Узо это


Что такое УЗО и как расшифровывается в электрике

УЗО – устройство защитного отключения. Это альтернатива дифференциальной автоматике, которая сама срабатывает в определённых условиях и отличается принципом работы и триггерами (причинами срабатывания).

Само УЗО – это аппарат, который предназначается для моментального разрыва цепи при перегрузке тока небаланса указанного значения.

Что такое селективное УЗО

УЗО селективного действия выделяется из ряда обычных увеличенным временем срабатывания. Такая реализация позволяет при каких-либо сбоях в электрической цепи с последовательно подключенными устройствами защиты выключать не всю проводку, а только определенный её сегмент.

Принцип работы УЗО

УЗО – это общий термин для всех типов устройств с остаточным током (механическое переключающее устройство или объединение устройств), которые по определению предназначены для размыкания контактов, когда ток утечки достигает заданного значения при определенных условиях. Наиболее распространенные типы:


  • Автоматический выключатель с остаточным током (RCCB). Механическое переключающее устройство, предназначенное для создания, переноса и устранения токов при стандартных нормах работы и для разрыва контактов, когда остаточный ток достигает определённого значения при указанных обстоятельствах. В зависимости от возраста этих устройств они будут соответствовать стандартам BS EN 61008 или BS 4293.
    Всемирный Британский стандарт BS 4293 был отменен 1 июля 2000 года, а его мораторий закончился в июле 2005 года, что означает, что производители продолжали выпускать устройства остаточного тока, соответствующие BS 4293, до 2005 года, при условии, что устройства будут выпускаться до июля 2000 года. В РФ с 12 января 2000 года действуют свои ГОСТы.

    http://docs.cntd.ru/document/1200102087
    http://vsegost.com/Catalog/27/27475.shtml

  • Автоматический выключатель, включающий защиту от токов утечки (CBR) Автоматический выключатель, гарантирующий защиту от излишка нагрузки по току и включающий защиту от остаточного тока либо в виде интегральной схемы, либо в комбинации с аппаратом аварийного выключения, которое может быть установлено на заводе или в полевых условиях.
  • Розетка с интегрированным прибором аварийной дезактивации (SRCD). Розетка для стационарной установки, включающая в себя встроенную чувствительную цепь, благодаря которой переключающие контакты в цепи автоматически размыкаются при заданном значении остаточного тока.

  • Реле замыкания на землю. Устройство, включающее средства обнаружения тока замыкания на землю, сравнения его значения с рабочим значением тока замыкания на землю и подачи сигнала на соответствующее коммутационное устройство для размыкания защищенной цепи, когда ток замыкания на землю превышает это значение. Реле могут быть подключены напрямую или питаться от отдельного торроида. В настоящее время нет определенного стандарта для этого типа устройства.

Простыми словами, УЗО работает так:

Представим человека, который обладает феноменальной реакцией. Он стоит возле электрощитка, и в руках у него вольтметр. Когда стрелка на нём превышает указанное значение, он выключает кнопку (размыкает сеть), чтобы ток не прошел дальше. Время, за которое он улавливает сигнал, называется «скорость срабатывания». Но на этом его работа не заканчивается: он должен будет замкнуть контакты обратно. Время повторного подключения называют «скорость возврата». Скорость тока в сети исчисляется тысячами циклов в секунду и, скорее всего, при наличии хорошего УЗО перебой даже не будет заметен.

Чем меньше по времени будут занимать эти две операции, тем дороже будет стоить УЗО, так как длительное отсутствие тока в сети исчерпает запас остаточного напряжения, и прибор выключится. Чтобы не допускать такой ситуации, производители пытаются сократить скорость срабатывания по максимуму.


Устройство остаточного тока – принцип действия

Устройства остаточного тока контролируют ток, протекающий в цепи, с помощью тороида, который представляет собой небольшой трансформатор тока, специально разработанный для обнаружения токов замыкания на землю.

Все проводники под напряжением будут проходить через эту катушку, токи, протекающие в проводниках под напряжением исправной цепи, будут уравновешены, и поэтому в торроиде ток не будет индуцироваться. Токоведущие проводники цепи включают в себя все фазные и нейтральные проводники. Когда в цепи присутствует замыкание на землю, ток будет течь к земле через ненормальный или непреднамеренный путь.

Существует два типа технологий, доступных в устройствах остаточного тока, электромагнитных и электронных, и оба предлагают очень надежную работу. В электромагнитных устройствах используется очень чувствительный торроид, который управляет реле отключения, когда обнаруживает очень малые остаточные токи.

Эти устройства обычно не требуют эталонного заземления и не подвержены временной потере питания, так как питание на отключение устройства напрямую зависит от тока повреждения. Электронным устройствам не нужен такой чувствительный торроид, поскольку электронные схемы внутри устройства усиливают сигнал для срабатывания реле отключения.

Однако эти устройства часто требуют контрольного заземляющего провода, чтобы гарантировать, что устройство продолжит работать в случае потери нейтрали питания. Питание для отключения устройства берется как от тока повреждения, так и от источника питания.


Эти устройства должны быть отключены при проведении испытаний сопротивления изоляции, чтобы предотвратить повреждение устройства и избежать неправильных результатов испытаний.

Диапазон RCCB, дополнительные блоки CBR CB и два модуля RCBO – это электромагнитные устройства, а в одном модуле RCBO и реле защиты от замыканий на землю используются электронные технологии. Дополнения CBR MCCB доступны в обеих технологиях.

  • Ток, протекающий через торроид в исправной цепи: Ires = I1-I2 = 0
  • Ток, протекающий через торроид в цепи с замыканием на землю: Ires = I1-I2 = Ic + Id

Этот ток замыкания на землю, известный как «остаточный ток» (Ires), рассматривается торроидом как дисбаланс. Когда величина этого остаточного тока достигает значения чувствительности IΔn устройства, оно срабатывает для размыкания контактов.

Виды УЗО

Остаточный ток повреждения может принимать различные формы сигналов в зависимости от характеристик нагрузки. Следующие типы УЗО определены в МЭК 60755 для надлежащей защиты различных форм остаточного тока:

Тип AC

УЗО типа AC определяют остаточные синусоидальные переменные токи. УЗО типа AC подходят для общего использования и охватывают большинство применений на практике.

Тип А

В дополнение к характеристикам обнаружения УЗО типа AC, УЗО типа A обнаруживают пульсирующий остаточный ток постоянного тока. Такие колебания могут быть вызваны диодной или тиристорной цепью выпрямителя в электронных нагрузках. УЗО типа A специально предназначены для использования в однофазных электронных нагрузках класса 1.


Тип F

УЗО типа F – это новый тип УЗО, недавно представленный в МЭК 62423 и МЭК 60755. В дополнение к характеристикам обнаружения УЗО типа А, УЗО типа F специально разработаны для защиты цепей, где могут использоваться однофазные драйверы с регулируемой скоростью. В этих цепях форма волны остаточного тока может быть составной из нескольких частот, включая частоту двигателя, частоту переключения преобразователя и частоту линии. В целях повышения энергоэффективности использование преобразователей частоты при определенных нагрузках (стиральная машина, кондиционер и т. д.) расширяется, и тип F RCD будет охватывать эти новые области применения.

Тип F также обладает улучшенными характеристиками устойчивости к помехам (отсутствие срабатывания при импульсном токе). Они способны к отключению, даже если на синусоидальный или импульсный дифференциальный ток постоянного тока накладывается чистый постоянный ток 10 мА.

Тип B

УЗО типа B могут обнаруживать синусоидальный переменный ток, пульсирующий постоянный ток, составной многочастотный, а также плавный остаточный постоянный ток. Кроме того, условия отключения определяются с разными частотами – от 50 Гц до 1 кГц. В электрической распределительной сети переменного тока чистый остаточный постоянный ток может в основном генерироваться из трехфазных выпрямительных цепей, а также из некоторых конкретных однофазных выпрямителей.


УЗО типа B предназначены для использования с нагрузками с трехфазным выпрямителем, такими как приводы с регулируемой скоростью, фотоэлектрическая система, станция зарядки электромобилей и медицинское оборудование.

На схеме – определение различных типов УЗО с их основным применением и формами сигналов. Следует отметить, что различные типы УЗО (AC, A, F и B) вложены друг в друга, как русские куклы: тип B, например, также соответствует требованиям типа F, типа A и типа AC.

Характеристики УЗО

Номинальный ток

Указывает порог срабатывания устройства: 6, 10, 16, 25, 50, 63 и т. д. (ампер). Номинальный ток одинаков как для УЗО, так и для автоматов.

Быстродействие

В маркировке дифавтоматов применяется индекс электрического действия, который маркирован буквой «B», «C» или «D». Она стоит перед показателем номинального напряжения, как у стандартных автоматов. Скорость действия является важной переменной характеристикой аварийного аппарата.

Ток отключения (утечки)

Обычно это число из набора: 10, 30, 100, 300 или 500 мА. Указывается данная характеристика треугольником (буквой «дельта»), которая стоит перед числом, характеризующим величину номинального тока утечки в миллиамперах, при котором активируется защита.

Номинальное напряжение

Важнейшим рабочим показателем автоматов и УЗО выступает номинал напряжения (220 вольт – для одной фазы или 380 вольт для трёх) – это обычное рабочее напряжение.

Маркировка УЗО и дифавтоматов

Рассмотрим все элементы маркировки:


  1. На этой позиции отмечается название и серия автомата. Видно, что он АВ-дифференционного типа с интегрированной защитой от нестабильных токов утечки. Прибор разработан к работе в сетях с одной фазой с переменным током с рабочим показателем 230 вольт (50 герц).
  2. На месте позиции № 3 (вверху) выступает такой показатель, как величина номинального дифф.тока при КЗ.
  3. Далее идёт визуальное изображение вида конкретного автомата (в нашем случае это тип «А», предназначенный для взаимодействия с утечками переменного или перманентного токов).
  4. Под номером 4 – схема модуля.
  5. Далее идёт описание аварийного механизма электромагнитного разъединителя (у нас это «С»).
  6. Сразу за ним располагается токовый номинал.
  7. В конце ставят значок «дельта» и пишут ток утечки в цифрах.

Схема подключения УЗО

Рассмотрим схемы для разных типов сетей. В зависимости от количества приборов и конфигурации, нужно выбрать правильную модель, совместимую с сетью.

Схема подключения УЗО в однофазной сети

Стандартная схема, которая применяется в большинстве жилых домов. Как видно из картинки, предохранитель в прямом смысле не пропустит резкий скачок напряжения дальше в сеть и спасёт приборы от поломки.

Схема подключения УЗО в трехфазной сети

Более сложный вариант подключения. Из-за фазового смещения нужно подключать УЗО другим способом, иначе от него не будет потльзы в трехфазной сети. Требует навыков и понимания темы, а лучше обратиться к мастеру.


Узо это
Схема подключения УЗО в трехфазной цепи

Отличие УЗО от дифавтомата

Главные отличия:

  1. УЗО активируется только тогда, когда в цепи есть ток утечки.
  2. Дифавтомат комбинирует в себе функции устройства аварийного отключения + автоматического предохранителя.

То есть, дифавтомат срабатывает не только во время утечки тока, но и при коротком замыкании, а также перегрузке сети.

Оба прибора выполняют схожие функции, но имеют разные спецификации работы. Выбор разновидности лежит на плечах инженера, но бывают сети, в которых обе разновидности отлично сочетаются и повышают уровень безопасности.

Как проверить УЗО на работоспособность

Самый простой и рабочий способ проверки УЗО – через кнопку ТЕСТ, которая находится на корпусе УЗО.

Для проверки УЗО кнопкой не нужны никакие особые знания или специальный персонал.

Что понадобится:

  1. Кусок электропровода.
  2. Электролампа (10–15 Вт).
  3. Патрон под неё.
  4. Несколько сопротивлений.
  5. Отвёртка.
  6. Бокорезы.
  7. Изолента.

ВАЖНО! Если нет опыта в электрике или мало времени, лучше вызвать мастера, так как электрика может привести к травме. «Интуитивный» ремонт опасен для жизни и здоровья.

Наглядная инструкция в видео:

Защищает ли УЗО от короткого замыкания

УЗО в момент прикосновения должно выключаться, спасая человеку жизнь. Кроме того, протекание тока через не отведённые под эту цель материалы может вызвать пожар. В строениях с легкой проводкой пожары от нарушения целосности изоляции происходят довольно часто. Тогда УЗО выполняет защитную функцию.

Экономия на УЗО является грубейшей ошибкой, которую допускают даже опытные инженеры при обустройстве сетей. Дело в том, что даже самая надёжная автоматика может пострадать, если неправильно подключить её или если случится перепад. Тогда перебой в сети может уничтожить всё, что следует после предохранителя. Если же установлен УЗО, он возьмёт на себя весь удар и спасёт дорогостоящую технику от повреждений.

ВАЖНО! УЗО не спасает от перегрузки и КЗ, для такой защиты УЗО ставят с одним автоматом или группой выключателей.


Если посмотреть по-другому, то дифавтомат – это и есть УЗО и автовыключатель в одном корпусе. И он спасает сеть от лишней нагрузки, короткого замыкания и утечки тока. Так как автомат выполняет больше защитных характеристик линии, получается – это наилучшее решение по сравнению с УЗО.

Как выбрать УЗО по мощности для квартиры и частного дома

Нужно отталкиваться от характеристик. Среди наиболее важных тех.характеристик, на которые нужно опираться при выборе УЗО для бытовых целей, выделяют:

  • Номинальное напряжение сети: 220В (однофазная), либо 380В (трехфазная);
  • Количество полюсов: двухполюсный (если 1 фаза) и четырехполюсный (если 3 фазы);
  • Номинальный ток нагрузки может составлять 16А, 20А, 25А, 32А, 40А, 63А, 80А, 100А;
  • Номинальный отключающий дифференциальный ток (утечка) 6мА, 10мА, 30мА, 100мА, 300мА, 500мА;
  • Номинальный условный ток короткого замыкания — от 3кА до 15кА;
  • Коммутационная способность (обозначение «Im») — (новые изделия предлагают диапазон КС от 1000 до 1500 А);
  • Принцип работы: AC — срабатывание при переменном токе, А — переменный + постоянный пульсирующий, B — постоянный + переменный, S — присутствует выдержка времени перед срабатыванием, G — так же присутствует выдержка, но ее время меньше;
  • Конструкция: электронный (работает от сети), либо электромеханический (не требует питания).

Непоследним фактором является и цена. УЗО – это тоже расходный материал, который требует замены со временем. Если квартира небольшая, то особого смысла покупать дорогое УЗО нет, тем более, что многие навороченные модели не так просты в установке, как более бюджетные «народные» варианты.

Обозначение УЗО на однолинейной схеме

По стандарту обозначение выглядит так:

Все о сечении проводов автоматах и УЗО

Таблица с типом сечений и областью применения:

Причины срабатывания УЗО

Главные причины:

  1. Обычная утечка тока в сети.
  2. Электроприборы, которые защищены данным устройством.
  3. Некорректная установка защитной автоматики.
  4. Неправильно выбранная модель.
  5. Прикосновение к оголённой жиле рукой (срабатывает защита).
  6. Брак самого механизма.
  7. Неправильное размещения ДВТ в линии электропроводке.
  8. КЗ «земли» и/или «нуля» при электромонтажных работах.
  9. Погодные условия (например, попадание влаги внутрь). В сырую погоду такая ситуация будет ощущаться максимально ярко. Влажность воздуха будет настолько большой, что проводимость тока через неё позволит УЗО срабатывать на выключение.

Если проводился монтаж скрытой электропроводки, после чего трасса была закрыта шпаклевкой, может происходить отключение. Это обусловлено тем, что влажный раствор выступает хорошим проводником, который может вызывать утечку через микроскопические трещинки в проводке. Нужно ждать, пока раствор полностью высохнет, после чего проверять еще раз, активируется УЗО или нет. Чтобы такой ситуации не было, между трассой иногда устанавливают слой гидроизоляции или просто кладут полиэтиленовую плёнку, которая не пропустит влагу.

Источник: meanders.ru

Назначение

УЗО предназначены для

  • Защиты человека от поражения электрическим током при косвенном прикосновении (прикосновение человека к открытым проводящим нетоковедущим частям электроустановки, оказавшимся под напряжением в случае повреждения изоляции), а также при непосредственном прикосновении (прикосновение человека к токоведущим частям электроустановки, находящимся под напряжением). Данную функцию обеспечивают УЗО соответствующей чувствительности (ток отсечки не более 30 mA).
  • Предотвращения возгораний при возникновении токов утечки на корпус или на землю.

Цели и принцип работы

Принцип работы УЗО основан на измерении баланса токов между входящими в него токоведущими проводниками с помощью дифференциального трансформатора тока. Если баланс токов нарушен, то УЗО немедленно размыкает все входящие в него контактные группы, отключая таким образом неисправную нагрузку.

УЗО измеряет алгебраическую сумму токов, протекающих по контролируемым проводникам (двум для однофазного УЗО, четырем для трехфазного и т. д.): в нормальном состоянии ток, «втекающий» по одним проводникам, должен быть равен току, «вытекащему» по другим, то есть сумма токов, проходящих через УЗО равна нулю (точнее, сумма не должна превышать допустимое значение). Если же сумма превышает допустимое значение, то это означает, что часть тока проходит помимо УЗО, то есть контролируемая электрическая цепь неисправна — в ней имеет место утечка.

В США, в соответствии с National Electrical Code, устройства защитного отключения (ground fault circuit interrupter — GFCI), предназначенные для защиты людей, должны размыкать цепь при утечке тока 4-6 мА (точное значение выбирается производителем устройства и обычно составляет 5 мА) за время не более 25 мс. Для устройств GFCI, защищающих оборудование (то есть не для защиты людей), отключающий дифференциальный ток может составлять до 30 мА. В Европе используются УЗО с отключающим дифференциальным током 10-500 мА.

С точки зрения электробезопасности УЗО принципиально отличаются от устройств защиты от сверхтока (предохранителей) тем, что УЗО предназначены именно для защиты от поражения электрическим током, поскольку они срабатывают при утечках тока значительно меньших, чем предохранители (обычно от 2 ампер и более для бытовых предохранителей, что во много раз превышает смертельное для человека значение). УЗО должны срабатывать за время не более 25-40 мс, то есть до того, как электрический ток, проходящий через организм человека, вызовет фибрилляцию сердца — наиболее частую причину смерти при поражениях электрическим током.

Эти значения были установлены путем тестов, при которых добровольцы и животные подвергались воздействию электрического тока с известным напряжением и силой тока.

Обнаружение токов утечки при помощи УЗО является дополнительным защитным мероприятием, а не заменой защите от сверхтоков при помощи предохранителей, так как УЗО никак не реагирует на неисправности, если они не сопровождаются утечкой тока (например, короткое замыкание между фазным и нулевым проводниками).

УЗО с отключающим дифференциальным током порядка 300 мА и более иногда применяются для защиты больших участков электрических сетей (например, в компьютерных центрах), где низкий порог привел бы к ложным срабатываниям. Такие низкочувствительные УЗО выполняют противопожарную функцию и не являются эффективной защитой от поражения электрическим током.

Пример

На фотографии показано внутреннее устройство одного из типов УЗО. Данное УЗО предназначено для установки в разрыв шнура питания, его номинальный ток 13 А, отключающий дифференциальный ток 30 мА. Данное устройство является:

  • УЗО со вспомогательным источником питания
  • выполняющим автоматическое отключение при отказе вспомогательного источника

Это означает, что УЗО может быть включено только при наличии питающего напряжения, при пропадании напряжения оно автоматически отключается (такое поведение повышает безопасность устройства).

Фазный и нулевой проводники от источника питания подключаются к контактам (1), нагрузка УЗО подключается к контактам (2). Проводник защитного заземления (PE-проводник) к УЗО никак не подключается.

При нажатии кнопки (3) контакты (4) (а также еще один контакт, скрытый за узлом (5)) замыкаются, и УЗО пропускает ток. Соленоид (5) удерживает контакты в замкнутом состоянии после того, как кнопка отпущена.

Катушка (6) на тороидальном сердечнике является вторичной обмоткой дифференциального трансформатора тока, который окружает фазный и нулевой проводники. Проводники проходят сквозь тор, но не имеют электрического контакта с катушкой[2]. В нормальном состоянии ток, текущий по фазному проводнику, точно равен току, текущему по нулевому проводнику, однако эти токи противоположны по направлению. Таким образом, токи взаимно компенсируют друг друга и в катушке дифференциального трансформатора тока ЭДС отсутствует.

Любая утечка тока из защищаемой цепи на заземленные проводники (например, прикосновение человека, стоящего на мокром полу, к фазному проводнику) приводит к нарушению баланса в трансформаторе тока: через фазный проводник «втекает больше тока», чем возвращается по нулевому (часть тока утекает через тело человека, то есть помимо трансформатора). Несбалансированный ток в первичной обмотке трансформатора тока приводит к появлению ЭДС во вторичной обмотке. Эта ЭДС сразу же регистрируется следящим устройством (7), которое отключает питание соленоида (5). Отключенный соленоид больше не удерживает контакты (4) в замкнутом состоянии, и они размыкаются под действием силы пружины, обесточивая неисправную нагрузку.

Устройство спроектировано таким образом, что отключение происходит за доли секунды, что значительно снижает тяжесть последствий от поражения электрическим током.

Кнопка проверки (8) позволяет проверить работоспособность устройства путем пропускания небольшого тока через оранжевый тестовый провод (9). Тестовый провод проходит через сердечник трансформатора тока, поэтому ток в тестовом проводе эквивалентен нарушению баланса токонесущих проводников, то есть УЗО должно отключиться при нажатии на кнопку проверки. Если УЗО не отключилось, значит оно неисправно и должно быть заменено.

Применение

В России применение УЗО стало обязательным с принятием 7-го издания Правил устройства электроустановок (ПУЭ). Выдержки из документов, регламентирующих применение УЗО, собраны здесь. Как правило, в случае бытовой электропроводки одно или несколько УЗО устанавливаются на DIN-рейку в электрощите.

Многие производители бытовых устройств, которые могут быть использованы в сырых помещениях (например, фены), предусматривают для таких устройств встроенное УЗО. В ряде стран подобные встроенные УЗО являются обязательными.

Проверка

Рекомендуется ежемесячно проверять работоспособность УЗО. Наиболее простой способ проверки — нажатие кнопки «тест», которая обычно расположена на корпусе УЗО (как правило, на кнопке «тест» нанесено изображение большой буквы «Т»). Тест кнопкой может производиться пользователем, то есть квалифицированный персонал для этого не требуется. Если УЗО исправно и подключено к электрической сети, то оно при нажатии кнопки «тест» должно сразу же сработать (то есть отключить нагрузку). Если после нажатия кнопки нагрузка осталась под напряжением, то УЗО неисправно и должно быть заменено.

Тест нажатием кнопки не является полной проверкой УЗО. Оно может срабатывать от кнопки, но не пройти полный лабораторный тест, включающий измерение отключающего дифференциального тока и времени срабатывания.

Кроме того, нажатием кнопки проверяется само УЗО, но не правильность его подключения. Поэтому более надежной проверкой является имитация утечки непосредственно в цепи, которая является нагрузкой УЗО. Такой тест желательно проделать хотя бы один раз для каждого УЗО после его установки. В отличие от нажатия кнопки, пробная утечка должна проводиться только квалифицированным персоналом.

Ограничения

УЗО может значительно улучшить безопасность электроустановок, но оно не может полностью исключить риск поражения электрическим током или пожара. УЗО не реагирует на аварийные ситуации, если они не сопровождаются утечкой из защищаемой цепи. В частности, УЗО не реагирует на короткие замыкания между фазами и нейтралью.

УЗО также не сработает, если человек оказался под напряжением, но утечки при этом не возникло, например, при прикосновении пальцем одновременно и к фазному, и к нулевому проводникам. Предусмотреть электрическую защиту от таких прикосновений невозможно, так как нельзя отличить протекание тока через тело человека от нормального протекания тока в нагрузке. В подобных случаях действенны только механические защитные меры (изоляция, непроводящие кожухи и т. п.), а также отключение электроустановки перед ее обслуживанием.

История

В начале 1970-х годов большинство УЗО выпускались[3] в корпусах типа автоматических выключателей. С начала 1980-х годов большинство бытовых УЗО были уже встроенными в розетки. В России используются преимущественно УЗО для монтажа в электрощите на DIN-рейку, а встроенные УЗО пока широкого распространения не получили.

Классификация УЗО

По способу действия

  • УЗО−Д без вспомогательного источника питания
  • УЗО−Д со вспомогательным источником питания:
    • выполняющие автоматическое отключение при отказе вспомогательного источника с выдержкой времени и без нее:
      • производящие автоматическое повторное включение при восстановлении работы вспомогательного источника
      • не производящие автоматическое повторное включение при восстановлении работы вспомогательного источника
    • не производящие автоматическое отключение при отказе вспомогательного источника:
      • способные произвести отключение при возникновении опасной ситуации после отказа вспомогательного источника
      • не способные произвести отключение при возникновении опасной ситуации после отказа вспомогательного источника

По способу установки

  • стационарные с монтажом стационарной электропроводкой
  • переносные с монтажом гибкими проводами с удлинителями

По числу полюсов

  • однополюсные двухпроводные
  • двухполюсные
  • двухполюсные трехпроводные
  • трехполюсные
  • трехполюсные четырехпроводные
  • четырехполюсные

По виду защиты от сверхтоков и перегрузок по току

  • без встроенной защиты от сверхтоков
  • со встроенной защитой от сверхтоков
  • со встроенной защитой от перегрузки
  • со встроенной защитой от коротких замыканий

По потере чувствительности в случае двойного заземления нулевого рабочего проводника

На стадии рассмотрения

По возможности регулирования отключающего дифференциального тока

  • нерегулируемые
  • регулируемые:
    • с дискретным регулированием
    • с плавным регулированием

По стойкости при импульсном напряжении

  • допускающие возможность отключения при импульсном напряжении
  • стойкие при импульсном напряжении

По характеристикам наличия постоянной составляющей дифференциального тока

  • УЗО−Д типа АС
  • УЗО−Д типа А
  • УЗО−Д типа В

Характеристики УЗО

Характеристики, общие для всех УЗО−Д

  • Способ установки
  • Число полюсов и число токоведущих проводников
  • Номинальный ток In — указанное изготовителем значение тока, которое УЗО−Д может пропускать в продолжительном режиме работы
  • Номинальный отключающий дифференциальный ток IΔn — указанное изготовителем значение дифференциального тока, которое вызывает отключение УЗО−Д при заданных условиях эксплуатации
  • Номинальный неотключающий дифференциальный ток, если он отличается от предпочтительного значения IΔn0 — указанное изготовителем значение дифференциального тока, которое не вызывает отключения УЗО−Д при заданных условиях эксплуатации
  • Тип УЗО−Д по характеристикам наличия постоянной составляющей дифференциального тока
  • Номинальное напряжение Un — указанное изготовителем действующее значение напряжения, при котором обеспечивается работоспособность УЗО−Д (в частности при коротких замыканиях)
  • Номинальная частота — значение частоты, на которое рассчитано УЗО−Д и при котором оно работоспособно при заданных условиях эксплуатации
  • Тип вспомогательного источника (если он имеется) и реакция УЗО−Д на его отказ
  • Номинальное напряжение вспомогательного источника (если он имеется) Usn — напряжение вспомогательного источника, на которое рассчитано УЗО−Д и при котором обеспечивается его работоспособность при заданных условиях эксплуатации
  • Номинальная включающая и отключающая способность Im — действующее значение ожидаемого тока, который УЗО−Д способно включить, пропускать в течение своего времени и отключить при заданных условиях эксплуатации без нарушения его работоспособности
  • Номинальная способность включения и отключения дифференциального тока IΔm — действующее значение ожидаемого дифференциального тока, который УЗО−Д способно включить, пропускать в течение своего времени отключения и отключить при заданных условиях эксплуатации без нарушения его работоспособности
  • Выдержка времени (если она имеется)
  • Селективность (если она имеется)
  • Координация изоляции, включая воздушные зазоры и пути утечки тока
  • Степень защиты (по ГОСТ 14254)

Только для УЗО−Д без встроенной защиты от коротких замыканий

  • Вид защиты от коротких замыканий
  • Номинальный условный ток короткого замыкания Inc — указанное изготовителем действующее значение ожидаемого тока, который способно выдержать УЗО−Д, защищаемое устройством защиты от коротких замыканий, при заданных условиях эксплуатации без необратимых изменений, нарушающих его работоспособность
  • Номинальный условный дифференциальный ток при коротком замыкании IΔc — указанное изготовителем значение ожидаемого дифференциального тока, которое способно выдержать УЗО−Д, защищаемое устройством защиты от коротких замыканий, при заданных условиях эксплуатации без необратимых изменений, нарушающих его работоспособность

Смотри также

  • Заземление

Примечания

  1. Определение согласно ГОСТ Р 50807-95 (2003)
  2. То есть катушка гальванически развязана от токонесущих проводников УЗО
  3. За рубежом. В России УЗО начали применяться гораздо позже — примерно с 1994—1995 годов

Источник: dic.academic.ru

Что такое УЗО?

Для начала отвечу на этот элементарный вопрос. “УЗО” это аббревиатура, которая расшифровывается как “Устройство Защитного Отключения“. УЗО ещё называют так:

  • Выключатель дифференциальный (от этих слов происходит аббревиатура “ВД” в названии и на корпусе УЗО),
  • Выключатель дифференциального тока,
  • Выключатель дифференциальной защиты,
  • Автоматический выключатель, управляемый дифференциальным током.

Из названия видно, что основные свойства этого устройства – различать (дифференцировать), выключать, защищать.

 

Что нужно защищать?

Если речь идет о дифференциальной защите, то нужно понять, что защищаем мы в первую очередь человека. Защищаем от прямого прикосновения к частям оборудования и электропроводки, на которых имеется опасный потенциал. Потенциал там может быть штатно, для обеспечения нормальной работы (как на фазной клемме розетки), а может появиться в результате аварии (например, 220 В может появиться на корпусе стиральной машины из-за плохой изоляции ТЭНа).

ПУЭ рекомендует ставить УЗО на все розеточные линии (ПУЭ 7.1.71), но обычно в сухих помещениях их не ставят. А я думаю, что лучше не экономить, а ставить их на каждую группу (линию).

УЗО является дополнительной защитой от прямого прикосновения. Основная защита от прямого прикосновения – это, прежде всего, изоляция и автоматический выключатель. С изоляцией всё понятно, а автомат должен сработать, если фаза попала на землю.

“Должен” – но не всегда это у него получится, так как ток короткого замыкания бывает недостаточен для отработки по электромагнитной защите, а по тепловой он может отработать и через секунду, и через час, и никогда. Писал об этом не раз. В этом случае нужно ставить УЗО обязательно (ПУЭ 7.1.72).

Защита работает на принципе сравнения разницы (дифференциала) токов по фазе и нулю. Ток может “утекать” по разным причинам – плохая изоляция, КЗ, прикосновение – но во всех случаях, если ток утечки достаточный, УЗО обесточит свою линию.

Здесь можно вспомнить первый закон Кирхгофа для замкнутого контура, который можно выразить так – “вытекающий” из источника питания ток равен “втекающему” току. Если эти токи не равны, значит, где-то утечка, и УЗО должно среагировать.

Кстати, утечка может быть не только с фазы на землю. Она может быть и с нулевого провода, и на другую фазу. В любом случае, если ток найдёт “лазейку”, и начнет утекать из замкнутой цепи, и при достижении определенной величины тока утечки УЗО выключится.

 

Когда может сработать УЗО?

Тема эта очень обширна, одной статьи точно не хватит. Поэтому покажу в картинках.

Что представляет из себя система питания наших домов и квартир? Если брать общий случай, схема будет такой:

На трансформаторной подстанции (ТП) обмотки трансформатора (это может быть и генератор) с одной стороны глухо заземлены. L1, L2, L3 – линии, на которых присутствует линейное (между собой) напряжение 380 В или фазное (если измерять по отношению к нейтрали N) напряжение 220 В. Если с фазами всё понятно, то с N и PE всё сложнее – они могут разделяться на подстанции, как я изобразил (система TN-S), либо на вводе в дом (система TN-С-S), либо на лестничной площадке (система TN-С). Я не стал углубляться, изобразил заземляющий провод условно.

Подробнее о системах заземления я рассказывал в этой статье.

Кроме того, внутри каждой квартиры, кроме провода РЕ (которого в старых домах может и не быть), присутствуют проводящие предметы, хорошо или плохо проводящие ток, и имеющие потенциал, близкий к потенциалу земли – водопроводные и газовые трубы, мокрые полы, и т.д. Их я тоже изобразил в виде значка заземления внутри каждой квартиры.

К чему я веду? Я хочу показать, как может проходить ток утечки, на который среагирует УЗО, который установили в квартире №1. Для упрощения схемы никакие устройства, кроме УЗО, я не показал:

Самое очевидное – утечка с фазного провода L1 после УЗО:

  • На “земляной” провод РЕ, либо на корпуса приборов, подключенные к нему (с электрической точки зрения это одно и то же),
  • На предметы, не подключенные к защитному проводнику РЕ, но имеющие какую-никакую электрическую связь с землёй (с планетой Земля). А напомню, ноль (нейтраль) трансформатора на подстанции глухо (жёстко) заземлен,
  • На другие фазы. В обычной квартире маловероятно, но чудеса бывают.

Но по тем же путям может быть утечка не только с фазного провода, но и с нулевого. Только для достижения нужного значения тока срабатывания нужно большее напряжение. Это если мы говорим про утечку с нуля на землю – ведь у них разность бывает всего несколько вольт.

В итоге УЗО выключает нагрузку, в которой произошла утечка, тем самым защищая её.

 

УЗО, дифференциальный автомат и АВДТ – в чем разница?

Все эти устройства с успехом выполняют функцию выключения при токовой утечке, и имеют в своем названии букву “Д” – дифференциальный. Разница в том, что диф.автоматы имеют дополнительную встроенную защиту от сверхтоков. То есть, они дополнительно защищают и от токов перегрузки, и от токов КЗ, имея на борту тепловой и электромагнитный расцепитель.

 

По функциям всё просто, а вот в реале отличить УЗО от Диф.автоматов с первого раза может не получиться. Рассказываю.

Основные внешние признаки УЗО (дифференциального выключателя, ВД):

  1. УЗО имеет в названии обозначение “ВД” – выключатель дифференциальный. Правда, это есть только у производителей, которые используют русские буквы в названиях.
  2. У УЗО перед значением номинального тока не стоит буква защитной характеристики (чаще всего это буква “С”).
  3. У УЗО после значения тока пишется буква “А”. Примеры – 16А, 25А, 32А.
  4. На боковой стенке УЗО иногда пишут “Выключатель Дифференциальный (УЗО)”.
  5. На схеме, указанной на корпусе УЗО, отсутствуют обозначения тепловых и электромагнитных расцепителей.

Основные внешние признаки дифференциальных автоматов (АД и АВДТ):

  1. В названии модели на корпусе всегда есть буква “А” (АД, АВДТ).
  2. Всегда указана буква защитной характеристики (В, С, D).
  3. После номинального тока буква, обозначающая амперы, не ставится. Примеры – С16, С25, С32.
  4. На боковой стенке, как правило, написано, что перед нами – автомат.
  5. На схеме указаны тепловой и электромагнитный расцепитель.

Отличия в схемах ВД, АД, АВДТ по наличию расцепителей и защиты от сверхтоков видны ниже:

Отличий дифавтоматов АД от АВДТ особо нет, разве что по конструкции. АД имеет последовательно соединенные автоматический выключатель и УЗО в разных корпусах, соединенные в монолитную конструкцию. АД – более компактное устройство.

Главное внешнее отличие устройств дифференциальной защиты от обычных защитных автоматов – кроме номинального тока In, на ВД, АД, АВДТ указан номинальный дифференциальный ток IΔn (10, 30, 100, 300, 500 мА).

Кстати, в ПУЭ 7.1.76 прямо говорится, что рекомендуется использовать УЗО с устройством защиты от сверхтоков в виде единого устройства. Это нужно для того, чтобы гарантированно обеспечить наличие защиты и правильный ток защиты. Ведь потребитель может поставить автомат на бОльший ток, либо не поставить его вообще. Мало ли.

Во второй части статьи рассмотрим внутреннее устройство и отличия устройств дифзащиты более подробно.

 

Основные характеристики УЗО и Дифавтоматов

Характеристики, обозначенные на корпусе УЗО

В качестве примера, на котором я покажу различные характеристики, возьмем УЗО TEXENERGO ВД67 2Р 16А/10мА.

Посмотрим, какие надписи и знаки расположены у него на корпусе. А если хотите узнать официальную информацию по УЗО, обратитесь к ГОСТ Р 51326.1-99.

  1. TEXENERGO – торговая марка. Тут может быть написано что угодно, суть остается прежней.
  2. Кнопка оранжевая, с буквой “Т” – кнопка “Тест”. При её нажатии искусственно создается ток утечки через встроенный резистор. УЗО должно выключиться. Такой тест потребитель должен проводить сам, что крайне неудобно. Но делать это нужно – ведь УЗО может выйти из строя, и в нужный момент не спасет от удара током.
  3. ВД67, ВД1-63 – модель УЗО (серия).
  4. Номинальный ток In (на фото – 16 А, 32 А). Стандартный ряд значений: 16, 25, 32, 40, 50, 63 А. Это ток, который может выдерживать УЗО длительное время. При этом УЗО должен обязательно быть защищен от сверхтоков защитным автоматом с номинальном током, меньшим на ступень. Например, для УЗО, показанных на фото, следует устанавливать автоматы на 13 А и 25 А.
  5. Номинальное рабочее напряжение Ue и номинальная частота (∼230В 50Гц). Для четырехполюсных автоматов это напряжение равно 400 В.
  6. Номинальный ток утечки IΔn (30 мА) (номинальный отключающий дифференциальный ток). Это самый главный параметр для устройств дифференциальной защиты. Стандартный ряд – 10, 30, 100, 300 мА. Существует и Неотключающий дифференциальный ток 0,5 IΔn, при котором отключения по утечке происходить не должно. Иначе говоря, отключение произойдёт в диапазоне от 0,5 IΔn до IΔn.
  7. Номинальный условный ток короткого замыкания Inc (6000 А). В защитных автоматах похожий параметр называют “Номинальная наибольшая отключающая способность”, и обозначают Icn. Дело в том, что УЗО не предназначен для того, чтобы выключать цепь при КЗ – это должен сделать автоматический выключатель в той же цепи. Чем выше параметр Inc у УЗО, тем качественнее его контактная система. Стандартный ряд значений – 3000, 4500, 6000, 10000 А. Не знаю, с чем это связано, но на корпусе данного УЗО указано значение 6000, а в его паспорте Inc ≥10000 А.
  8. Тип УЗО по роду дифференциального тока. Существует два основных вида УЗО по току утечки. Первый – АС. Это самый распространенный и дешевый вид, на чистый переменный ток, обозначается синусоидой (∼), как на фото. Второй – А, он реагирует не только на переменный, но и на постоянный (однополярный) пульсирующий ток. Это бывает нужно, когда в нагрузке есть полупроводниковые входные цепи питания. Более универсальный тип. Есть устройства, реагирующие и на другие виды дифференциального тока, но в быту они практически не применяются.
  9. Температурный диапазон (-25 °С) – минимальная рабочая температура.

 

Характеристики, обозначенные на корпусе диф.автомата АД

Как я уже говорил, АД и АВДТ имеют те хе функции и характеристики, что и ВД (УЗО), но плюсом у них есть тепловая и электромагнитная защита от сверхтока, как у обычных автоматических выключателей. Поэтому коротко.

В нашем примере дифавтомат TEXENERGO АД67-2 на корпусе имеет те же характеристики, относящиеся к дифзащите:

Отличия (кроме конструкции, которая будет рассмотрена позже) относятся к защите от сверхтокам. Главное отличие – надпись “С25”.

 

Характеристики, обозначенные на корпусе диф.автомата АВДТ

В принципе, то же самое – номинальный ток 16А, характеристика отключения типа “С”.

Дальше рассмотрим параметры УЗО, которые не указаны на его корпусе.

 

Число полюсов УЗО

Тут возможны только два варианта –

  1. двухполюсный (2п, или 2Р), для однофазного напряжения питания,
  2. четырехполюсный (4п, или 4Р), для трехфазных сетей.

В отличии от обычных автоматических выключателей, тут в качестве УЗО добавляется ещё один, нулевой полюс. Поскольку ноль нужен для нормального функционирования УЗО.

 

Принцип срабатывания УЗО

УЗО могут различаться на электромеханические и электронные по принципу измерения дифференциального тока.

Электромеханические УЗО обладают большей надежностью, поскольку не зависят от параметров и скачков питающего напряжения, а срабатывание происходит только за счет дифференциального тока. Так же, как в автоматических выключателях – их срабатывание зависит только от протекания и действия сверхтока.

Электронные УЗО имеют внутри электронную схему, которая критична к питанию. Они немного дешевле механических, поскольку имеет внутри сравнительно небольшой дифференциальный трансформатор, играющий роль датчика, а электроника стоит копейки. Да и надежность у них пока не высока.

Как отличить электромеханический УЗО от электронного? Прежде всего, по схеме, которая у электронного УЗО содержит треугольник, обозначающий операционный усилитель:

Усилитель дифференциального тока может быть обозначен и прямоугольником, но обязательно на него приходят провода питания от фазного и нулевого проводов.

Вот схема, указанная на корпусе УЗО в верхней части:

 

Номинальная наибольшая включающая и отключающая способность Im

В данном случае эта характеристика равна 630 А и означает, что УЗО может включать, проводить и отключать без негативных последствий для себя.

Номинальная наибольшая дифференциальная включающая и отключающая способность IΔm

Это тот же самый параметр, что и Im, но относящийся к дифференциальному току. Обычно IΔm = Im.

Селективность УЗО

Этот параметр подразумевает селективность УЗО по времени, хотя ещё может быть селективность по дифференциальному току. Используется и та, и другая селективность для того, чтобы УЗО, установленные ближе ко вводу, отрабатывали позже, а ближе к нагрузке – раньше.

Аппараты дифференциальной защиты TEXENERGO, рассматриваемые в статье, не имеют выдержки времени (общий тип селективности). УЗО и диф.автоматы, обладающие выдержкой времени, обозначаются буквой “S” (Selective).

 

Источник: SamElectric.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.