Для чего нужен дроссель


Конструкция и принцип работы

Прежде всего поговорим о том, из чего состоит данный элемент цепи и как он работает. На схемах обозначение дросселя следующее:

Условное обозначение

Внешний вид изделия может быть таким, как на фото:

Катушка индуктивности фото

Это катушка из провода намотанного на сердечник с магнитопроводом, или без корпуса в случае высоких частот. Похож на трансформатор только с одной обмоткой. Краткий экскурс в физику, ток в катушке не может мгновенно измениться. Проведем мысленный эксперимент — у нас есть источник переменного тока, осциллограф, дроссель.


Условный стенд

Во время начала полу волны мы наблюдаем нарастание тока с запозданием, это вызвано индуцированием магнитного потока в сердечнике. Происходит постепенное нарастание тока в обмотках, когда с источника переменного тока сигнал уходит на спад, мы наблюдаем спад тока в дросселе, опять же с некоторым опозданием, поскольку магнитное поле в магнитопроводе продолжает толкать ток в катушке и не может быстро изменить свое направление. Получается в какой-то момент ток из внешнего источника противодействует току, наведенному магнитопроводом дросселя. В цепях переменного тока назначение дросселя — выступать ограничителем или индуктивным сопротивлением.

Для постоянного тока данный элемент схемы не является сопротивлением или регулирующим элементом. Этот эффект используют для устройств, в электрических цепях, где нужно ограничить ток до нужной величины, при этом избежать излишней громоздкости и выделения тепла.

Интересное пояснение по данному вопросу вы также можете просмотреть на видео:


Источник: samelectrik.ru

Зачем вообще нужны сетевые дроссели? Это — очень важный элемент силовой схемы мощного статического преобразователя, который служит буфером между питающей сетью и самим преобразователем. Сетевой дроссель выполняет несколько очень существенных функций: он повышает коэффициент мощности статического преобразователя в среднем на 30…35 %, не прибегая к сложным схемотехническим ухищрениям; подавляет высшие гармоники входного тока преобразователя, возникающие в неуправляемом выпрямителе; выравнивает линейные напряжения на входе преобразователя при некотором перекосе фаз

Для чего нужен дроссель

Рис. 2.4.6. Внешний вид некоторых типовых дросселей фирмы «Elhand»

питающего напряжения; подавляет быстрые изменения напряжения на входе преобразователя вследствие коммутационных воздействий стороннего оборудования на питающую сеть; снижает скорость нарастания токов короткого замыкания. Тот, кто мало-мальски сталкивался с силовой техникой, знает, что питающее сетевое напряжение под влиянием работы высокочастотных преобразователей, потребляющих ток от сети в импульсном режиме, подвержено искажениям. Сетевые дроссели призваны гасить эти помехи и снижают риск попадания гармоник в питающую сеть. Более того, если в качестве силовых ключей используются тиристоры, сетевые дроссели гарантированно обеспечивают защиту их от лавинного нарастания тока проводимости вплоть до момента переключения [37].

где 1{ — ток основной гармоники;

/5, /7, /и — токи гармоник высших порядков.


Для чего нужен дроссель

Мы уже говорили ранее, что любой статический преобразователь характеризуется определенным значением коэффициента мощности, связанным с его схемотехническим построением. За счет чего снижается коэффициент мощности? За счет появления реактивной составляющей потребляемой мощности и увеличения потребления полной мощности по сравнению с активной. В потребляемом от сети токе появляются, кроме основной, высшие гармоники — 5, 7, 11, 13, 17, 19. В соответствии с известным соотношением коэффициент мощности:

Нетрудно заметить, что чем больше действующие значения высших гармоник тока, тем меньше коэффициент мощности, и тем больше влияние статического преобразователя на питающую сеть. Однако здесь есть одно важное обстоятельство, которое нас выручает: реактивное сопротивление, присутствующее в питающей сети (это могут быть различные реактансы трансформаторов питающих подстанций), может существенно подавлять высшие гармоники. К сожалению, трансформаторных реактансов далеко не всегда хватает для эффективного подавления гармоник, поэтому приходится для преобразователей эти реактансы увеличивать, искусственно вводя сетевые дроссели.


Выбрать соответствующий дроссель фирмы «Elhand» для установки в разрабатываемый преобразователь достаточно просто. Главным условием выбора является соотношение индуктивности подводящих проводов (с учетом реактанса питающего генератора или трансформатора) Ls и собственно индуктивности сетевого дросселя Ld

Для чего нужен дроссель

где UT — величина напряжения на силовом приборе в момент его коммутации, В;

diT/dt — крутизна нарастания тока проводимости силового прибора, А/с.

Оценить параметры UT и diT/dt в случае использования IGBT приборов несложно — эти данные можно получить из анализа величины выпрямленного питающего напряжения, а также скорости нарастания тока при переключении, который определяется характером нагрузки преобразователя (активная, индуктивная, комбинированная) и скорости коммутации IGBT приборов.

Значительно сложнее оценить значение Ls, так как заранее неизвестно, как будет питаться преобразователь, от какого источника, какой длины окажутся питающие проводники, какой будет их длина и конфигурация. Поэтому фирма «Elhand» рекомендует в любом случае устанавливать в разрабатываемый преобразователь сетевой дроссель, ориентируясь по величине тока, потребляемой от сети. С этой целью, для облегчения такого выбора, специалисты «Elhand» разработали типовой ряд трехфазных дросселей типа ED3N. Некоторые типономиналы из этого ряда приведены в табл. 2.4.1.

Основным проектировочным критерием здесь является допустимое падение напряжения на дросселе в нагруженном состоянии, которое не должно превышать нескольких процентов от номинального напряжения сети:


Для чего нужен дроссель

где UL — падение напряжения на дросселе;

/— частота напряжения сети;


Тип

Параметры, мГн/А

Длина, мм

Ширина, мм

Высота, мм

Масса, кг

ED3N

8,5/3,3

125

85

105

2,3 ,

0,5/70

230

170

200

18

0,15/150

240

190

207

   24_

0,05/400

340

200

295

47

0,03/800

360

245

360

78

Ld — проектная индуктивность дросселя;

/ — номинальный ток обмотки дросселя.

Следует отметить, что фирма «Elhand» выпускает также моторные трехфазные дроссели ряда ED3S, предназначенные для обеспечения непрерывности протекания тока в обмотках двигателей [38], а также однофазные дроссели компенсации гармоник частоты 100 Гц и 300 Гц типа EDlN и EDlW. Трехфазные моторные дроссели типа ED3S, в принципе, можно использовать в качестве сетевых, а однофазные типа EDlN и EDlW — в качестве сглаживающих элементов сетевых LC-фильтров.

Конечно, дроссели как таковые, являются достаточно тривиальными элементами, которые можно изготавливать в условиях даже очень небольших производственных фирм. Почему же все-таки рекомендуется ориентироваться на покупные дроссели? Ответ очень прост: действительно, теоретически разработать и изготовить любой дроссель несложно, однако не будем забывать о трудозатратах на изготовление, о технологической стороне вопроса, о длительных сроках эксплуатации преобразовательной техники, которая зачастую вынуждена функционировать в жестких климатических и механических условиях среды.


оссели промышленного изготовления, в частности, поставляемые фирмой «Elhand», полностью отвечают этим требованиям: они производятся фирмой со специализированной отработанной технологией, имеют низкую стоимость, прочны механически, пропитаны вакуумным способом (что позволяет сохранить высокое сопротивление изоляции в условиях повышенной влажности), оснащаются удобными для монтажа клеммами, оптимизированы по габаритам. К сожалению, на момент выхода этой книги из печати полные отечественные аналоги таких дросселей отсутствовали, что ставит в затруднительное положение отечественных разработчиков спецтехники.

Но вернемся к вопросу использования сетевых дросселей для ограничения пусковых токов. Автором книги с помощью компьютерного моделирования в пакете MicroCAP 7.0 была проанализирована реальная схема входной части статического преобразователя мощностью

12 кВт, с сетевым дросселем ED3N и дросселями подавления пульсации 300 Гц типа EDlW, показанная на рис. 2.4.7.

Для чего нужен дроссель

Рис. 2.4.7. Схема входного звена с использованием дросселей «Elhand»

Дроссель L1 — сетевой, дроссели L2, L3 входят в состав LC-фильтpa.


одный мост типа 160MT120KB (производитель — «International Rectifier»), емкостная часть фильтра составлена из 12 конденсаторов типа B43586-A5687-Q (производитель — «Epcos») с эквивалентной емкостью 1020 мкФ. Фильтр радиопомех, в силу его незначительного влияния на процесс ограничения сверхтоков, из модели исключен. Результаты моделирования показаны на рис. 2.4.8. Из представленного графика видно, что пусковой ток, протекающий через диоды VDl…VD6, не превышает допустимого для диодов, а переходный процесс длится не более 10 мс, что не приведет к срабатыванию установленного на входе преобразователя автоматического выключателя типа АК-50Б (максимальная токовая защита) с номинальным током 25 А и уставкой 121н.

Для чего нужен дроссель

Рис. 2.4.8. Результаты моделирования пусковых токов

Таким образом, сетевой дроссель L1 выполняет две функции: в момент включения он совместно с дросселями L2 и L3 защищает диодный мост от возникновения сверхтоков, а в режиме продолжительной работы осуществляет подавление высокочастотных гармоник.

Источник: Семенов Б. Ю. Силовая электроника: профессиональные решения. — М.: СОЛОН-ПРЕСС, 2011. — 416 c.: ил.

  • Предыдущая запись: 06 использовании готовых силовых блоков
  • Следующая запись: Велосипедная электростанция
  • Источник: nauchebe.net

    Конструкция


    Принципиальная схема дросселя представляет собой намотанный провод на ферромагнитный сердечник. Отсюда становится понятно, что такое дроссель.  Электроэлемент напоминает трансформатор, но имеет одну обмотку.

    Принцип работы

    Принцип работы электрического дросселя заключается в сдерживании резкого нарастания тока и сглаживании линии падения напряжения. Как работает электрический дроссель, видно на примере люминесцентного светильника. Чтобы газ в колбе не сгорел, а постепенно разогревался, катушка постепенно доводит ток до номинального значения.

    Входящий ток «тратит» свою силу на индукцию магнитного поля вокруг катушки. Когда магнитный поток достигнет своего максимума, ток начнёт проходить беспрепятственно через катушку.

    Устройство индуктивной катушки

    Прибор подавляет происходящие в переменном токе пульсации. В электрических цепях проходит электричество разной частоты, поэтому для подавления помех применяют низкочастотные и высокочастотные катушки.

    Низкочастотные устройства

    Катушки имеют большие размеры. Провод в них намотан вокруг сердечника из трансформаторной стали. В аппаратуре, питание которой обеспечивается мощным напряжением, устанавливают дроссельные блоки низкой частоты. Индуктивные катушки в каскадном исполнении противостоят резким изменениям характеристик тока.

    Что такое электрическое дросселирование, знает каждый электрик. На промышленных предприятиях без этого не обходится ни одно электрооборудование.

    Высокочастотные элементы

    Высокочастотный электронный дроссель гораздо меньше низкочастотного собрата. Катушка может быть выполнена из однослойной или многослойной намотки. Для высокочастотных дросселей применяют ферритовые сердечники или стержни из магнитного диэлектрического материала.

    Область применения


    Катушки индуктивности используют, как:

    • токоограничители;
    • катушки насыщения;
    • фильтры сглаживания;
    • магнитные усилители (МУ);
    • резонансные контуры;
    • электронный дроссель в радио,- и компьютерных схемах.

    Токоограничители

    Для чего нужны дроссели в качестве токоограничителей, можно узнать из следующего списка:

    1. Катушки без сердечников имеют маленькое сопротивление, поэтому они эффективно ограничивают величину тока короткого замыкания. Даже малейшее уменьшение мощности дуги короткого замыкания имеет большое значение.
    2. Во время пуска мощных электродвигателей включаются в работу катушки индуктивности. После набора максимальных оборотов аппаратом катушка отключается пусковым устройством.
    3. В лампах дневного света электрические дроссели препятствуют резкому включению тока максимальной величины. В результате происходит постепенный разогрев ртути и переход её в парообразное состояние. У ламп ДРЛ 250 дроссели находятся внутри колбы. Дроссели ламп ДНАТ находятся внутри кожуха отдельно от колбы.

    Катушки насыщения

    После насыщения магнитного поля величина сопротивления катушки перестаёт расти. Ранее катушки насыщения составляли основу стабилизаторов напряжения. Сегодня их заменили электронные системы.

    Фильтры сглаживания

    Что это такое в электронике дроссель? Это фильтры сглаживания, которые выпрямляют линию пульсации переменного напряжения. В результате обеспечивается стабильность работы электронной аппаратуры. Такой фильтр выглядит в виде бочонка на USB-кабеле. Внутри него находится одновитковая катушка. В электронных платах используют дроссели марки r68.

    Магнитные усилители (МУ)

    Они были включены в систему управления электромоторов. Магнитная индукция в сердечнике насыщалась намагничиванием стали сердечника. В пускателе использовалось сразу несколько обмоток. Сегодня вместо магнитных пускателей применяют тиристорные системы.

    Резонансные контуры

    Резонансную схему применяют в тюнерах. Индуктивная катушка параллельно с конденсатором объединена в единую систему, что составляет резонансный контур. Схема обеспечивает малое сопротивление с фиксированной частотой.

    Электронный дроссель в радио,- и компьютерных схемах

    Катушки индуктивности типа r68 применяют в монтажных платах с целью выделения токов определённой частоты. Также они исполняют роль защиты, как от внешних, так и внутренних помех частей схемы.

    Основные характеристики

    К основным характеристикам относятся следующие показатели:

    • величина индукции;
    • потеря сопротивления;
    • потери сердечника;
    • потери из-за вихревых токов;
    • паразитная ёмкость;
    • ТКИ (температурный коэффициент индуктивности).

    Разновидности дросселей

    Их различают по назначению и способу установки. Однофазные катушки индуктивности используют в лампах дневного света, питающихся от сети 220 в. Трёхфазные устройства работают в схемах питания напряжением 380 вольт для дуговых ртутных ламп и дуговых натриевых трубок.

    Встраиваемые модели монтируют в корпусе прибора. В этом случае устройства защищены от пыли и влаги. В закрытом виде устройства помещены в специальных коробах.

    Электронные аналоги

    На смену индукционным катушкам в их традиционном исполнении пришли полупроводниковые радиодетали: транзисторы, тиристоры.

    Следует заметить. Для высокочастотных приборов транзисторы не используют.

    Маркировка малогабаритных устройств

    Устройства для электронных плат имеют размеры не более 2-3 см. Нанести читаемую маркировку в цифровом или буквенном обозначении практически невозможно. Для этого применяют цветовую маркировку электронных дросселей. Дроссели на схемах изображают в виде спирали с параллельной чертой.

    На цилиндрический корпус радиодетали наносят несколько цветных колец. Первые две полосы (слева направо) означают величину индуктивности, измеряемую в мГенри. Третья полоса указывает множитель, на который нужно умножить число индуктивности. Четвёртое кольцо выражает допустимое отклонение в % от номинала. Если его не окажется на корпусе детали, то принято считать допуск в пределах 20%.

    Например, цвета колец расположились в следующем порядке: коричневый, жёлтый, оранжевый и серебристый. Это означает величину индуктивности 14 mH, где допуск отклонения составляет 10%.

    Технический прогресс не стоит на месте. С каждым годом появляются новые аналоги устаревших моделей. Разработка новых технологий во всех сферах деятельности человека требует совершенствования радиодеталей, в том числе дросселей.

    Источник: amperof.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.