Освещенность определение

Общие сведения

Разница между яркостью и освещенностью

Единицы измерения

Фотометр

Освещенность и безопасность на рабочем месте

Освещенность в фото- и видеосъемке

Камеры, предназначенные для съемки в условиях слабой освещенности

Экспозиционное число

Взаимосвязь экспозиционного числа с яркостью и освещенностью объекта съемки

Определение экспозиции по яркости света, отраженного от объекта съемки

Определение экспозиции по освещенности объекта съемки (падающий свет)

Освещенность и музейные экспонаты

Освещенность в других сферах деятельности

Общие сведения

Освещенность — это световая величина, которая определяет количество света, попадающего на определенную площадь поверхности тела. Она зависит от длины волны света, так как человеческий глаз воспринимает яркость световых волн разной длины, то есть разного цвета, по-разному. Освещенность вычисляют отдельно для волн разной длины, так как люди воспринимают свет с длиной волны в 550 нанометров (зеленый), и цвета, находящиеся рядом в спектре (желтый и оранжевый), как самые яркие. Свет, образуемый более длинными или короткими волнами (фиолетовый, синий, красный) воспринимается, как более темный. Часто освещенность связывают с понятием яркости.


Освещенность обратно пропорциональна площади, на которую падает свет. То есть, при освещении поверхности одной и той же лампой, освещенность большей площади будет меньше, чем освещенность меньшей площади.

Разница между яркостью и освещенностью

В русском языке слово «яркость» имеет два значения. Яркость может означать физическую величину, то есть характеристику светящихся тел, равную отношению силы света в определенном направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную этому направлению. Также она может определять более субъективное понятие об общей яркости, которое зависит от многих факторов, например особенностей глаз того, кто смотрит на этот свет, или количества света в окружающей среде. Чем меньше света вокруг, тем ярче кажется источник света. Чтобы не путать эти два понятия с освещенностью стоит запомнить, что:

яркость характеризует свет, отраженный от поверхности светящегося тела или посылаемый этой поверхностью;

освещенность характеризует падающий на освещаемую поверхность свет.


В астрономии яркость характеризует как излучающую (звезды), так и отражающую (планеты) способность поверхности небесных тел и измеряется по фотометрической шкале звездных яркостей. Причем, чем ярче звезда, тем меньше величина ее фотометрической яркости. Самые яркие звезды имеют отрицательную величину звездной яркости.

Единицы измерения

Освещенность чаще всего измеряют в единицах СИ люксах. Один люкс равен одному люмену на квадратный метр. Те, кто предпочитают метрическим единицам имперские, используют для измерения освещенности фут-канделу. Часто ее применяют в фотографии и кино, а также в некоторых других областях. Фут в названии используется потому, что одна фут-кандела обозначает освещенность одной канделой поверхности в один квадратный фут, которую измеряют на расстоянии одного фута (чуть больше 30 см).

Фотометр

Фотометр — это устройство, которое измеряет освещенность. Обычно свет поступает на фотодетектор, преобразуется в электрический сигнал и измеряется. Иногда встречаются фотометры, которые работают по другому принципу. Большая часть фотометров показывают информацию об освещенности в люксах, хотя иногда используются и другие единицы. Фотометры, называемые экспонометрами, помогают фотографам и операторам определить выдержку и диафрагму. Кроме этого фотометры используют для определения безопасной освещенности на рабочем месте, в растениеводстве, в музеях, и во многих других отраслях, где необходимо знать и поддерживать определенную освещенность.

Освещенность и безопасность на рабочем месте


Работа в темном помещении грозит ухудшением зрения, депрессией и другими физиологическими и психологическими проблемами. Именно поэтому многие правила охраны труда включают требования о минимальной безопасной освещенности рабочего места. Измерения обычно проводят фотометром, который выдает конечный результат в зависимости от площади распространения света. Это необходимо для того, чтобы обеспечить достаточную освещенность во всем помещении.

Освещенность в фото- и видеосъемке

В большинстве современных камер имеются встроенные экспонометры, упрощающие работу фотографа или оператора. Экспонометр необходим для того, чтобы фотограф или оператор могли определить, сколько света нужно пропустить на пленку или фотоматрицу в зависимости от освещенности снимаемого объекта. Освещенность в люксах преобразуется экспонометром в возможные комбинации выдержки и диафрагмы, которые потом выбираются вручную или автоматически, в зависимости от того, как настроена камера. Обычно предлагаемые комбинации зависят от настроек в камере, а также от того, что фотограф или оператор хочет изобразить. В студии и на съемочной площадке часто используют внешний или встроенный в камеру экспонометр, чтобы определить, достаточно ли освещения обеспечивают используемые источники света.


Для получения хороших фотографий или видеоматериала в условиях плохого освещения на пленку или фотоматрицу должно попасть достаточное количество света. Этого не трудно добиться с помощью фотоаппарата — нужно только установить правильную экспозицию. С видеокамерами дело обстоит сложнее. Для видеосъемки высокого качества обычно нужно устанавливать дополнительное освещение, иначе видео будет слишком темным или с сильным цифровым шумом. Это не всегда возможно. Некоторые видеокамеры специально разрабатывают для съемки в условиях слабой освещенности.

Камеры, предназначенные для съемки в условиях слабой освещенности

Есть два вида камер для съемок в условиях слабой освещенности: в одних используется оптика более высокого уровня, а в других — более совершенная электроника. Оптика пропускает больше света в объектив, а электроника лучше обрабатывает даже тот малый свет, что попадает в камеру. Обычно именно с электроникой связаны проблемы и побочные эффекты, описанные ниже. Светосильная оптика позволяет снять видео более высокого качества, но ее недостатки — дополнительный вес из-за большого количества стекла и значительно более высокая цена.

Кроме этого, на качество съемки влияет установленная в видео- и фотокамерах одноматричная или трехматричная фотоматрица. В трехматричной матрице весь поступающий свет делится с помощью призмы на три цвета — красный, зеленый и синий. Качество изображения в темных условиях лучше в трехматричных камерах, чем в одноматричных, так как при прохождении через призму рассеивается меньше света, чем при его обработке фильтром в одноматричной камере.


Существует два основных вида фотоматриц — на приборах с зарядовой связью (ПЗС) и выполненные на основе КМОП-технологии (комплементарный металлооксидный полупроводник). В первом обычно установлен датчик, на который поступает свет, и процессор, который обрабатывает изображение. В КМОП-матрицах датчик и процессор обычно объединены. В условиях недостаточного освещения камеры с ПЗС-матрицами обычно дают изображение лучшего качества, а достоинства КМОП-матриц в том, что они дешевле и потребляют меньше энергии.

Размер фотоматрицы также влияет на качество изображения. Если съемка происходит с малым количеством света, то чем больше матрица — тем лучше качество изображения, а чем меньше матрица — тем больше проблем с изображением — на нем появляется цифровой шум. Большие матрицы устанавливают в более дорогих камерах, и для них необходима более мощная (и, как следствие — тяжелая) оптика. Фотокамеры с такими матрицами позволяют снимать профессиональное видео. Например, в последнее время появился ряд фильмов полностью снятых на такие камеры как Canon 5D Mark II или Mark III, у которых размер матрицы — 24 x 36 мм.

Производители обычно указывают, в каких минимальных условиях может работать камера, например при освещенности от 2 люкс. Эта информация не стандартизирована, то есть производитель решает сам, какое видео считать качественным. Иногда две камеры с одним и тем же показателем минимальной освещенности дают разное качество съемки. Альянс отраслей электронной промышленности EIA (от английского Electronic Industries Association) в США предложил стандартизированную систему определения светочувствительности камер, но пока он используется только некоторыми производителями и не принят повсеместно. Поэтому часто, чтобы сравнить две камеры с одинаковыми световыми характеристиками, нужно испробовать их в действии.


На данный момент любая камера, даже рассчитанная на работу в условиях низкой освещенности, может давать картинку низкого качества, с высокой зернистостью и послесвечением. Чтобы решить некоторые из этих проблем возможно предпринять следующие шаги:

  • Снимать на штативе;
  • Работать в ручном режиме;
  • Не использовать режим переменного фокусного расстояния, а вместо этого перенести камеру как можно ближе к объекту съемки;
  • Не использовать автоматическую фокусировку и автоматический выбор ISO — при большей величине ISO увеличивается шум;
  • Снимать с выдержкой в 1/30;
  • Использовать рассеянный свет;
  • Если нет возможности установить дополнительное освещение, то использовать весь возможный свет вокруг, например уличные фонари и лунный свет.

Несмотря на отсутствие стандартизации о чувствительности камер к освещенности, для ночной съемки все равно лучше выбрать камеру, на которой указано, что она работает при 2 люкс или ниже. Также следует помнить, что даже если камера действительно хорошо снимает в темных условиях, ее чувствительность к освещенности, указанная в люксах — чувствительность к свету, направленному на объект, но камера на самом деле получает свет, отраженный от объекта. При отражении часть света рассеивается, и чем дальше камера от объекта — тем меньше света попадает в объектив, что ухудшает качество съемки.

Экспозиционное число


Экспозиционное число (англ. Exposure Value, EV) — целое число, характеризующее возможные комбинации выдержки и диафрагмы в фото, кино- или видеокамере. Все сочетания выдержки и диафрагмы, при которых на пленку или светочувствительную матрицу попадает одинаковое количество света, имеют одинаковое экспозиционное число.

Несколько комбинаций выдержки и диафрагмы в камере при одном и том же экспозиционном числе позволяют получить примерно одинаковое по плотности изображение. Однако изображения при этом будут различными. Это связано с тем, что при разных значениях диафрагмы глубина резко изображаемого пространства будет различной; при разных значениях выдержки изображение на пленке или матрице будет находиться разное время, в результате чего оно будет в разной степени смазано или совсем не смазано. Например, сочетания f/22 — 1/30 и f/2.8 — 1/2000 характеризуются одним и тем же экспозиционным числом, но первое изображение будет иметь большую глубину резкости и может оказаться смазанным, а второе будет иметь малую глубину резкости и, вполне возможно, совсем не будет смазанным.


Бóльшие значения EV используются, если объект съемки лучше освещен. Например, экспозиционное число (при светочувствительности ISO 100) EV100 = 13 можно использовать при съемке ландшафта, если на небе имеется облачность, а EV100 = –4 годится для съемки яркого полярного сияния.

По определению,

EV = log2 (N2/t)

или

2EV = N2/t,   (1)

    где

  • N — диафрагменное число (например: 2; 2,8; 4; 5,6, и т. д.)
  • t — выдержка в секундах (например: 30, 4, 2, 1, 1/2, 1/4, 1/30, 1/100, и т. д.)

Например, для комбинации f/2 и 1/30, экспозиционное число

EV = log2(22/(1/30)) = log2(22 × 30) = 6.9 ≈ 7.

Это число может быть использовано для съемки ночных сцен и освещенных витрин. Комбинация f/5.6 с выдержкой 1/250 дает экспозиционное число

EV = log2 (5.62/(1/250)) = log2 (5.62 × 250) = log2 (7840) = 12.93 ≈ 13,

которое можно использовать для съемки пейзажа с облачным небом и без теней.

Следует отметить, что аргумент логарифмической функции должен быть безразмерным. В определении экспозиционного числа EV игнорируется размерность знаменателя в формуле (1) и используется только численное значение выдержки в секундах.

Взаимосвязь экспозиционного числа с яркостью и освещенностью объекта съемки

Определение экспозиции по яркости света, отраженного от объекта съемки

При использовании экспонометров или люксметров, измеряющих отраженный от объекта съемки свет, выдержка и диафрагма связаны с яркостью объекта съемки следующим соотношением:

N2/t = LS/K   (2)

Здесь


  • N — диафрагменное число;
  • t — выдержка в секундах;
  • L — усредненная яркость сцены в канделах на квадратный метр (кд/м²);
  • S — арифметическое значение светочувствительности (100, 200, 400, и т. д.);
  • K — калибровочный коэффициент экспонометра или люксметра для отраженного света; Canon и Nikon используют K = 12.5.

Из уравнений (1) и (2) получаем экспозиционное число

EV = log2 (LS/K)

или

2EV = LS/K

При K = 12,5 и ISO 100, имеем следующее уравнение для яркости:

2EV = 100L/12.5 = 8L

L = 2EV/8 = 2EV/23 = 2EV–3.

Эта формула используется в конвертере для преобразования экспозиционного числа в кд/м² и наоборот.

Определение экспозиции по освещенности объекта съемки (падающий свет)

При использовании экспонометров или люксметров, измеряющих падающий на объект съемки свет, выдержка и диафрагма связаны с освещенностью объекта съемки следующим соотношением:

N2/t = ES/C,

где


  • N — диафрагменное число;
  • t — выдержка в секундах;
  • E — усредненная освещенность сцены, измеренная в люксах;
  • S — арифметическое значение светочувствительности (100, 200, 400, и т. д.);
  • C — калибровочный коэффициент экспонометра или люксметра для отраженного света; обычно используется C = 250.

При C = 250 and ISO 100, получаем следующую зависимость экспозиционного числа от освещенности объекта съемки:

2EV = ES/C = 100/250 E = 0.4 × E

E = 2.5 × 2EV.

Эта формула используется в конвертере освещенности для преобразования экспозиционного числа в люксы и наоборот.

Следует отметить, что если посмотреть на таблицу соответствия экспозиционных чисел и яркости (для ISO 100 и K = 12.5) и освещенности (для ISO 100 и C = 250) объекта съемки, можно подумать, что она допускает прямое преобразование кд/м² в люксы и наоборот. Однако это не так, поскольку в люксах измеряется освещенность, то есть, количество света, падающее на поверхность, в то время как канделы на кв. метр используются для измерения яркости объекта, то есть, отраженного от поверхности объекта света. Количество отраженного света, то есть, яркость объекта, определяется свойствами поверхности объекта и ее текстурой. Например, поверхность, покрытая черным бархатом, может быть освещена очень ярким источником света, но при этом иметь очень низкую яркость. В то же время, белый автомобиль с глянцевой поверхностью может иметь большую, чем черный бархат, яркость при более слабом освещении. Фотографы знают, как трудно снять модель в черном бархатном платье на фоне белого автомобиля и наоборот, модель в белом свадебном платье на фоне черного автомобиля.

Пример условий освещения, при которых это экспозиционное число можно использовать

Конвертер яркости Конвертер освещённости Пример условий освещения, при которых это экспозиционное число можно использовать
EV кд/м² fL лк фут·кд
-4 0,008 0,0023 0,156 0,015 Яркое полярное сияние
-3 0,016 0,0046 0,313 0,029 Пейзаж при освещении лунным светом, полная луна
-2 0,031 0,0091 0,625 0,058 Пейзаж при освещении лунным светом, полная луна
-1 0,063 0,018 1,25 0,116 Пейзаж при освещении лунным светом, полная луна, легкая облачность
0 0,125 0,036 2,5 0,232 Плохо освещенное помещение
1 0,25 0,073 5 0,465 Здания вдали или пейзаж с силуэтами на фоне неба при слабом
2 0,5 0,146 10 0,929 Здания вдали при искусственном освещении
3 1 0,292 20 1,86 Архитектура при искусственном освещении
4 2 0,584 40 3,72 Рождественская елка или улицы, освещенные фонарями
5 4 1,17 80 7,43 Автомобили ночью
6 8 2,33 160 14,9 Витрины ночью
7 16 4,67 320 29,7 Ночные улицы
8 32 9,34 640 59,5 Ночные улицы с ярким искусственным освещением
9 64 18,7 1280 119 Пожары, костры, спорт при искусственном освещении
10 128 37,4 2560 238 Неоновая реклама
11 256 74,7 5120 476 Пейзажи сразу после заката
12 512 149 10240 951 Пейзажи во время заката или при сильной сплошной облачности
13 1024 299 20480 1903 Пейзажи перед закатом
14 2048 598 40960 3805 Пейзажи при солнечном свете и сильно загрязненной атмосфере (дымом пожаров или выхлопными газами)
15 4096 1195 81920 7611 Пейзажи при хорошем солнечном освещении
16 8192 2391 163840 15221 Снежные пейзажи или пустыня при солнечном освещении

Подробнее об экспозиционном числе.

Освещенность и музейные экспонаты

Скорость, с которой ветшают, выцветают и иным образом портятся музейные экспонаты, зависит от их освещенности и от силы источников света. Сотрудники музеев измеряют освещенность экспонатов, чтобы убедиться, что на экспонаты попадает безопасное количество света, а также и для того, чтобы обеспечить достаточно света для посетителей, чтобы они могли хорошо рассмотреть экспонат. Освещенность можно измерить фотометром, но во многих случаях это бывает нелегко, так как он должен находиться как можно ближе к экспонату, а для этого часто необходимо убрать защитное стекло и выключить сигнализацию, а также получить на это разрешение. Чтобы облегчить задачу, работники музея часто пользуются фотоаппаратами как фотометрами. Конечно, это не замена точным измерениям в ситуации, где найдена проблема с количеством света, который попадает на экспонат. Но для того, чтобы проверить, нужна ли более серьезная проверка с фотометром, фотоаппарата вполне достаточно.

Экспозиция определяется фотоаппаратом на основе показаний об освещенности, и, зная экспозицию, можно найти освещенность, проделав ряд несложных вычислений. В этом случае сотрудники музеев пользуются либо формулой, либо таблицей с переводом экспозиции в единицы освещенности. Во время вычислений не стоит забывать, что камера поглощает часть света, и учитывать это в конечном результате.

Освещенность в других сферах деятельности

Садоводы и растениеводы знают, что растения нуждается в свете для фотосинтеза, и им известно, сколько света необходимо каждому растению. Они измеряют освещенность в теплицах, садах и огородах, чтобы убедиться в том, что каждое растение получает достаточное количество света. Некоторые используют для этого фотометры.

Литература

Автор статьи: Kateryna Yuri

www.translatorscafe.com

Понятие освещенности

Световой поток измеряется в специальных лабораторных условиях и самопроизвольно его определить невозможно. Поэтому СНиП учитывает величину освещенности, которую, в отличие от светового потока, каждый может измерить самостоятельно. Она представляет собой показатель отношения светового потока, измеряемого в люменах, к площади поверхности, на которую попадают фотоны. Угол падения при этом должен равняться 90°. Единица измерения освещенности — люкс (lux).

Давно уже установлена зависимость психологического и физического состояний человека от света. Если при слабом освещении происходит угнетение мозговых процессов, то при ярком свете они возбуждаются. Но в любом случае сетчатка глаза и ресурсы организма изнашиваются. При проектировании осветительных приборов определяют коэффициент запаса (КЗ), который должен учитывать вероятный спад освещенности установки. Для искусственного света в показателе предусматривается уменьшение яркости по причине износа оптических компонентов устройства и их естественного загрязнения. Коэффициент естественной освещенности снижается вследствие изменения отражающих свойств окружающих предметов.

Измерение освещенности проводится на рабочих местах вместе с определением уровня загрязненности, звуковых колебаний, электромагнитного излучения, а на некоторых производствах и гамма излучения. Важность знания этих параметров трудно переоценить при создании оптимальных условий труда, и все они соответствуют санитарным правилам и нормам. Например, освещенность должна быть:

  • в рабочем кабинете — 300 лк;
  • в офисе для постоянной работы с компьютером — 500 лк;
  • для технических и конструкторских бюро — 750 лк.

При наличии в помещении естественной подсветки уровень искусственного фона можно снижать.

Приборы для определения уровня освещенности и методика его определения

Наименование прибора похоже на название величины, которую он устанавливает, — люксметр. Принцип работы малогабаритного переносного устройства напоминает работу фотометра. Поток излучения, падая на фоточувствительный элемент полупроводника, отрывает электроны, которые начинают упорядоченно двигаться. Таким образом, замыкается электрическая цепь. Причем величина тока прямо пропорциональна интенсивности освещения фотоэлемента, что имеет свое отражение на шкале аналогового люксметра. Сегодня приборы со стрелками практически исчезли, их заменили цифровые. Они оснащены жидкокристаллическими дисплеями, у которых сам фоточувствительный датчик расположен в отдельном корпусе, а с дисплеем он соединяется с помощью гибкого провода.

В ходе проведения эксперимента по измерению освещенности прибор устанавливается в горизонтальном положении. Причем в соответствии с требованиями ГОСТа их размещают в разных точках помещения, согласно определенной схеме. В 2012 г. Россия приняла новый стандарт измерения характеристики количества светового потока. В старом понятийном аппарате при измерениях использовались такие термины данной величины, как:

  • минимальная, средняя, максимальная, цилиндрическая;
  • естественная;
  • градиент запаса;
  • относительная эффективность когерентного лучевого потока.

В настоящее время к ним добавлены следующие типы освещения:

  • аварийное;
  • рабочее;
  • охранное;
  • эвакуационное;
  • резервное.

Стандарт подробно описывает все тонкости проведения измерительных исследований.

Замеры осуществляются отдельно по естественной и искусственной иллюминации. В ходе проведения эксперимента нельзя допустить, чтобы хоть малейшая тень падала на прибор, а вблизи был хотя бы 1 источник электромагнитных волн. Все они вносят помехи в работу устройства.

После выполнения необходимых замеров освещенности определяется искомая величина. Она сравнивается с нормативным значением. Затем подводятся итоги о достаточности освещенности территории или помещения. Каждый вид измерительных испытаний оформляется специальным оценочным протоколом, чего требует ГОСТ.

Измерение количества света для светодиодных устройств и примеры в природе

Светодиодные светильники стали очень востребованными благодаря уникальной энергоэффективности. Но светодиоды и их источники питания при освещении выделяют тепло, которое рассеивается с помощью теплопроводящих материалов (алюминий) и конструктивных особенностей (ребер, большой радиаторной площади). Несмотря на кажущееся отсутствие связи между потерями тепла и освещенностью, специалисты всегда учитывают ее при создании новых устройств.

Трудности с работой светодиодных светильников начинаются при эксплуатации в условии повышения температуры более +50°С. Почему измерение освещенности светодиодов и рекомендуют проводить после 2 часов их работы, т. е. после выхода на оптимальный режим. Для исключения появления погрешности проводятся неоднократные замеры в течение рабочей смены. Желательно эти исследования проводить как минимум 1 раз в год. Чтобы при проектировании исключить любые ошибки, закладывают коэффициент снижения освещенности, зависящий от физических характеристик объекта.

Обычно производители LED-устройств дают гарантию по их безупречной работе на 3 года. Все параметры функционирования таких светильников, в том числе, и освещенность, должны соответствовать заявленным значениям. Если условия работы устройств происходят при температуре наружного воздуха свыше 45°С, то измерения освещенности необходимо делать гораздо чаще. Иначе неправильное проектирование и полученные результаты приведут к быстрому падению показателей освещения.

Что касается примеров иллюминации в природе, то на орбите Земли и экваторе в полдень данная величина равняется 135 тыс. люкс. В солнечный день она составляет до 100 тыс. лк, в пасмурный — только 1 тыс. люкс, а вот от Луны всего лишь 0,2 лк. Измерение света на улице на широте Москвы в зимний период показало от 4 до 5 тыс. люкс. В безлунную ночь освещенность в тысячу раз меньше, чем в полнолуние, а при 10-бальной облачности — в 10 тыс. раз меньше. То, в чем измеряется освещенность в помещении и естественных условиях, относится к физическим величинам, входящим в Международную систему единиц.

cdelct.ru

Гипермаркет знаний>>Физика>>Физика 7 класс>>Освещенность

  • Вспомните свои  ощущения,  когда вы входили в темное помещение. Становится  как-то  не  по  себе,  ведь  ничего  не  видно вокруг… Ho  сто­ит  включить  фонарик  —  и  близко  расположенные  предметы  ста­новятся  хорошо  заметными.  Te  же,  что  находятся  где-то  дальше, можно  едва различить  по  контурам.  В таких  случаях  говорят,  что предметы  по-разному  освещены. Выясним,  что  такое  освещенность и  от  чего  она  зависит.


1. Определяем освещенность

От  любого  источника  света  распространяется  световой  поток.  Чем больший  световой поток  упадет  на  поверхность  того  или  иного  тела,  тем лучше  его видно.

  • Физическая  величина,  численно  равная  световому  потоку,  падающему  на  еди­ницу освещенной  поверхности,  называется  освещенностью.

Освещенность  обозначается  символом E и определяется  по формуле:

Формула
где  Ф  — световой поток; S — площадь поверхности,  на которую падает све­товой поток.

В  СИ  за  единицу  освещенности  принят  люкс  (лк)  (от  латин.  Iux  — свет).

Один люкс —  это  освещенность такой  поверхности,  на  один  квадрат­ный метр  которой  падает световой  поток, равный  одному люмену:
Формула

Приводим некоторые значения освещенности поверхности (вблизи земли).

Освещенность Е:

•  солнечными  лучами в полдень  (на средних широтах) —  100 000 лк;
•  солнечными лучами  на открытом месте в  пасмурный день —  1000 лк;
•  солнечными лучами  в  светлой  комнате  (вблизи окна) —  100 лк;
•  на улице при искусственном  освещении —  до 4 лк;
•  от полной луны —  0,2 лк;
•  от  звездного неба  в  безлунную ночь —  0,0003 лк.

2. Выясняем, от чего зависит освещенность

Наверное,  все  вы  видели  шпионские фильмы.  Представьте:  какой-нибудь  герой  при свете слабого карманного фонарика вниматель­но  просматривает  документы  в  поисках  необходимых  «секретных  данных».  Вообще,  чтобы читать,  не напрягая глаз,  нужна освещенность не меньше 30 лк  (рис.  3.9),  а это немало. И как наш герой добивается такой освещенности?

Во-первых,  он  подносит  фонарик  как  мож­но ближе к документу,  который просматривает. Значит,  освещенность  зависит  от расстояния от источника света до освещаемого предмета.

Во-вторых,  он  располагает  фонарик  пер­пендикулярно  к  поверхности  документа,  а  это значит,  что  освещенность  зависит  от  угла,  под  которым  свет  падает  на поверхность.

Чтобы прочитать доста­точно мелкий шрифт, нужно уве­личить освещенность страницы

Рис. 3.9. Чтобы прочитать доста­точно мелкий шрифт, нужно уве­личить освещенность страницы

Площадь освещенной поверхности увеличивается

Рис. 3.10. В случае увеличения расстояния до источника света площадь освещенной поверхности увеличивается

И в  конце концов,  для лучшего освещения он просто может взять более мощный фонарик,  так  как  очевидно,  что  с увеличением  силы  света  источника  увеличивается освещенность.

Выясним,  как изменяется освещенность в  случае увеличения расстояния от  точечного  источника  света до  освещаемой  поверхности.  Пусть,  например, световой поток  от  точечного  источника падает  на  экран,  расположенный  на определенном  расстоянии  от  источника.  Если  увеличить  расстояние  вдвое, можно  заметить,  что  один  и  тот же  световой  поток  будет  освещать  в  4  раза Ф большую площадь.  Поскольку Формула,  то освещенность в этом  случае уменьшится  в  4  раза.  Если  увеличить  расстояние  в  3  раза,  освещенность  уменьшится  в  9 —  З2  раз.  Т.  е.  освещенность  обратно  пропорциональна  квадрату расстояния от точечного источника  света до поверхности  (рис.  3 10).

Если пучок света падает перпендикулярно к поверхности, то световой поток распределяется на минимальной площади.  В случае  увеличения  угла  падения света увеличивается площадь,  на которую падает световой поток, поэтому ос­вещенность уменьшается (рис.  3.11). Мы уже говорили, что в случае увеличе­ния силы света источника освещенность увеличивается. Экспериментально ус­тановлено, что освещенность прямопропорциональна силе света источника.

(Освещенность  уменьшается,  если  в  воздухе  есть  частички  пыли,  тума­на, дыма, так как они отражают и рассеивают определенную часть световой энергии.)

Если поверхность расположена перпендикулярно к направлению распро­странения  света  от  точечного  источника  и  свет  распространяется  в  чистом воздухе,  то освещенность можно определить по формуле:

Формула
где I  —  сила света источника, R — расстояние от источника света до поверх­ности.

Задание

Рис. 3.11  В случае увеличения угла падения параллельных лучей на поверхность (а1 < а2  < а3) освещенность этой поверхности уменьшается, поскольку падающий световой поток распределя­ется по все большей площади поверхности


3. Учимся решать задачи

Стол освещен лампой,  расположенной на высоте  1,2 м прямо над  сто­лом. Определите освещенность стола непосредственно под лампой,  если пол­ный  световой  поток  лампы  составляет  750  лм.  Лампу  считайте  точечным источником  света.

Задача

  • Подводим итоги

Физическая  величина,  численно  равная  световому  потоку  Ф,  пада­ющему  на  единицу  освещаемой  поверхности  S,  называется  освещенностью Формула.В  СИ  за  единицу освещенности принят люкс  (лк).

Освещенность поверхности E  зависит:  а) от расстояния R до освещаемой поверхности  Формула б)  от  угла,  под  которым  свет  падает  на  поверхность (чем  меньше  угол  падения,  тем  больше  освещенность);  в)  от  силы  света  I источника  (E — I ) ;  г) прозрачности среды, в которой распространяется свет, проходя от источника до поверхности.

  • Контрольные вопросы 

1.  Что называют освещенностью? В каких единицах она измеряется?
2.  Можно ли  читать,  не  напрягая  глаз,  в  светлой  комнате?  на улице при искусственном освещении? при полной луне? 

3.  Как можно уве­личить  освещенность  определенной  поверхности? 

4.  Расстояние  от точечного  источника  света  до  поверхности  увеличили  в  2  раза.  Как при  этом  изменилась  освещенность  поверхности? 

5.  Зависит  ли  ос­вещенность поверхности  от  силы  света источника,  который  освещает эту поверхность? Если  зависит,  то как?

  • Упражнения

1. Почему  освещенность  горизонтальных  поверхностей  в  полдень больше,  чем утром  и вечером?

2. Известно,  что  освещенность  от  нескольких  источников  равняется сумме  освещенностей  от  каждого  из  этих  источников  отдельно. Приведите примеры применения  этого правила на практике.

3. После изучения темы  «Освещенность»  семиклассники решили уве­личить освещенность  своего рабочего места:

— Петя  заменил лампочку  в  своей  настольной  лампе  на  лампочку большей мощности;
— Наташа поставила еще  одну настольную лампу;
— Антон поднял люстру,  которая висела над  его столом,  выше;
— Юрий  расположил  настольную  лампу  таким  образом,  что  свет начал падать практически перпендикулярно к  столу.

Какие из  учеников поступили правильно? Обоснуйте ответ.

4. В  ясный  полдень  освещенность  поверхности  Земли  прямыми  сол­нечными  лучами  составляет  100 000  лк.  Определите  световой  по­ток,  падающий на участок площадью  100  см2.

5. Определите  освещенность  от  электрической  лампочки  мощностью 60  Вт,  расположенной  на  расстоянии  2  м.  Довольно  ли  этой  осве­щенности для чтения книги?

6. Две  лампочки,  поставленные  рядом,  освещают  экран.  Расстояние от лампочек до экрана  I м. Одну лампочку выключили. На сколько нужно приблизить  экран,  чтобы его освещенность не изменилась?

  • Экспериментальное  задание

Для  измерения  силы  света  используют  приборы,  которые  называются фотометрами.  Изготовьте простейший аналог фотометра. Для  этого  возьмите белый лист (экран) и поставьте на нем жирное пятно (например, маслом). Закре­пите лист вертикально и осветите его с двух сторон разными источниками све­та  (S1, S2)  (см.  рисунок).  (Свет от источников должен падать перпендикулярно к поверхности листа.) Медленно передвигая один из источников,  сделайте так, чтобы  пятно  стало  практически  невидимым.  Это  произойдет,  когда  освещен­ность пятна с одной и другой стороны будет одинаковой. Т.  е.  E1 = E2.

Задание

Поскольку  Формула.  Измерьте  расстояние  от  первого  источника до  экрана  (R1)  и расстояние  от  второго  источника до  экрана  (R2).

Сравните,  во  сколько раз  сила света первого источника отличается  от  силы света второго источника: Формула.

  • Физика и техника в Украина

Научно-производственный комплекс «Фотоприбор»

Научно-производственный комплекс «Фотоприбор»  (г. Черкассы) Сфера  деятельности  предприятия  —   разработка  и  производство приборов точной механики, оптоэлектроники и оптомеханики разно­образного  назначения,  медицинской  и  криминалистической  техники, бытовых товаров, офисных часов представительного класса. HBK «Фо­топрибор» разрабатывает и выпускает перископические  прицелы для разнообразных  артиллерийских  установок,  гирокомпасы,  гироскопы, оптико-электронную аппаратуру для вертолетов, бронетехники, а так­же широкий спектр оптического оборудование и  приборов различного назначения.

Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. — X.: Издательство «Ранок», 2007. — 192 с.: ил.

Содержание урока 1236084776 kr.jpg конспект урока и опорный каркас 1236084776 kr.jpg презентация урока 1236084776 kr.jpg интерактивные технологии  1236084776 kr.jpg акселеративные методы обучения  Практика 1236084776 kr.jpg тесты, тестирование онлайн 1236084776 kr.jpg задачи и упражнения  1236084776 kr.jpg домашние задания 1236084776 kr.jpg практикумы и тренинги 1236084776 kr.jpg вопросы для дискуссий в классе  Иллюстрации 1236084776 kr.jpg видео- и аудиоматериалы 1236084776 kr.jpg фотографии, картинки  1236084776 kr.jpg графики, таблицы, схемы 1236084776 kr.jpg комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты  Дополнения 1236084776 kr.jpg рефераты 1236084776 kr.jpg шпаргалки  1236084776 kr.jpg фишки для любознательных  1236084776 kr.jpg статьи (МАН) 1236084776 kr.jpg литература основная и дополнительная 1236084776 kr.jpg словарь терминов  Совершенствование учебников и уроков 1236084776 kr.jpg исправление ошибок в учебнике 1236084776 kr.jpg замена устаревших знаний новыми   Только для учителей 1236084776 kr.jpg календарные планы 1236084776 kr.jpg учебные программы 1236084776 kr.jpg методические рекомендации  1236084776 kr.jpg обсуждения  New2.jpg Идеальные уроки-кейсы 

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

edufuture.biz


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector