния от оборудования РУ и ПС до зданий ЗРУ и других технологических зданий и сооружений, до КБ, СТК, СК определяются только технологическими требованиями и не должны увеличиваться по пожарным условиям.

4.2.68. Противопожарные расстояния от маслонаполненного оборудования с массой масла в единице оборудования 60 кг и более до производственных зданий с категорией помещения В1 – В2, Г и Д, а также до жилых и общественных зданий должны быть не менее:

16 м – при степени огнестойкости этих зданий I и II;

20 м – при степени III;

24 м – при степени IV и V.

При установке у стен производственных зданий с категорией помещения Г и Д маслонаполненных трансформаторов с массой масла 60 кг и более, электрически связанных с оборудованием, установленным в этих зданиях, разрешаются расстояния менее указанных. При этом, на расстоянии от них более 10 м и вне пределов участков шириной Б (рис. 4.2.13) специальных требований к стенам, окнам и дверям зданий не предъявляется.

При расстоянии менее 10 м до трансформаторов в пределах участков шириной Б должны выполняться следующие требования:

1) до высоты Д (до уровня ввода трансформаторов) окна не допускаются;

2) при расстоянии г менее 5 м и степенях огнестойкости зданий IV и V стена здания должна быть выполнена по I степени огнестойкости и возвышаться над кровлей, выполненной из сгораемого материала, не менее чем на 0,7 м;

3) при расстоянии г менее 5 м и степенях огнестойкости зданий I, II, III, а также при расстоянии г 5 м и более без ограничения по огнестойкости на высоте от д до д + е допускаются неоткрывающиеся окна с заполнением армированным стеклом или стеклоблоками с рамами из несгораемого материала; выше д + е – окна, открывающиеся внутрь здания, с проемами, снабженными снаружи металлическими сетками с ячейками не более 25×25 мм;

4) при расстоянии г менее 5 м на высоте менее д, а при г 5 м и более на любой высоте допускаются двери из несгораемых или трудносгораемых материалов с пределом огнестойкости не менее 60 мин;

5) вентиляционные приемные отверстия в стене здания при расстоянии г менее 5 м не допускаются; вытяжные отверстия с выбросом незагрязненного воздуха в указанном пределе допускаются на высоте д;

6) при расстоянии г от 5 до 10 м вентиляционные отверстия в ограждающих конструкциях кабельных помещений со стороны трансформаторов на участке шириной Б не допускаются.

Приведенные на рис. 4.2.13 размеры аг и А принимаются до наиболее выступающих частей трансформаторов на высоте не более 1,9 м от поверхности земли. При единичной мощности трансформаторов до 1,6 МВ·А расстояния в ≥ 1,5 м; е ≥ 8 м; более 1,6 МВ·А в ≥ 2 м; е ≥ 10 м. Расстояние б принимается по 4.2.217, расстояние г должно быть не менее 0,8 м.

Требования настоящего пункта распространяются также на КТП наружной установки.

Открытое распределительное устройство это

Рис. 4.2.13. Требования к открытой установке маслонаполненных трансформаторов у зданий с производствами категорий Г и Д

4.2.69. Для предотвращения растекания масла и распространения пожара при повреждениях маслонаполненных силовых трансформаторов (реакторов) с количеством масла более 1 т в единице должны быть выполнены маслоприемники, маслоотводы и маслосборники с соблюдением следующих требований:

1) габариты маслоприемника должны выступать за габариты трансформатора (реактора) не менее чем на 0,6 м при массе масла до 2 т; 1 м при массе от 2 до 10 т; 1,5 м при массе от 10 до 50 т; 2 м при массе более 50 т. При этом габарит маслоприемника может быть принят меньше на 0,5 м со стороны стены или перегородки, располагаемой от трансформатора (реактора) на расстоянии менее 2 м.

2) объем маслоприемника с отводом масла следует рассчитывать на единовременный прием 100 % масла, залитого в трансформатор (реактор).

Объем маслоприемника без отвода масла следует рассчитывать на прием 100 % объема масла, залитого в трансформатор (реактор), и 80 % воды от средств пожаротушения из расчета орошения площадей маслоприемника и боковых поверхностей трансформатора (реактора) с интенсивностью 0,2 л/с·м2 в течение 30 мин;

3) устройство маслоприемников и маслоотводов должно исключать переток масла (воды) из одного маслоприемника в другой, растекание масла по кабельным и др. подземным сооружениям, распространение пожара, засорение маслоотвода и забивку его снегом, льдом и т.п.;

4) маслоприемники под трансформаторы (реакторы) с объемом масла до 20 т допускается выполнять без отвода масла. Маслоприемники без отвода масла должны выполняться заглубленной конструкции и закрываться металлической решеткой, поверх которой должен быть насыпан слой чистого гравия или промытого гранитного щебня толщиной не менее 0,25 м, либо непористого щебня другой породы с частицами от 30 до 70 мм. Уровень полного объема масла в маслоприемнике должен быть ниже решетки не менее чем на 50 мм.

Удаление масла и воды из маслоприемника без отвода масла должно предусматриваться передвижными средствами. При этом рекомендуется выполнение простейшего устройства для проверки отсутствия масла (воды) в маслоприемнике;

5) маслоприемники с отводом масла могут выполняться как заглубленными, так и незаглубленными (дно на уровне окружающей планировки). При выполнении заглубленного телеприемника устройство бортовых ограждений не требуется, если при этом обеспечивается объем маслоприемника, указанный в п. 2.

Маслоприемники с отводом масла могут выполняться:

с установкой металлической решетки на маслоприемнике, поверх которой насыпан гравий или щебень толщиной слоя 0,25 м;

без металлической решетки с засыпкой гравия на дно маслоприемника толщиной слоя не менее 0,25 м.

Незаглубленный маслоприемник следует выполнять в виде бортовых ограждений маслонаполненного оборудования. Высота бортовых ограждений должна быть не более 0,5 м над уровнем окружающей планировки.

Дно маслоприемника (заглубленного и незаглубленного) должно иметь уклон не менее 0,005 в сторону приямка и быть засыпано чисто промытым гранитным (либо другой непористой породы) гравием или щебнем фракцией от 30 до 70 мм. Толщина засыпки должна быть не менее 0,25 м.

Верхний уровень гравия (щебня) должен быть не менее чем на 75 мм ниже верхнего края борта (при устройстве маслоприемников с бортовыми ограждениями) или уровня окружающей планировки (при устройстве маслоприемников без бортовых ограждений).

Допускается не производить засыпку дна маслоприемников по всей площади гравием. При этом на системах отвода масла от трансформаторов (реакторов) следует предусматривать установку огнепреградителей;

6) при установке маслонаполненного электрооборудования на железобетонном перекрытии здания (сооружения) устройство маслоотвода является обязательным;

7) маслоотводы должны обеспечивать отвод из маслоприемника масла и воды, применяемой для тушения пожара, автоматическими стационарными устройствами и гидрантами на безопасное в пожарном отношении расстояние от оборудования и сооружений: 50 % масла и полное количество воды должны удаляться не более чем за 0,25 ч. Маслоотводы могут выполняться в виде подземных трубопроводов или открытых кюветов и лотков;

8) маслосборники должны предусматриваться закрытого типа и должны вмещать полный объем масла единичного оборудования (трансформаторов, реакторов), содержащего наибольшее количество масла, а также 80 % общего (с учетом 30-минутного запаса) расхода воды от средств пожаротушения. Маслосборники должны оборудоваться сигнализацией о наличии воды с выводом сигнала на щит управления. Внутренние поверхности маслоприемника, ограждений маслоприемника и маслосборника должны быть защищены маслостойким покрытием.

4.2.70. На ПС с трансформаторами 110 – 150 кВ единичной мощностью 63 МВ·А и более и трансформаторами 220 кВ и выше единичной мощностью 40 МВ·А и более, а также на ПС с синхронными компенсаторами для тушения пожара следует предусматривать противопожарный водопровод с питанием от существующей внешней сети или от самостоятельного источника водоснабжения. Допускается вместо противопожарного водопровода предусматривать забор воды из прудов, водохранилищ, рек и других водоемов, расположенных на расстоянии до 200 м от ПС с помощью передвижных средств пожарной техники.

На ПС с трансформаторами 35 – 150 кВ единичной мощностью менее 63 МВ·А и трансформаторами 220 кВ единичной мощностью менее 40 МВ·А противопожарный водопровод и водоем не предусматривается.

4.2.71. КРУН и КТП наружной установки должны быть расположены на спланированной площадке на высоте не менее 0,2 м от уровня планировки с выполнением около шкафов площадки для обслуживания. В районах с высотой расчетного снежного покрова 1,0 м и выше и продолжительностью его залегания не менее 1 мес. рекомендуется установка КРУН и КТП наружной установки на высоте не менее 1 м.

Расположение устройства должно обеспечивать удобные выкатывание и транспортировку трансформаторов и выкатной части ячеек.

studopedia.su


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.