Способы защиты от поражения электрическим током


Общие сведения
Существуют следующие способы защиты, применяемые отдельно или в сочетании друг с другом: защитное заземление, зануление, защитное отключение, электрическое разделение сетей разного напряжения, применение малого напряжения, изоляция токоведущих частей, выравнивание потенциалов.
В электроустановках (ЭУ) напряжением до 1000 В с изолированной нейтралью и в ЭУ постоянного тока с изолированной средней точкой применяют защитное заземление в сочетании с контролем изоляции или защитное отключение.
В этих электроустановках сеть напряжением до 1000 В, связанную с сетью напряжением выше 1000 В через трансформатор, защищают от появления в этой сети высокого напряжения при повреждении изоляции между обмотками низшего и высшего напряжения пробивным предохранителем, который может быть установлен в каждой фазе на стороне низшего напряжения трансформатора.
В электроустановках напряжением до 1000 В с глухозаземленной нейтралью или заземленной средней точкой в ЭУ постоянного тока применяется зануление или защитное отключение.


этих ЭУ заземление корпусов электроприемников без их заземления запрещается.
Защитное отключение применяется в качестве основного или дополнительного способа защиты в случае, если не может быть обеспечена безопасность применением защитного заземления или зануления или их применение вызывает трудности. При невозможности применения защитного заземления. Зануления или защитного отключения допускается обслуживание ЭУ с изолирующих площадок.
Защитное заземление
Заземлением называется соединение с землей нетоковедущих металлических частей электрооборудования через металлические детали, закладываемые в землю и называемые заземлителями, и детали, прокладываемые между заземлителями и корпусами электрооборудования, называемые заземляющими проводниками. Проводники и заземлители обычно делаются из низкоуглеродистой стали, называемой в просторечии железом.
Заземлители в виде штырей, вбиваемых в землю, называются электродами, и могут быть одиночными или групповыми. Заземлитель имеет характеристики, обусловленные стеканием по нему тока в землю. К характеристикам заземлителя относятся:
напряжение на заземлителе;
изменение потенциалов точек в земле вокруг заземлителя в зависимости от их расстояния от заземлителя в зоне растекания тока – вид потенциальной кривой;
вид линий равного потенциала – эквипотенциальных линий на.

к которому может прикоснуться человек. Это напряжение зависит от состояния заземления, расстояния между человеком и заземлителем, сопротивления основания, на котором стоит человек.
Напряжение прикосновения максимально в положении 1 человека, когда он стоит в зоне нулевого потенциала и касается заземленного оборудования; равняется нулю в положении 2, когда человек стоит на заземлителе или его проекции на поверхность земли, в некотором промежуточном положении человека напряжение прикосновения имеет промежуточное значение, которое меняется от О до Uз.
При одиночном и групповом заземлителях напряжение прикосновения?
Напряжение шага
Напряжение шага возникает между ногами человека, стоящего на земле, из-за разности потенциалов на поверхности земли при растекании в земле тока замыкания на землю. Напряжение шага отсутствует, если человек стоит или на линии равного потенциала или вне зоны растекания тока, т. е. на расстоянии более 20 м от заземлителя.
Напряжение шага наибольшее в положении 1 человека, когда он стоит одной ногой на заземлителе.

положении человека между заземлителем и зоной нулевого потенциала, когда шаг направлен по радиусу к заземлителю, напряжение шага имеет промежуточное значение.
Заземление предназначается для устранения опасности поражения человека электрическим током во время прикосновения к нетоковедущим частям, находящимся под напряжением. Это достигается путем снижения до безопасных пределов напряжения прикосновения и шага за счет малого сопротивления заземлителя. Областью применения защитного заземления
являются сети переменного и постоянного тока с изолированной нейтралью источника напряжения или трансформатора.
Не требуют защитного заземления электроустановки переменного тока напряжением до 42 В и постоянного тока до 110 В.
Величина сопротивления заземляющего устройства нормируется “Правилами устройства электроустановок” (ПУЭ). Эта величина для электроустановок до 1000 В с изолированной нейтралью должна быть не более 4 Ом, а если мощность питающих сеть генераторов или трансформаторов, или их суммарная мощность не более 100 кВА, то сопротивление должно быть не более 10 Ом.
Для заземления могут быть использованы детали уже существующих сооружений, которые называются естественными заземлителями:
металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей;
металлические трубопроводы, проложенные в земле, за исключением трубопроводов горючих жидкостей и газов;
свинцовые оболочки кабелей, проложенных в земле;
обсадные трубы скважин и т.


В качестве заземляющих и нулевых (см. ниже) проводников, соединяющих корпуса оборудования с заземлителями, могут применяться:
специальные проводники;
металлические конструкции оборудования и зданий;
стальные трубы электропроводок, алюминиевые оболочки кабелей;
металлические открыто расположенные трубопроводы всех назначений, за исключением трубопроводов для горючих жидкостей и газов, канализации и центрального отопления.
Запрещается использовать в качестве заземляющих и нулевых проводников алюминиевые провода для прокладки в земле, металлические оболочки трубчатых проводов, несущие тросы тросовой проводки, металлорукава, броню и свинцовые оболочки проводов и кабелей.
Проводники присоединяют к корпусам оборудования сваркой или болтовым соединением с обеспечением доступности для контроля или переделки при ухудшении контакта. Последовательное включение в цепь заземления или зануления отдельных корпусов оборудования запрещается.
При монтаже заземляющих устройств монтажной организацией контроль за работами производится со стороны заказчика. При этом отдельно принимаются работы, которые впоследствии будут скрыты, и в это время, а не после, подписываются акты на скрытые работы.
Монтажные организации сдают заказчику всю документацию на заземляющие устройства. На каждое устройство заво.

ример, М-416, работающего на принципе амперметра-вольтметра. При измерении сопротивления сложного контура, имеющего наибольшую диагональ Д, токовый электрод Eт располагают на расстоянии l1 = 2Д от края данного контура, а потенциальный электрод En – поочередно на расстояниях 0,4, 0,6, 0,5l фиксируя показания прибора. Если сопротивления, полученные при установке Еп на расстояниях, 0,4 и 0,6l1 отличаются не более 10%, то принимают значение сопротивления, полученное в положении потенциального электрода на расстоянии 0,5l1 а если различие больше 10%, то или повторяют измерения при увеличении расстояния до Ет в 1.5…2 раза, или производят измерения при изменении направления токового электрода.
Для вертикальных электродов, расположенных в ряд и соединенных полосой или для заземлителя, состоящего из полосы, длину полосы принимают за величину Д.
Токовый электрод располагают на расстоянии от края испытываемого заземлителя:
при Д > 40 м l2 = 2Д, при 10 м при ДПотенциальный электрод располагается на расстоянии 0,54.

мерение сопротивления заземления производится, когда оно имеет наибольшие значения: для северных районов и средней полосы – зимой при наибольшем промерзании почвы, для южных районов – когда почва наиболее сухая.
Во время приемо-сдаточных испытаний измеренные значения сопротивлении умножают на коэффициент сезонности, который берется из таблицы.
Зануление
Зануление  предусматривает глухое заземление нейтрали источника или трансформатора трехфазного тока, одного вывода источника однофазного тока, наличие нулевого провода и его повторного заземления.
Заземление нейтрали источника тока имеет целью понизить напряжение на корпусах оборудования и на нулевом проводе, с которым эти корпуса соединены, до безопасного значения при замыкании фазного проводника на землю, при этом создается путь для тока Iф-з (рис. 4.12).
Нулевой защитный проводник предназначен для увеличения тока короткого замыкания lk c целью воздействия этого тока на защиту. Увеличение lк происходит за счет уменьшения сопротивления току при наличии нулевого провода по сравнению с тем, если бы ток шел через землю.
Повторное заземление нулевого провода предназначено для снижения напряжения на корпусах оборудования при замыкании фазы на корпус как при исправном, так и при оборванном нулевом проводе.
Зануление в электроустановках до 1000 В применяется в 4-проводных сетях с глухозаземленной нейтралью трансфор
матора ипи генератора, в сетях с заземленным выводом источника однофазного тока, в сетях с заземленной средней точкой источника постоянного тока.

нуление выполняется в тех же случаях, что и защитное заземление.
В качестве нулевых защитных проводников используются нулевые рабочие проводники, за исключением проводников ч передвижным электроприемникам. В цепи нулевых защитных проводников не должно быть аппаратов, разъединяющих эти проводники, в том числе предохранителей.
Проверка зануления на соответствие требованиям ПУЭ производится во время монтажа, при сдаче после монтажа и при эксплуатации.
Проверяют следующие параметры:
сопротивление заземлений нейтрали и повторных;
отношение тока однофазного К- на корпус и номинального тока плавкой вставки предохранителя или тока уставки автомата на контролируемом участке сети, причем это отношение должно быть не менее 3, а для автоматов только с электромагнитными расцепителями на номинальный ток до 100 А кратность должна быть не менее 1,4 и для автоматов на ток более 100 А – 1,25.
Защитное отключение
Устройство защитного отключения (УЗО) состоит из чувствительного элемента, реагирующего на изменение контролируемой величины, и исполнительного органа, отключающего соответствующий участок сети.
Чувствительный элемент может реагировать на потенциал корпуса, ток замыкания на землю, напряжение и ток нулевой последовательности, оперативный ток.

качестве выключателей могут применяться контакторы, магнитные пускатели, автоматические выключатели с независимым расцепителем, специальные выключатели для УЗО.
Назначение УЗО – защита от поражения электрическим током путем отключения ЭУ при появлении опасности замыкания на корпус оборудования или непосредственно при касании тоговедущих частей человеком.
УЗО применяется в ЭУ напряжением до 1000 В с изолированной или глухозаземленной нейтралью в качестве основного или дополнительного технического способа защиты, если безопасность не может быть обеспечена путем применения заземления или зануления или если заземление или зануление не могут быть выполнены по некоторым причинам.
УЗО обязательно для контроля изоляции и отключения ЭУ при снижении сопротивления изоляции в ЭУ специального назначения, например, в подземных горных выработках (реле утечки).
Примером УЗО является защитно-отключающее устройство типа ЗОУП-25, предназначенное для отключения и включения силовых трехфазных цепей при напряжении 380 В и токе 25 А в системах с глухозаземленной нейтралью, а также для защиты людей при касании токоведущих частей или корпусов оборудования, оказавшихся под напряжением.
Электрическое разделение сетей
Электрическое разделение сетей осуществляется через специальный разделительный трансформатор, который отделяет сеть с изолированной или глухозаземленной нейтралью от участка сети, питающего электроприемник. При этом связь между питающей сетью и сетью приемника осуществляется через магнитные поля, участок сети приемника и сам приемник не связываются с землей.

зделительный трансформатор представляет собой специальный трансформатор с коэффициентом трансформации, равном единице, напряжением не более 380 В, с повышенной надежностью конструкции и изоляции. От трансформатора разрешается питание не более одного приемника с током не более 15 А. В качестве разделительных трансформаторов могут быть использованы трансформаторы понижающие со вторичным напряжением не более 42 В, если они удовлетворяют требованиям к разделительному трансформатору.
Использование малого напряжения
Малое напряжение (не более 42 В между фазами и по отношению к земле) применяется для ручного инструмента, переносного и местного освещения в любых помещениях и вне их. Оно применяется также в помещениях с повышенной опасностью и особо опасных для питания светильников местного стационарного освещения, если они расположены на высоте менее 2,5 м. Распространено в применении напряжение 36 В, а в замкнутых металлических емкостях должно применяться напряжение не более 12 В.
Выравнивание потенциалов
Как известно, напряжение прикосновения или шага получается тогда, когда есть разность потенциалов между основанием, на котором стоит человек, и корпусами оборудования, которых он может коснуться, или между ногами. Если соединить посредством дополнительных электродов и проводников места возможного касания телом человека, то не будет разности потенциалов и связанной с ней опасности.
Выравнивание потенциалов корпусов электрооборудования и связанных с ним конструкций и основания осуществляется устройством контурного заземлителя, электроды которого располагаются вокруг здания или сооружения с заземленным или зануленным оборудованием.

утри контурного заземлителя под полом помещения или площадки прокладываются горизонтальные продольные и поперечные электроды, соединенные сваркой с электродами контура. При наличии зануления контур присоединяется к нулевому проводу.
Выравнивание потенциалов корпусов оборудования и конструкций осуществляется присоединением конструкций и всех корпусов к сети зануления или заземления.
Выравнивание потенциалов применяется как дополнительный технический способ защиты при наличии зануления или заземления в помещениях с повышенной опасностью или особо опасных.
Применение выравнивания потенциалов обязательно в животноводческих помещениях.
Устройство выравнивания потенциалов осуществляется по проекту.

Портал электриков

www.piter220.ru

Применение защитных ограждений

Прикосновение человека к неизолированной токоведущей части, находящейся под напряжением, является опасным – это факт. Даже зная о наличии напряжения в тех или иных местах, существует вероятность случайного прикосновения.

Во избежание подобных случаев для обеспечения электробезопасности рабочего персонала принято делать защитные ограждения вокруг опасных зон (систем, оборудования, частей и т.д.).

Использование защитных блокировок

Блокировки, пожалуй, больше относятся к электротехнической защите от случайного поражения человека электрическим током или от внезапного включения оборудования, что также может повлечь за собой несчастный случай.

При их установке учитываются те случаи, которые могут произойти в случае ошибочного и неправильного поведения людей, работающих либо обслуживающих электрические системы и устройства.

При срабатывании блокировки происходит принудительное отключение и обесточивание электрооборудования с целью предотвращения аварийной ситуации.

Заземлители переносные

Переносные заземлители представляют собой временные средства защиты. Они применяются для обеспечения дополнительной безопасности (защиты рабочего персонала от поражения электрическим током) при работах на отключённых участках электрических систем, оборудования, устройств и т.д. В том случае, когда вдруг появится напряжение на данных участках, где ещё работают люди, эти переносные заземлители (проводники, касающиеся земли) направят электроэнергию в землю.

Использование защитной изоляции

Ещё одним важным способом технической защиты от поражения электрическим током является использования защитной изоляции на своём рабочем месте.

Изолирование рабочего места предполагает некую организацию мероприятий, направленную на предотвращение появления электрической цепи «человек-земля».

Основной задачей этого метода является увеличение сопротивления (переходного) по данной электроцепи.

Этот вариант предполагает использование резиновых ковров, изоляции токоведущих частей электрооборудования в наиболее электрически опасных местах и т.д.

fazaa.ru

Электричество

Явление электрического тока можно наблюдать в следующих ситуациях:

  • при непосредственном нагреве проводников;
  • при изменении их химического состава;
  • при образовании магнитного поля (это явление происходит у всех проводников без исключения).

Электричество является незаменимым элементом в наше время. Без него не может функционировать ни одно предприятие. Однако важно знать, что наряду с полезными свойствами ток может принести вред человеческому здоровью и даже жизнедеятельности. Конечно, это вовсе не означает, что людям стоит вообще отказаться от электричества. Но каждому из нас надо быть осторожнее. Для сохранения своей жизни и здоровья следует соблюдать некоторые меры защиты от поражения электрическим током. Об этом мы сейчас и поговорим.

Важно заметить, что защита всего рабочего коллектива в большей мере зависит от положения эксплуатации, а именно от таких факторов как: температура, влажность, запыление здания и т.д.

Печальная статистика

К сожалению, человек очень часто пренебрегает простыми правилами безопасности. И печальная статистика гласит, что в большинстве случаев смерть в результате удара тока настигает работников, которые лучше осведомлены в обращении с электричеством.

Люди не всегда выполняют правила, даже зная их. Что же заставляет работников подвергать себя такой опасности на предприятии? Возможно, это происходит из-за того, что человек хочет сэкономить время. Иногда условия труда заставляют работника предприятия подвергать себя такой опасности. В таких ситуациях необходимо моментально обращаться в соответствующие организации, которые должны быть любых на предприятиях, чтобы избежать летального исхода.

Какой ток несет наибольшую угрозу для человеческой жизни?

Существует три группы мощи электронапряжения. Они по-разному влияют на человеческую жизнедеятельность. Определенный уровень напряжения может нанести незначительный вред человеку и даже убить его. Уровни силы напряжения перечислены ниже:

  • пороговый ток (ощутимый). Под его воздействием человек может ощущать незначительные покалывания. Наблюдается дрожание рук;
  • пороговый (неотпускающий), под влиянием которого, работник физически не может преодолеть сокращение мышц. Он не в состоянии разжать руку и отпустить непосредственный источник напряжения;
  • пороговый фибриляционный. Его воздействие приводит к остановке сердца человека, вызывая сокращение сердечных мышц.

Для человеческого организма не несет никакой угрозы переменный 0,6-1,5 мА и постоянный 5-7 мА ток. Однако переменный 10-15мА и постоянный 50-80мА несут некоторую угрозу для жизни человека, но не смертельную.

Принято считать, что в зданиях повышенной и не повышенной опасности угрозу несет напряжение свыше 40В. А что касается особо опасных конструкций, то в них критически опасным является напряжение от 12В.

Необходимые способы защиты

Существует достаточное количество средств и способов, чтобы защитить человека от поражения током. И об этом должен знать каждый гражданин, который пользуется электричеством. Особенно эти навыки крайне необходимы работникам различных предприятий. Ведь именно они чаще всего подвергаются опасности. Ситуации с ударом человека током довольно распространены на шахтах, различных заводах и т. д. Поэтому очень важно быть предельно осторожным, соблюдать все рекомендации, правила и обязанности при выполнении своей работы.

При создании качественной системы безопасности должно соблюдаться одно очень важное правило. А заключается оно в том, что опасные части, пропускающие ток, необходимо делать недоступными для человека.

Что касается самих защитных мер от поражения электричеством, то, как правило, выделяют:

  • Использование изолирующих накладок, допустимо и использование двойной изоляции.
  • Недоступность токоведущих частей.
  • Применение небольшого напряжения (в помещениях с повышенной опасностью-от 42В, а в помещениях особой опасности-от 12В).
  • Защитное заземление оборудования.
  • Использование специальных защитных средств.
  • Защитное зануление оборудования.

Твёрдая и воздушная изоляция

Как же обеспечить защиту? Использование твердой изоляции помогает предотвратить прикосновение к проводнику электричества.

Есть еще один вариант. Речь идет о воздушной изоляции. Вот только использование ее одной будет недостаточно. Ведь необходима преграда, которая ограничит доступ посторонних лиц. Для этого рекомендуем применять различные кодовые ключи и запорные приспособления.

В целом выделяют две категории средств защиты от поражения электрическим током – индивидуальные и коллективные. Это еще не все. Их еще разделяют на дополнительные электрозащитные средства и основные, применение которых является обязательным.

Способы предосторожности

Основные меры защиты от поражения электрическим током должны быть направлены на надежное изолирование в течение достаточно длительного времени. Они в себя включают:

  • штанги (изолирующие);
  • указатели напряжения;
  • лестницы (изолирующие).

Некоторые способы защиты применяются дополнительно. Но использовать их можно лишь в комплексе с основными. В противном случае безопасность не будет обеспечена в полной мере. Итак, к данным способам защиты относятся:

  • Знаки и плакаты по электробезопасности.
  • Переносное заземление.
  • Подставки и накладки (изолирующие).
  • Диэлектрические коврики.
  • Диэлектрические перчатки (в таких перчатках возможна работа с напряжением до 1000В).
  • Изолирующие подставки.
  • Диэлектрические галоши.
  • Диэлектрические колпаки и прокладки.

Как уже было сказано выше, существуют и индивидуальные средства защиты от поражения электрическим током (сокращенно СИЗ), к которым относятся: приспособления для защиты головы (каски, шлемы и т.д.), защитные приспособления для глаз и лица (различные маски, очки и т.д.), перчатки и пр. Это еще не все. Существуют также технические меры защиты от поражения электрическим током (сокращенно ТСЗ).

Термины

Среди нас мало профессионалов. Поэтому так важно разобраться в определенных терминах. Вы должны четко понимать все правила и нормы безопасности жизнедеятельности, чтобы в дальнейшем избежать ужасных последствий. Предупрежден – значит вооружен! Эта поговорка никогда не теряет актуальности.

Итак, защитное заземление – это электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могу оказаться непосредственно под напряжением.

Запоминаем еще один термин. Защитное зануление – это электрическое соединение открытых проводящих частей электроустановки, которые могут оказаться под напряжением по причине замыкания.

А что такое уравнивание потенциалов? Это соединение частей, проводящих ток для равенства их потенциалов. Данный термин часто используется электриками.

Выравнивание потенциалов – это непосредственно снижение разности потенциалов на поверхности, используя защитные проводники, установленные в земле и подсоединенные к заземляющему устройству.

Под защитным отключением подразумевается использование автоматических установок, целью которых является автоматическое выключение питания в целях безопасности. Надеемся, что вы запомнили эти термины.

Автоматические выключатели

Сейчас пойдет речь о современном виде технической меры защиты от поражения электрическим током. Это автоматические выключатели ВА. Они применяются для проведения тока. При коротких замыканиях и сильных перепадах напряжения происходит его автоматическое отключение. Эти приборы гарантируют безопасность в использовании и долгосрочную работу. Автоматический выключатель ВА чаще всего устанавливается на предприятиях.

Оказание 1-й медпомощи при непосредственном поражении током

Безусловно, важно создать все условия для того, чтобы несчастных случаев не происходило. Каждый работник должен неукоснительно соблюдать все меры осторожности и правила безопасности. Однако несчастные случаи все-таки происходят. Немаловажной задачей становится помочь пострадавшим до приезда скорой помощи. Запомните: здесь важна каждая секунда. Помощь, предоставленная пострадавшему в течение первых минут после поражения, в 90% спасает жизнь. В медуходе за пострадавшим при поражении выделяют два основных этапа:

  1. Освобождение пострадавшего от непосредственного действия электрического тока.
  2. Оказание первой необходимой медицинской помощи пострадавшему.

Очень важно наличие знаков и плакатов по электробезопасности. Ведь они могут спасти кому-то жизнь!

Чтобы освободить пострадавшего от воздействия на него напряжения, необходимо отключить это напряжение или убрать источник электрического тока подальше от человека. Тот, кто оказывает первую помощь, должен так же соблюдать все меры предосторожности, чтобы не усугубить ситуацию.

Пораженный током человек остался в сознании? Тогда его стоит оставить в покое до приезда наряда скорой. Если же он потерял сознание, но есть признаки дыхания, то необходимо положить и обогреть пострадавшего, а затем постараться привести его в чувства. При отсутствии каких-либо признаков жизни необходимо сделать массаж сердца в комплексе с искусственным дыханием.

fb.ru

Общие сведения о защитных средствах и их классификация

Защитные приспособления представляют собой оборудование переносного и мобильного типа, поддающиеся транспортировке, которое служит для обеспечения безопасной работы человека с электроустановками. Обеспечивает снижение риска от удара током и устраняет последствия действий возникшей электрической дуги, и других неблагоприятных факторов.

Важно! Любые части конструкции электроустановки, включая стационарное заземление и ограждения, не являются защитными устройствами и не спасают от удара током.

Все устройства, изолирующего типа подразделяются на

  • основные — это приборы, выдерживающие рабочую силу тока электроустановок;
  • дополнительные — такие устройства не способны самостоятельно обезопасить человека от поражения электрическим током.

Основные средства в свою очередь подразделяются на конструкции с напряжением от и до 1000 Вольт. Для установок с напряжением ниже 1000 Вольт относят измерительные штанги, токоизмерительные и изолирующие клещи, таблицы с указанием напряжения. Говоря об установках, превышающих мощность 1000 Вольт, — используются указатели опасного напряжения, диэлектрические перчатки и инвентарь с дополнительной изоляцией.

К дополнительным приспособлениям защиты относят резиновые галоши, перчатки, диэлектрические коврики, подставки, сохраняющие изоляцию.

Внимание! Основные и дополнительные диэлектрики должны применяться комплексно, так как при отдельном их применении высокая защита при работе с электрическими установками не обеспечивается.

В отдельных случаях (если требуется), важно использовать вспомогательную защиту: брезентовую одежду и обувь, защитные пояса, очки, переносные плакаты и ограждения. Средства индивидуальной защиты от поражения электрическим током помогут обезопасить человека в любых условиях, нередко применяются и в домашней обстановке.

Назначение диэлектриков, их виды и использование

В средства индивидуальной защиты от воздействия электричества относят предметы, применяемые местно.

  1. Обувь — включает диэлектрические галоши и боты. В них рекомендуется работать с трансформаторными подстанциями и электроустановками выше 1кВт. Такие принадлежности сохраняют свои свойства даже при перепадах температуры воздуха. Оптимальный диапазон от -30 до +50°С. Такие средства имеют один существенный недостаток: в них предоставляется возможность работы только в сухой период (без осадков).
  2. Одежда — сюда относятся перчатки из брезента или резины, специальные костюмы. Все эти средства относятся к дополнительной защите. Используются для работы с установками потребностью до 250 Ватт. Преимущества спецодежды в широком применении и доступности для покупки.
  3. Изолирующие материалы — коврики, доски и различные подставки, не проводящие ток. Чаще всего используются прорезиненные коврики с рифлёной основой. Такие дополнительные средства следует применять в местах монтажа с напряжением до 1 кВ. Нормально работают только при диапазоне температур от -15 до +40°

Важно! Все средства, используемые для защиты человека от электрического тока при работе с мощными приборами, должны соответствовать ГОСТам. Обязательно наличие сертификации и технических условий.

Меры защиты от поражения электрическим током

Во избежание трагических случаев от воздействия на человека электрического напряжения рекомендуется придерживаться мер безопасности. Если говорить о домашних условиях, то в такой обстановке всегда должно присутствовать заземление, особенно, если периодически работают мощные установки.


В квартирных условиях часто применяется зануление, так как в части домов, произвести заземляющий контур не удобно. Однако, в этом случае обязателен монтаж дополнительных средств защиты: автоматических выключателей, дифференциальных автоматов и УЗО.

Используется и малое напряжение. Его размер составляет 42 Вольта, что совершенно безопасно для человека. Чтобы создать такой потенциал, необходимо обзавестись понижающими трансформаторами.

Присутствие изоляции — это, пожалуй, один из важных факторов, который применяется в домашних условиях. Таким образом должны быть отделены любые токоведущие части электроустановок. Применяется рабочая, двойная, дополнительная и усиленная изоляция.

Внимание! Защита человека от поражения электрическим током должна быть полностью соблюдена в любых условиях. Однако в случае удара током, важно оказать первую помощь пострадавшему.

Выше перечисленные меры защиты считаются коллективными, так как могут обезопасить несколько человек одновременно от ожогов и других повреждений, проявляющихся от воздействия электричества.

prokommunikacii.ru

7.1. Технические средства защиты

Технические средства защиты от поражения электрическим током делятся на коллективные и индивидуальные. Первые делают невозможным контакт с токопроводящими частями электрических установок, вторые защищают работника в случае, когда касание к токоведущим частям все-таки произошло. Ниже рассмотрены основные технические средства электробезопасности.

Малое напряжение – ограничение применяемого рабочего напряжения для уменьшения опасности поражения электрическим током при работе с переносным инструментом. Максимальное действующее напряжение составляет 12 В в особо опасных помещениях и 42 В – в помещениях с повышенной опасностью, ведь при напряжении в 42 В ток, который проходящий через тело человека, является опасным.

Источниками малого напряжения могут быть понижающие трансформаторы, аккумуляторы, выпрямляющие установки, батареи гальванических элементов, преобразователи частот.

Изоляция токоведущих частей – слой диэлектрика или конструкция из него на проводящей поверхности. Изоляция препятствует прохождению через нее тока благодаря большому сопротивлению, которое должно раняться

clip_image002

где U – действующее напряжение электрической сети

В процессе эксплуатации изоляция постепенно теряет свои диэлектрические свойства из-за старения и местных дефектов, вследствие чего ее сопротивление уменьшается. Это приводит к увеличению тока потерь, возможен пробой изоляции, пожар или поражение электрическим током. Поэтому наиболее надежной является двойная изоляция, которая служит для защиты от поражения током в случае повреждения рабочей изоляции.

Защитное заземление и зануление – наиболее распространенные и надежные средства электрической защиты. Их реализация и принцип действия подробно рассмотрены в п. 7.3.

Недоступность к токоведущим частям оборудования – чаще всего реализуется размещением токоведущих частей на недоступной для прикосновения высоте. В электрических установках напряжением до 1000 В все линии электропередач должны быть на расстоянии не менее 6,5 м от земли. При большем напряжении это расстояние должно увеличиваться.

Другим методом является ограждение токоведущих частей оборудования. В сетях с напряжением более 1000 В опасность представляют даже изолированные провода, кроме того при схеме с заземленной нейтралью опасно даже приближение к токоведущим частям оборудования, поэтому такие установки обязательно должны быть ограждены. Сплошные ограждения используются в установках с напряжением до 1000 В, сетчатые ограждения – с напряжением выше 1000 В.

Защитная блокировка – автоматическое устройство, с помощью которого предотвращаются неправильные, опасные для человека действия. Устройство блокировки допускает только определенный порядок включения механизма, который устраняет даже возможность попадания человека в зону действия электрического напряжения.

По принципу действия защитная блокировка может быть электрической (разрыв цепи специальными контактами) или механической (рубильники, пускатели, автоматические выключатели).

Предупреждающие средства – стационарные устройства, сигнализирующие о выключении аппаратов, наличии или отсутствии напряжения на определенном участке электрической установки.

Также к предупреждающим средствам относятся плакаты, предназначенные для оповещения работников об опасности приближения к токоведущим частям. Также наряду с ними используются запрещающие, предписывающие и указательные плакаты.

7.2. Электрические средства защиты

Электрозащитные средства – изделия, защищающие людей, работающих с электрическим оборудованием от поражения электрическим током, действия электрической дуги и магнитного поля. Они используются как при обычном, так и при аварийном состоянии электрического оборудования. Такие средства могут быть условно разделены на четыре типа:

1. Изолирующие – служат для изоляции людей от электрического оборудования под напряжением, заземленных частей оборудования, а также от земли. В свою очередь, делятся на:

основные – способны длительное время выдерживать рабочее напряжение электроустановки, поэтому допускают касание к токоведущим частям. В ЭУ с напряжением до 1000 В такими средствами являются диэлектрические перчатки, инструмент с изолированными ручками, указатели напряжения, изолирующие и электроизмерительные клещи. В установках с напряжением выше 1000 В – изолирующие штанги и электроизмерительные клещи, указатели напряжения, средства для ремонтных работ.

– дополнительные – не имеют изоляции, которая могла бы выдерживать рабочее напряжение, поэтому применяются только для усиления действия основных средств. В установках до 1000 В к ним относятся резиновые коврики, изолирующие подставки и диэлектрическая обувь. В установках выше 1000 В – диэлектрические перчатки, боты, коврики и изолирующие подставки.

2. Ограждающие – используются для временного ограждения частей электрического оборудования, находящегося под напряжением, к которым возможно случайное прикосновение или приближение на опасное расстояние. К ним относятся переносные ограждения (ширмы, барьеры, щиты), изолирующие накладки, переносные заземления.

3. Экранирующие – служат для предотвращения вредного воздействия на работников электрических полей промышленной частоты. Это индивидуальные экранирующие комплекты (костюмы, обувь и рукавицы) или переносные экранирующие устройства (экраны и палатки).

4. Вспомогательные – предназначены для защиты персонала от падения с высоты (пояса и канаты), для безопасного подъема на высоту (стремянки и когти), для защиты от тепловых, световых, химических, механических и других действий (специальная одежда, рукавицы, противогазы).

7.3. Методы защиты в аварийных режимах

Защитное заземление – преднамеренное электрическое соединение с землей металлических нетокопроводящих частей, которые могут оказаться под напряжением в аварийной ситуации.

Действие защитного заземления заключается в снижении до безопасной величины напряжения прикосновения, вызванного замыканием фазы на корпус.

Применение заземления является обязательным при напряжении переменного тока 380 В и выше, при напряжении постоянного тока 440 В и выше. В помещениях с повышенной опасностью и особо опасных помещениях, а также в наружных установках заземление обязательно при напряжении 42 В и выше переменного тока и 110 В и выше – для постоянного тока. Допустимые значения сопротивления заземления приведены в Приложении С. Оно эффективно в сетях до 1000 В с изолированной нейтралью и выше 1000 В – как с изолированной, так и с заземленной нейтралью.

Конструктивно защитное заземление представляет собой совокупность заземлителя и проводников, соединяющих с ним заземленные части электрического оборудования (рис. 7.1). Заземлитель размещается в почве для хорошего электрического контакта, он может быть естественным или искусственным. В роли естественных заземлителей используют различные металлические конструкции, одновременно выполняющие строительные или технологические функции.

clip_image004Искусственными заземлителями являются специально сконструиро-ванные металлоконструк-ции. Правилами эксплуа-тации ЭУ в первую очередь предусмотрено использова-ние естественных заземли-телей.

Рис. 7.1 – Конструкция защитного заземления: 1 – соединительная лента, 2 – заземлитель

Конструкции защитных заземлений должны соответствовать следующим требованиям: корпуса к магистралям присоединяются только параллельно, а магистраль следует присоединять к заземлителю не менее чем в двух точках, присоединения проводов к корпусам оборудования выполняется сваркой или «под болт».

В зависимости от места размещения заземлителя относительно заземляемого оборудования различают два типа заземляющих устройств: выносное и контурное.

clip_image006

Рис. 7.2 – Типы заземляющих устройств: а – контурное заземление, б – выносное заземление; 1 – заземлители, 2 – заземляющие проводники, 3 – оборудование, 4 – производственные здания

При контурном заземлении (рис. 7.2, а) заземлители размещают по периметру и внутри площадки, на которой находится оборудование, подлежащее защите. Во время замыкания на корпус ток стекает в землю, образуя повышенный относительно прилегающих территорий электрический потенциал внутри площадки. Но при контакте работника с корпусом под напряжением ток, проходящий через тело человека, значительно меньше, чем при выносном заземлении.

При выносном заземлении (рис. 7.2, б) заземлители вынесены за пределы площадки, на которой размещено электрическое оборудование, или сосредоточены на некоторой части этой площадки, вследствие чего не вся территория является защищенной. В данном случае защитное заземление защищает от поражения только благодаря малому сопротивлению заземления. Используется выносное заземление только при малых токах замыкания на землю в установках до 1000 В

clip_image008Защитное зануление – преднамеренное электрическое соединение с нулевым электрическим проводом металлических нетокопроводящих частей, которые могут оказаться под напряжением в аварийной ситуации. Применяется в трехфазных четырехпроводных электрических сетях до 1000 В с глухозаземленной нейтралью (рис. 7.3).

Рис. 7.3 – Схема защитного зануления: 1 – оборудование, 2 – плавкие предохранители

Нулевой защитный проводник – это проводник, соединяющий зануляемое оборудование с глухозаземленной нейтральной точкой обмотки источника тока или ее эквивалентом.

Зануление имеет два защитных действия – быстрое автоматическое отключение установки от сети и снижение напряжения зануленных металлических нетоковедущих частей, оказавшихся под напряжением относительно земли в результате замыкания фазы на корпус. Принцип действия зануления – превращение замыкания на корпус в однофазное короткое замыкание, автоматически отключающее поврежденную электроустановку от сети питания.

Пусть при повреждениии изоляции происходит пробой фазы на корпус, что приводит к появлению на нем фазного напряжения. Тогда ток короткого замыкания (Ік) проходит через обмотки трансформатора, фазный провод, плавкий предохранитель, корпус установки, нулевой провод и снова обмотки трансформатора. Поскольку сопротивление цепи прохождения тока при коротком замыкании малое, ток является достаточным, чтобы вывести из строя плавкий предохранитель, отключив поврежденный участок.

Кроме плавких предохранителей для отключения фазы также используются магнитные пускатели с встроенной тепловой защитой или автоматы, осуществляющие защиту одновременно от токов короткого замыкания и перегрузки. Защита может срабатывать на ток или тепло, или и то и другое вместе. Время с момента появления напряжения на корпусе до момента отключения установки от электросети составляет 5 – 7 с при защите установки плавкими предохранителями и 1 – 2 с при защите автоматами.

В сетях, где применяют зануление, нельзя заземлять корпуса электроустановок без их зануления, поскольку в случае замыкания фазы на корпус заземленной, но не зануленной установки под напряжением окажутся корпуса всех других зануленных электроустановок. Однако дополнительное заземление зануленных электроустановок не запрещается, поскольку оно повышает надежность заземления нулевого провода.

7.4. Первая помощь при поражении электрическим током

Важнейшим фактором оказания первой помощи при поражении электрическим током является ее скорость. Чем быстрее оказана помощь, тем выше ее эффективность, поэтому каждый работник должен уметь оказать первую помощь пострадавшему. Промедление или неквалифицированность при оказании первой помощи могут привести к гибели пострадавшего.

Проядок оказания первой помощи:

clip_image0101. Устранить действие опасных факторов, угрожающих жизни и здоровью потерпевшего: освободить от действия электрического тока, вынести на свежий воздух, потушить.

Рис. 7.4 – Методы освобождения от действия тока

Наиболее безопасным способом освобождения потерпевшего является отключение напряжения. В случае, когда невозможно быстро отключить систему, применяют закорачивания фаз с помощью металлической перемычки, оттягивание пострадавшего от места поражения (рис. 7.4, слева) или обесточивание сети путем разрыва фазных проводов (рис. 7.4, справа). В двух последних случаях следует пользоваться средствами защиты, чтобы не попасть под действие тока.

2. Оценить состояние пострадавшего, характер и тяжесть травм, определить наличие угрозы для жизни и последовательность мероприятий по оказанию помощи.

3. Осуществить необходимые мероприятия первой помощи (восстановить проходимость дыхательных путей, произвести искусственное дыхание и внешний массаж сердца, остановить кровотечение, зафиксировать место перелома, наложить повязку).

Основными мерами по спасению пострадавшего при тяжелых электрических травмах являются:

искусственное дыхание – резкое вдыхание воздуха пострадавшему каждые 5…6 секунд по схеме «рот в рот» или «рот в нос».

массаж сердца – ритмичное надавливание на переднюю стенку грудной клетки пострадавшего для искусственной поддержки кровообращения. Нажатия делаются примерно один раз в секунду.

Искусственное дыхание и непрямой массаж сердца следует проводить до прибытия скорой медицинской помощи или до появления явных признаков оживления (появление самостоятельного дыхания, наличие пульса). Имели место случаи, когда пострадавшие оживали через несколько часов, в течение которых непрерывно оказывалась помощь.

7.5. Контакт токоведущих частей с землей

При замыкании на землю токоведущих частей электрического оборудования имеет место растекание тока. В результате на поверхности земли возникает электрический потенциал, который создает опасность шагового напряжения для человека (рис. 7.5).

Шаговое напряжение – напряжение между двумя точками поверхности на расстоянии человеческого шага, на которых человек стоит одновременно.clip_image012

Рис. 7.5 – Шаговое напряжение

Величина шагового напряжения зависит от силы тока в проводнике, сопротивления грунта в месте замыкания и расстояния до него, а также длины человеческого шага. Точки поверхности, равноудаленные от места замыкания, имеют идентичный электрический потенциал, то есть эквипотенциальные поверхности имеют форму концентрических окружностей.

Под действием шагового напряжения ток идет относительно безопасным путем «нога-нога», но может вызвать судороги ног или падение, которое приводит к образованию других путей тока и росту напряжения шага.

Тяжесть поражения шаговым напряжением зачастую объясняется незнанием элементарных правил поведения в данном случае. Если нужно выйти из зоны напряжения шага или войти в нее для оказания первой помощи, это следует делать маленькими шагами, не превышающими длину стопы. Запрещается приближаться к месту замыкания на землю ближе, чем на 4 м в закрытых помещениях и на 8 м – на открытой местности.

Самостоятельная работа № 7

РАСЧЕТ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ ДЛЯ УСТАНОВОК С НАПРЯЖЕНИЕМ ДО 1000 В

Цель работы: освоить алгоритм расчета защитного заземления для электрических установок напряжением до 1 000 В.

Задача 1. Методом коэффициентов использования провести расчет защитного заземления электрической установки до 1000 В, выполненного уголковым прокатом № 5 длины l = 3 м с глубиной заложения h = 0,8 м в глинистой почве.

Решение

Среднегодовая низкая температура в Луганской области составляет -5°С, тогда по Приложению Т находим коэффициент сезонности для стержневых заземлителей

φ = 1,3.

По табл. 7.1 определяем удельное сопротивление грунта в месте установки заземлителей

ρгр = 40 Ом·м.

Расчетное удельное сопротивление грунта в месте установки заземлителей находим по формуле

clip_image014Ом·м.

По сортаменту прокатных профилей находим ширину полки равностороннего уголка № 5

b = 50 мм,

тода диаметр заземлителя

d = 0,95·b = 0,95·50 = 47,5 мм = 0,0475 м.

Таблица 7.1 – Удельное электрическое сопротивление грунтов ρгр

Тип грунта

Расчетное значение, Ом·м

Возможные пределы, Ом·м

Глина

40

8…70

Суглинок

100

40…150

Песок

700

400…700

Супесок

300

150…400

Торф

200

Чернозем

20

9…53

Садовая земля

40

30…60

clip_image016Находим расстояние t от поверхности земли до середины заземлителя (рис. 7.6)

clip_image018(м).

Рис. 7.6 – Схема вертикального заземлителя

Определяем сопротивление растекания тока в земле одного вертикального заземлителя по формуле

clip_image020 Допустимое значение сопротивления защитного заземления (согласно Приложения С) для установок напряжением до 1000 В принимаем равным

Rнорм = 4 (Ом),

тогда ориентировочное количество вертикальных заземлителей

clip_image022

Расстояния между заземлителями берем одинаковые и равные

а = 3 м,

а отношение расстояния между заземлителями к их длине

clip_image024

Из Приложения Е по найденому коэффициенту К определяем коэффициент использования вертикальних электродов

ηв = 0,74.

Окончательное число вертикальних заземлителей

clip_image026

Окончательно принимаем п = 5 электродов.

Длину горизонтального заземлителя, соединяющего расположенные в ряд вертикальные заземлители, находим по формуле

clip_image028м.

Горизонтальный заземлитель выполняем в виде стальной ленты толщины b1 = 30 мм, проложенной на глубине h1 = 80 см. Сопротивление горизонтального заземлителя

clip_image030Ом.

Коэффициент использования ηг горизонтального заземлителя при расположении в ряд вертикальных заземлителей определяем по табл. 7.2

Таблица 7.2 – Коэффициент использования горизонтального заземлителя

Коэффициент К

Количество заземлителей в ряду

4

10

20

30

1

0,77

0,62

0,42

0,31

2

0,89

0,75

0,56

0,46

3

0,92

0,82

0,68

0,58

В нашем случае К = 1 и п = 5, по этому приблизтельно получаем

ηг = 0,77.

Тогда общее сопротивление заземляющего устройства

clip_image032Ом.

Полученное значение сопротивления искусственного заземлителя не превышает допустимого значения сопротивления защитного заземления по ПУЭ

R < Rнорм = 4 Ом,

поэтому заземляющее устройство расчитано верно.

kursak.net


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.