Что такое защитное заземление


Защитное заземление — преднамеренное соединение с землей металлических частей оборудования, не находящихся под напряжением в обычных условиях, но которые могут оказаться под напряжением в результате нарушения изоляции электроустановки.

Назначение защитного заземления — устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т. е. при «замыкании на корпус».

Принцип действия защитного заземления — снижение до безопасных значений напряжений прикосновения и шага, обусловленных «замыканием на корпус». Это достигается уменьшением потенциала заземленного оборудования, а также выравниванием потенциалов за счет подъема потенциала основания, на котором стоит человек, до потенциала, близкого по величине к потенциалу заземленного оборудования.

Область применения защитного заземления — трехфазные трех-проводные сети напряжением до 1000 В с изолированной нейтралью и выше 1000 В с любым режимом нейтрали (рис. 71).


Принципиальные схемы защитного заземления

Рис. 71. Принципиальные схемы защитного заземления:
а — в сети с изолированной нейтралью до 1000 В и выше; б — в сети с заземленной нейтралью выше 1000 В, 1 — заземленное оборудование; 2 — заземлитель защитного заземления; 3 — заземлитель рабочего заземления; r3. rо — сопротивления соответственно защитного и рабочего заземлений

Типы заземляющих устройств. Заземляющим устройством называется совокупность заземлителя — металлических проводников, находящихся в непосредственном соприкосновении с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. Различают два типа заземляющих устройств: выносное (или сосредоточенное) и контурное (или распределенное).

Выносное заземляющее устройство характеризуется тем, что заземлитель его вынесен за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточен на некоторой части этой площадки.

Недостаток выносного заземления — отдаленность заземлителя от защищаемого оборудования, вследствие чего коэффициент прикосновения а = 1. Поэтому этот тип заземления применяется лишь при малых токах замыкания на землю и, в частности, в установках напряжением до 1000 В, где потенциал заземлителя не превышает допустимого напряжения прикосновения.


Достоинством такого типа заземляющего устройства является возможность выбора места размещения электродов с наименьшим сопротивлением грунта (сырое, глинистое, в низинах и т. п.).

Контурное заземляющее устройство характеризуется тем, что его одиночные заземлители размещаются по контуру (периметру) площадки, на которой находится заземляемое оборудование, или распределяются по всей площадке по возможности равномерно.

Безопасность при контурном заземлении обеспечивается выравниванием потенциала на защищаемой территории до такой величины, чтобы максимальные значения напряжений прикосновения и шага не превышали допустимых. Это достигается путем соответствующего размещения одиночных заземлителей.

Внутри помещений выравнивание потенциала происходит естественным путем через металлические конструкции, трубопроводы, кабели и подобные им проводящие предметы, связанные с разветвленной сетью заземления.

Выполнение заземляющих устройств. Различают заземлители искусственные, предназначенные исключительно для целей заземления, и естественные — находящиеся в земле металлические предметы другого назначения.

Для искусственных заземлителей применяют обычно вертикальные и горизонтальные электроды.

В качестве вертикальных электродов используют стальные трубы диаметром 3—5 см и угловую сталь размером от 40 X 40 до 60 X 60 мм длиной 2,5—3 м. В последние годы находят применение стальные прутки диаметром 10—12 мм и длиной до 10 м.


Для связи вертикальных электродов и в качестве самостоятельного горизонтального электрода используют полосовую сталь сечением не менее 4 X 12 мм или сталь круглого сечения диаметром не менее 6 мм.

Для установки вертикальных заземлителей предварительно роют траншею глубиной 0,7—0,8 м, после чего с помощью механизмов забивают трубы или уголки.

В качестве естественных заземлителей можно использовать: проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих или взрывоопасных газов, а также трубопроводов, покрытых изоляцией для защиты от коррозии; обсадные трубы артезианских колодцев, скважин, шурфов и т. п.; металлические конструкции и арматура железобетонных конструкций зданий и сооружений, имеющие соединение с землей; свинцовые оболочки кабелей, проложенные в земле. Естественные заземлители обладают, как правило, малым сопротивлением растеканию тока и поэтому использование их для целей заземления дает весьма ощутимую экономию. Недостатками естественных заземлителей являются доступность их неэлектротехническому персоналу и возможность нарушения непрерывности соединения протяженных заземлителей (при ремонтных работах и т. п.).

В качестве заземляющих проводников, предназначенных для соединения заземляющих частей с заземлителями, применяют, как правило, полосовую сталь, а также круглую сталь и т. п. Прокладку заземляющих проводников производят открыто по конструкциям зданий, в том числе по стенам на специальных опорах. Заземляющие проводники в помещениях должны быть доступны для осмотра.


Присоединение заземляемого оборудования к магистрали заземления осуществляется с помощью отдельных проводников. При этом последовательное включение заземляемого оборудования не допускается.

Согласно требованиям Правил устройства электроустановок сопротивление защитного заземления в любое время года не должно превышать:

4 Ома — в установках напряжением до 1000 В; если мощность источника тока (генератора или трансформатора) меньше 100 кВА, то сопротивление заземления допускается 10 Ом;

0,5 Ом — в установках напряжением выше 1000 В с большими токами замыкания на землю (больше 500 А);

250/I3, но не более 10 Ом — в установках напряжением выше 1000 В с малыми токами замыкания на землю и без компенсации емкостных токов; если заземляющее устройство одновременно используется для электроустановок напряжением до 1000 В, то сопротивление заземления не должно превышать 125/I3, но не более 10 Ом (или 4 Ом, если это требуется для установок до 1000 В). Здесь I3 — ток замыкания на землю.

Оборудование, подлежащее заземлению. Защитному заземлению подлежат металлические нетоковедущие части электрооборудования, которые из-за неисправности изоляции могут оказаться под напряжением, и к которым возможно прикосновение людей и животных. При этом в помещениях с повышенной опасностью или особо опасных заземление является обязательным при номинальном напряжении электроустановки выше 36 В переменного и 110 В постоянного тока, а в помещениях без повышенной опасности — при напряжении 500 В и выше. Лишь во взрывоопасных помещениях заземление выполняется независимо от величины напряжения.


Предыдущая Что такое защитное заземление Вперед

ohrana-bgd.narod.ru

Принцип работы

Обычно его устанавливают для защиты при возникновении короткого замыкания. Если фазный проводник отсоединится и прикоснется к металлическому шасси установки, то корпус окажется под напряжением.

Правильно созданное защитное заземление образует электрическую цепь, имеющую низкое сопротивление. Именно этот путь является наиболее благоприятным для электрического тока, поэтому случайное прикосновение человека к корпусу не будет опасным (рис. выше).

Надо отметить, что такое устройство одновременно будет выполнять несколько важных функций:


  1. Оно обеспечит защиту и в том случае, когда потенциально опасное напряжение на корпусе образовано не коротким замыканием, а индукционными токами. Такие ситуации возможны в установках с высоким напряжением и там, где допустимо воздействие излучения СВЧ.
  2. При использовании глухозаземленной нейтрали и некоторых других схем подключения в цепи питания при коротком замыкании возникнут продолжительные и большие по амплитуде импульсы, достаточные для срабатывания автоматов, отключающих напряжение.
  3. Если заземленное оборудование подвергнется удару молнии, то такой проводник обеспечит определенную защиту от повреждений.

Чтобы не ошибаться с терминологией, надо понимать действительное значение следующих названий:

  • Рабочим называют заземление, которое выполняет функции второго проводника. Его используют для электрического питания установок, решения иных задач.
  • Упомянутая выше защита от молнии не является целевым предназначением. Для обеспечения безопасности при грозах применяют специально предназначенные для этого устройства. Они рассчитываются на относительно большие величины токов и напряжений.

Схемы подключения

Чтобы выбрать оптимальный вариант необходимо знать, для каких целей применяется защитное заземление в конкретном случае. Ниже рассмотрены разные системы, их особенности, преимущества и недостатки.

Тип TN, с глухозаземленной нейтралью. По этой схеме подключается промышленное и бытовое оборудование, работающее в сетях с напряжением до и выше 1000 V. Нейтраль генератора (трансформатора) источника питания подключается к заземлителю. Устройства потребителей, а точнее корпуса, экраны, шасси, подсоединяют к общему проводнику.


Если электрическая схема создана в соответствии с международными стандартами, то по надписям можно понять следующее. Латинской буквой «N» обозначают «нулевой» проводник, который используется для работы оборудования. Его так и называют, функциональным. «PE» – проводник, использующийся для создания защитной цепи.  Буквами «PEN» обозначают проводник, предназначенный для решения функциональных и защитных задач.

Чаще всего используют следующие схемы. Их наименования отличаются буквой, которую через дефис добавляют к «TN».

Схемы подключения

Система Принцип работы Преимущества, недостатки, особенности
C В системе «С» проводник выполняет рабочие и защитные функции одновременно. В качестве примера можно вспомнить типовое трехфазное электропитание с глухозаземленной нейтралью, являющейся нулевым проводом. Эта схема относительно проста и экономична.

рпуса устройств потребителей подключают непосредственно к нейтрали. Недостатком является утеря защитных свойств, если электрическая цепь разорвана. Такое повреждение нельзя исключить при аварийном повышении тока, нагреве и разрушении проводника. В такой ситуации на корпусе появится опасное напряжение. При использовании таких систем особо тщательно подбирают автоматы, которые должны быстро и надежно отключать питающее напряжение.
S В этой схеме используются два раздельных нулевых проводника, рабочий и защитный. Несколько проводников увеличивают стоимость системы, но существенно повышают надежность защиты.
C-S Это – комбинированная система. Генерирующий источник подсоединяется к глухозаземленной нейтрали. К потребителю идут только четыре проводника (трехфазное питание). В объекте недвижимости добавляется защитный проводник «PE». Низкая по сравнению с предыдущим вариантом стоимость сопровождается меньшей надежностью. При повреждении проводника на участке до объекта (или к «PE») защитные функции будут утрачены. В соответствии с действующими нормами при использовании таких систем требуется предотвратить механическое повреждение соответствующих проводников.

Достаточно высокие риски возникают при использовании воздушных линий электропередач. Они могут быть повреждены ураганом, иными негативными внешними воздействиями. Для обеспечения высокого уровня безопасности применяют схему TT.


Глухозаземленную нейтраль подсоединяют к генератору. Передача энергии осуществляется по четырем проводам. У потребителя устанавливают автономную систему заземления, к которой подключаются корпуса оборудования.

IT – последняя схема на рисунке. Здесь нейтральный провод генератора (другого источника) изолирован. Корпуса электрических установок заземлены. Подобные решения применяются часто в исследовательских центрах, чтобы паразитные наводки не искажали показания чувствительной аппаратуры.

Виды

Чтобы сопротивление было минимальным, желательно сократить длину защитного проводника. Это обеспечивают с помощью создания заземляющего контура по периметру объекта.

Заземлители разделяют также на искусственные и естественные. Это распределение по группам условно, так как в обоих случаях используются металлические части конструкций, находящиеся в земле:

  • В первом – их создают специально, для системы заземления. Такой подход позволяет точно рассчитать сопротивление, размеры отдельных частей, иные важные параметры.
  • Второй вариант предусматривает подсоединение к металлическим частям конструкции здания, арматуре фундаментных блоков. Он экономичнее, так как для защиты применяются некоторые готовые детали. Однако надо учитывать, что для подключения оборудования понадобится прокладка соответствующих линий, которые будут иметь определенное нормативами сопротивление. Недостатком является относительная доступность обычному персоналу.

В частности, имеет значение уровень влажности.  При расчете проверяют удельное сопротивление и другие особенности грунтов.

elquanta.ru

Рабочее или функциональное заземление

В разделе ПУЭ в параграфе № 1.7.30 дано определение рабочего заземления: «рабочим называют заземление одной или нескольких точек токоведущих частей электроустановки, которое служит не в целях безопасности».

Такое заземление подразумевает электрический контакт с грунтом. Оно необходимо для нормальной эксплуатации электроустановки в штатном режиме.

Назначение функционального заземления

Для того чтобы понять, что называется рабочим заземлением, следует знать его основное назначение – устранение опасности удара током в случае соприкосновения человека к корпусу электроустановки или к её токоведущим частям, которые в данный момент находятся под напряжением.

Такая защита применяется в сетях с трёхфазной системой распределения тока. Изолированная нейтраль необходима для электросети, где напряжение не превышает 1 кВ. В сетях с напряжением свыше 1 кВ защитное заземление допускается делать с любым режимом нейтрали.

Как работает защитное (функциональное) заземление

что называется рабочим заземлением

Принцип действия функционального заземления заключается в снижении напряжения между корпусом, который в результате непредвиденной аварии оказался под током, и землёй до безопасной для человека величины.

Если корпус электроустановки, оказавшийся под током, не оснащён функциональным заземлением, то прикосновение человека к нему равносильно контакта с фазным проводом.

Если учесть, что сопротивление обуви человека, который дотронулся до электроустановки, и пола, на котором он стоит, ничтожно мала относительно земли, то ток может достигнуть опасной величины.

При правильной работы функционального заземления ток, проходящий через человека, будет безопасным. Напряжение во время прикосновения также будет незначительным. Основная часть электроэнергии будет уходить через заземляющий проводник в землю.

Различия между рабочим и защитным заземлениями

Рабочее и защитное заземление отличается друг от друга прежде всего назначением. Если первое необходимо для обеспечения правильной и бесперебойной работы электрооборудования, то второе служит для защиты людей от поражения электрическим током. Также оно защищает и оборудование от поломок в случае пробоя какого-нибудь электрического прибора на корпус. Если здание оборудовано громоотводом, такой тип заземления защитит приборы от перегрузки в случае удара молнии.

Рабочее заземление электроустановок, в случае возникновения чрезвычайной ситуации, сыграет роль защитного, но основная её функция – обеспечение правильной бесперебойной работы электрооборудования.

В неизменном виде функциональное заземление применяют только на промышленных объектах. В жилых домах используется заземляющий проводник, который подводится к розетке. Однако есть бытовые приборы в доме, которые таят в себе потенциальную опасность для потребителя, поэтому не будет лишним заземлить их, используя глухозаземлённую нейтраль.

Домашние приборы, которые требуется подключить к рабочему заземлению:

  1. Микроволновка.
  2. Духовка и плита, которые работают за счёт электричества.
  3. Стиральная машина.
  4. Системный блок персонального компьютера.

Конструкция заземления

заземляющий проводник

Рабочее заземление представляет собой вбитые в землю железные штыри, играющие роль проводников, на глубину около 2-3 метров.

Такие металлические прутья соединяют заземлительные клеммы электрооборудования с шиной заземления, тем самым образуя металлосвязь.

Металлосвязь есть в каждом жилом доме. Это сварная железная конструкция, которая соединяет друг с другом верхние концы заземлителей. Её заводят к вводному щитку дома для дальнейшей разводки по квартирам.

В качестве заземляющего проводника используют шину или провод с сечением не менее 4 кв. мм, окрашенные в жёлтые и зелёные полосы. Кабель в основном используют для переноса функционального заземления от шины к шине.

В целях безопасности проводится периодическая проверка электронного сопротивления металлической связи заземления. Оно измеряется от клеммы заземления электроустановки до наиболее удалённого от неё наземного контура заземления. Показатель сопротивления в любой части рабочего заземления не должен превышать 0,1 Ом.

Для чего делают несколько заземлителей

рабочее и защитное заземление

Электроустановку нельзя оснащать только одним заземлителем, поскольку почва является нелинейным проводником. Сопротивление земли находится в сильной зависимости от напряжения и площади контакта с воткнутыми штырями рабочего заземления. У одного заземлителя площадь контакта с почвой будет недостаточной, чтобы обеспечить бесперебойную работу электроустановки. Если установить 2 заземлителя на расстоянии в несколько метров друг от друга, то появляется достаточная площадь контакта с землёй. Однако следует помнить, что разносить слишком далеко металлические части заземления нельзя, поскольку связь между ними прервётся. В итоге останется только два отдельно установленных в почву заземлителя, никак не связанных друг с другом. Оптимальное расстояние между двумя контурами заземления составляет 1-2 метра.

Как нельзя осуществлять заземление

рабочее заземление электроустановок

Согласно параграфу 1.7.110 ПУЭ, запрещается использовать в качестве рабочего заземления любые виды трубопроводов. Кроме того, запрещено выводить заземляющий кабель наружу и подключать его к неподготовленной контактной площадке на шине. Такой запрет объясняется тем, что каждый металл имеет свой индивидуальный потенциал. При воздействии внешних факторов образуется гальванический пар, который способствует процессу электроэрозии. Коррозия может распространиться под оболочку заземляющего провода, что повышает опасность его оплавления во время подачи больших токов на контур заземления в случае аварии. Специальная защитная смазка предотвращает разрушение металла, но действует она лишь в сухом помещении.

Также ПУЭ запрещает осуществлять поочерёдное заземление электроустановок друг с другом, подключать более одного кабеля на одну площадку заземляющей шины. Если пренебречь такими правилами, то в случае аварии на одной установке она будет создавать помехи в работе соседа. Такое явление называется электрической несопоставимостью. При неправильном подключении рабочего заземления работы по устранению недостатков опасны для жизни.

Требования к заземляющим конструкциям

Чтобы разобраться в том, что называется рабочим заземлением, а также какие требования предъявляются к таким конструкциям, следует знать, что для защиты людей от удара электрическим током, напряжение которого не превышает 1000 В, необходимо заземлять абсолютно все металлические части электрооборудования. Немаловажно, чтобы все конструкции, построенные в целях заземления, отвечали всем нормам безопасности, предъявляемым для обеспечения нормальной работоспособности сетей и дополнительных предохранителей от возможной перегрузки.

Опасность соприкосновения с токоведущими частями

При контакте человека с токоведущими частями электрической цепи или с металлическими конструкциями, которые оказались под напряжением в результате нарушения изоляционного слоя кабеля, возможно поражение электрическим током. Полученная травма проявляется в виде ожога на кожном покрове. От такого удара человек может потерять сознание, возможна остановка дыхания и сердца. Встречаются случаи, когда удар тока при малом напряжении приводит к смерти человека.

Меры предосторожности от поражения током

рабочее заземление определение

Чтобы максимально обезопасить людей от контакта с токоведущими частями электроустановки, а также с её металлическими частями, необходимо полностью изолировать опасный объект. Для этого устанавливают различные ограждения вокруг электроустановок.

fb.ru

Основные цели, задачи заземления

Основной задачей защитного заземления, согласно требованиям ГОСТа – предупреждение воздействия на людей пиковыми токами при КЗ и отведения напряжения с корпусов электроустановок через устройство заземления в грунт. Все меры принимаются для предупреждения возможностей получения электротравм.

Принцип действия защитного зануления и заземления – понижение до минимального уровня силы тока и поражающих факторов при прикосновении к короткозамкнутым деталям электроприборов и установок. При этом происходит понижение уровня напряжения на корпусах защищенных приборов, потенциалы выравниваются в связи с ростом этой величины на поверхности до уровня равного потенциала оборудования с земляным проводом.

Что такое защитное заземление

Областью применения являются трехфазное оборудование и цепи. Они должны оборудоваться глухозаземленной нейтралью при напряжении ниже 1000. В, при большем напряжении цепи выбирается любой способ проведения нейтрального провода.

Основной целью устройства защиты является снижение уровня напряжения до безопасного значения на корпусе оборудования и контуре защиты, а также снижение силы тока, идущего через корпус человека при касании участка под напряжением. Номинальное значение напряжения цепи переменного тока свыше 380 В и значении постоянного тока в 440 В – такие электрические цепи подлежат обязательному оснащению заземлением, особенно при особо опасных условиях и местах повышенной опасности.

Обязательно должны заземляться устройство с металлическим корпусом:

  • Что такое защитное заземлениестанки;
  • приборы;
  • корпуса электрощитовых;
  • пульты управления механизмами;
  • металлический корпус кабеля и муфт;
  • металлические трубы для укладки проводов.

При КЗ фазного провода на корпуса устройств, и касании человека их рукою, через его тело проходит опасный по величине электрический ток. При заземлении, основная часть напряжения уйдет на контур, потому, что его сопротивление меньше чем человеческого тела.

Отличие рабочего заземления от защитного

Рабочее заземление. Принцип работы – это выполнение соединения с землей несколько отдельно стоящих объектов электросхемы здания. Это могут быть нейтраль обмотки генератора, и других различных устройств. Оно предназначено для обеспечения правильной работы электроустановки, независимо от условий его применения. Осуществление этого вида защиты происходит, непосредственно соединяя заземляемые корпуса электроустановок с заземлителями.

Что такое защитное заземление

Достаточно редко, рабочее заземление может проводиться с помощью специализированных приспособлений – это могут быть пробивные предохранители, резисторы.

Защитное зануление и заземление, как указывалось выше, выполнение работ по электрическому соединению с металлическими нетоковедущими частями устройств. При этом основной работой защитного контура, является предохранение нанесения электротравм при касании человеком корпуса оборудования, потому, что ток с него отводится на заземляющий контур, сопротивление которого меньше чем сопротивление человеческого тела.

Поэтому отличием этих двух защитных устройств, является принцип их работы. Если рабочее уравнивает потенциалы, то защитное отводит ток на заземляющий контур, как правило, по глухозаземленной нейтрали. Но при оснащении своего помещения любым из видов защиты, наибольшая эффективность работы, будет достигаться при условии, что токи короткого замыкания не будут увеличиваться в связи с уменьшением уровня сопротивления заземлителя.

Что такое защитное заземление

Еще о чем следует помнить. Ни один заземляющий контур не сможет выполнить работу автоматов отключения тока и устройства защитного отключения при утечках тока. А также эти приборы, не смогут выполнить свою работу надежно, без защитного заземления.

Требования к защитному заземлению

Защитное заземление – это наиболее жесткое устройство, чем зануление цепи. Здесь предусмотрена прокладка отдельной шины, довольно небольшого уровня сопротивления, которая идет к системе заземлителей, забитых в землю в виде треугольника. Расчет защитного заземления, требует знания множества формул и наличия множества исходных данных. Поэтому принято для жилого фонда применять типовые проекты контура заземления для каждого региона.

Установка зануления предусматривает прокладку шины нейтрали или любого другого способа отвода тока в однофазной цепи. При этом, значения сопротивлений каждого проводника зануления до подстанции или питающего трансформатора, складываясь, образуют значение сопротивления защитного устройства. Эта величина может изменяться, но требования к защитному заземлению и занулению, предусматриваю общее значение максимально возможного уровня сопротивления цепи.

Бытовое заземление

Что такое защитное заземлениеКак правило, системы электроснабжения, должны иметь сопротивление защитного заземления, должно быть от 4 Ом, до 30 Ом. Для обустройства, как правило, применяют стальные уголки и полоса шириной 40 мм. Предусматривают использование медной шины, достаточного сечения, согласно ГОСТу. Это обязательное требование. При использовании защитного проводника с медным проводом 0,5 мм2 нам не хватит и 100 метров провода для достижения критического значения. Наиболее строгие требования предъявляются при обслуживании участков:

  1. Установки, с напряжением цепи до 1000. В, оснащаются устройством, сопротивление которого, не должно превышать 0,5 Ома. Значение заземленного контура измеряют при помощи специального измерительного прибора – измерителем сопротивления. Это измерение проводится двумя дополнительными заземлителями. Разведя их на определенное расстояние, выполняем замер, затем сдвигая электрод, проводим несколько замеров. Самый худший результат принимается за номинальное значение.
  2. Для обслуживания цепи трансформатора, других источников питания, при величинах напряжения от 220 В до 660 В – величина сопротивления заземления должна быть от 2 Ом до 8 Ом.

evosnab.ru

Одними из эффективных средств защиты от поражения электрическим током являются защитное заземление и зануление электроустановок. В соответствии с ГОСТ 12.1.009–76:

защитное заземление это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением;

зануление это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

В вопросах применения и практического выполнения защитного заземления и зануления следует руководствоваться требованиями не только ПУЭ, но и ГОСТ Р 50571. В ГОСТ Р 50571.2– 94 «Электроустановки зданий. Часть 3. Основные характеристики» приводится классификация систем заземления электрических сетей: IT, TT, TN–С, TN–C–S, TN–S (рис.2).

Применительно к сетям переменного тока напряжением до 1 кВ обозначения имеют следующий смысл.

Первая буква – характер заземления источника питания (режим нейтрали вторичной обмотки трансформатора):

  • I – изолированная нейтраль;

  • Т – глухозаземленная нейтраль.

Вторая буква – характер заземления открытых проводящих частей (металлических корпусов) электроустановки:

  • Т – непосредственная связь открытых проводящих частей (ОПЧ) с землей (защитное заземление);

  • N – непосредственная связь ОПЧ с заземленной нейтралью источника питания (зануление).

Последующие буквы (если они имеются) – устройство нулевого рабочего и нулевого защитного проводников:

  • С – нулевой рабочий (N) и нулевой защитный (РЕ) проводники объединены по всей сети;

  • CS – проводники N и РЕ объединены в части сети;

  • S – проводники N и РЕ работают раздельно во всей сети

Что такое защитное заземление

Рис. 2. Разновидности систем заземления

Проводники, используемые в различных типах сетей, должны иметь определенные обозначения и расцветку (табл. 1).

Таблица 1

Обозначение проводников

Наименование проводника

Обозначение

Расцветка

буквенное

графическое

Нулевой рабочий

N

Что такое защитное заземление

Голубой

Нулевой защитный (защитный)

PE

Что такое защитное заземление

Желто-зеленый

Совмещенный нулевой рабочий и нулевой защитный

PEN

Что такое защитное заземление

Желто-зеленый с голубыми по концам метками, наносимыми при монтаже

Фазный

в трехфазной сети

L1, L2, L3

Все цвета, кроме вышеперечисленных

в однофазной сети

L

Область применения этих способов защиты определяется режимом нейтрали и классом напряжения электроустановки.

Защитное заземление состоит (рис.3) из заземлителя 3 (металлических проводников, находящихся в земле с хорошим контактом с ней) и заземляющего проводника 2, соединяющего металлический корпус электроустановки 1 с заземлителем.

Что такое защитное заземление

Рис. 3. Схема защитного заземления:

1 — электроустановка; 2 — заземляющий проводник; 3 — заземлитель

Совокупность заземлителя и заземляющих проводов называют заземляющим устройством. Защитное заземление применяют в трехфазных трехпроводных и однофазных двухпроводных сетях переменного тока напряжением до 1000 В с изолированной нейтралью, а также в сетях напряжением выше 1000 В переменного и постоянного тока с любым режимом нейтрали.

Защитное действие заземляющего устройства основано на снижении до безопасной величины тока, проходящего через человека в момент касания им поврежденной электроустановки.

При попадании напряжения на корпус электроустановки человек, коснувшись ее и имея хороший контакт с землей, замыкает собой электрическую цепь: фаза L1 — корпус электроустановки 1 — человек — земля — емкостные ХL3, ХL2 и активные RL3, RL2 сопротивления связи проводов с землей, фазы L3 и L2. По человеку пойдет ток. Несмотря на то что электрические провода сети установлены на изолированных опорах, между ними и землей существует электрическая связь. Она происходит за счет несовершенства изоляции проводов, опор и т. п. и наличия емкости между проводами и землей. При большом протяжении проводов эта связь становится значительной, а ее активное R и емкостное X сопротивления снижаются и становятся соизмеримыми с сопротивлением тела человека. Вот почему, несмотря на отсутствие видимой связи, человек, находящийся под напряжением и имеющий контакт с землей, замыкает собой электрическую цепь между различными фазами сети.

При наличии заземляющего устройства образуется дополнительная цепь: фаза L1 — корпус электроустановки — заземляющее устройство — земля — сопротивления ХL3, RL3, XL2, RL2 — фазы L3 и L2. В результате этого ток замыкания распределяется между заземляющим устройством и человеком. Так как сопротивление заземлителя (оно должно быть не более 10 Ом) во много раз меньше сопротивления человека (1000 Ом), то через тело человека будет проходить малый ток, не вызывающий его поражения. Основная часть тока пойдет по цепи через заземлитель.

Заземлители могут быть естественными и искусственными. В качестве естественных заземлителей используют металлические конструкции и арматуру зданий и сооружений, имеющие хорошее соединение с землей, проложенные в земле водопроводные, канализационные и другие трубопроводы (за исключением трубопроводов горючих жидкостей, горючих и взрывоопасных газов и трубопроводов, покрытых изоляцией для защиты от коррозии).

В качестве искусственных заземлителей применяют одиночные или соединенные в группы металлические электроды, забитые вертикально или уложенные горизонтально в землю. Электроды изготавливают из отрезков металлических труб диаметром не менее 32 мм и толщиной стенок не менее 3,5мм, угловой стали с толщиной полок не менее 4 мм, полосы сечением не менее 100 мм2, а также из отрезков швеллеров, прутковой стали диаметром не менее 10мм. Электроды, выполненные из более тонких профилей, вследствие коррозии быстро выходят из строя. Кроме того, тонкие профили имеют малый контакт с землей, поэтому их применение нежелательно. Длину электродов и расстояние между ними принимают не менее 2,5–3,0 м.

Между собой вертикальные электроды в групповом заземлителе соединяют с помощью сварки перемычкой, выполненной из аналогичных материалов и тех же сечений, что и сами электроды. Заземляющее устройство должно иметь вывод наружу (на поверхность земли), выполненное на сварке из таких же материалов. Оно служит для подсоединения заземляющего проводника.

Для осуществления заземляющих функций сопротивление заземляющего устройства в электроустановках напряжением до 1000 В в сети с изолированной нейтралью должно быть не более 4 Ом.

Необходимое сопротивление достигают установкой соответствующего количества электродов в заземлителе, определяемых расчетом.

Сопротивление заземляющего устройства — это отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю. Различают выносное и контурное заземляющие устройства.

Выносное устройство располагают за пределами площадки с заземляемым оборудованием. Его достоинство состоит в возможности выбора грунта с наименьшим удельным сопротивлением.

Контурное заземление выполняют забивкой электродов по контуру заземляемого оборудования и между ним. Такая установка электродов создает дополнительный защитный эффект за счет повышения и выравнивания (более равномерного распределения) потенциалов земли в зоне нахождения человека.

Занулениеэто преднамеренное электрическое соединение металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением, с глухозаземленной нейтралью источника тока (генератора или трансформатора).

В четырехпроводных сетях с нулевым проводом и глухозаземленной нейтралью источника тока напряжением до 1000 В зануление — основное средство защиты.

Подсоединение корпусов электроустановок к нейтрали источника тока осуществляют с помощью нулевого защитного проводника (РЕ — проводника). Его нельзя путать с нулевым рабочим проводом (N — проводником), который также соединен с нейтралью источника, но служит для питания однофазных электроустановок. Нулевой защитный проводник прокладывают по трассе фазных проводов, в непосредственной близости от них.

Защитное действие зануления основано на снижении до безопасной величины тока, проходящего через человека в момент касания им поврежденной электроустановки, и последующем отключении этой установки от сети.

Работает зануление следующим образом: при попадании напряжения на корпус зануленной электроустановки 8 (рис. 4) большая часть тока с него пойдет в сеть через нулевой защитный провод 6. По цепи: корпус электроустановки 8 — человек — земля — заземляющее устройство 9 — нулевой рабочий провод 5 — пойдет незначительный ток, не вызывающий поражения (ввиду более высокого сопротивления этой цепи по сравнению с сопротивлением цепи через нулевой защитный провод 6).Одновременно с этим замыкание на корпус фазного провода при такой схеме защиты автоматически превращается в однофазное короткое замыкание между фазным и нулевым рабочим проводом 5 сети, в результате чего через 0,2—7 с срабатывает токовая защита (перегорает предохранитель 7, срабатывает автоматический выключатель и т. п.), и электроустановка, а вместе с ней и человек, полностью обесточиваются.

Таким образом, в первоначальный момент зануление работает аналогично защитному заземлению, а в последующем оно полностью прекращает действие тока на человека. Только при этом ток, проходящий через тело человека до срабатывания защиты, будет в несколько раз меньше, т.к. сопротивление зануляющего проводника обычно не превышает 0,3 Ом, а сопротивление заземлителя допускается до 4 Ом.

Что такое защитное заземление

Рис. 4. Схема зануления:

1 — заземлитель нейтрали трансформатора; 2 — источник тока (трансформатор); 3 — нейтраль источника тока; 4 — зануление корпуса трансформатора; 5 — нулевой рабочий (он же и нулевой защитный) провод сети; 6 — нулевой защитный провод электроустановки; 7 — предохранитель; 8 — электроустановка; 9 — повторное заземление нулевого защитного провода сети

В зануленных электроустановках до 1 кВ с глухозаземленной нейтралью с целью надежного обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых защитных проводников и их соединений должна обеспечить ток короткого замыкания, превышающий не менее чем в 3 раза номинальный ток плавкого элемента ближайшего предохранителя или автоматического выключателя, имеющего расцепитель с обратнозависимой от тока характеристикой (тепловой расцепитель), в 1,4 раза — для автоматических выключателей с электромагнитными расцепителями с силой номинального тока до 100 А и в 1,25 раза — с величиной тока более 100 А.

В зануленных электроустановках до 1 кВ с глухозаземленной нейтралью (с целью надежного обеспечения автоматического отключения аварийного участка) проводимость фазных и нулевых защитных проводников и их соединений должна обеспечить ток короткого замыкания.

Нулевой защитный провод 5 сети (рис. 4) должен обеспечивать надежное соединение корпусов электроустановок с нейтралью источника, поэтому все соединения выполняют сварными. В нем запрещается установка предохранителей и выключателей (за исключением случая одновременного отключения и фазных проводов).

Нулевой защитный провод 5 сети заземляют: у источника тока с помощью заземлителя 1; на концах воздушных линий (или ответвлений от них) длиной более 200 м; а также на вводах воздушной линии к электроустановкам. Повторные заземления 9 необходимы для уменьшения опасности поражения электрическим током при обрыве нулевого провода и замыкании фазы на корпус электроустановки за местом обрыва, а также для снижения напряжения на корпусе в момент срабатывания токовой защиты.

Согласно ПУЭ сопротивление заземляющего устройства, к которому присоединена нейтраль источника тока, с учетом естественных и повторных заземлителей нулевого провода должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях источника трехфазного тока 660, 380 и 220 В.

Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN–проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях.

При удельном сопротивлении земли ρо > 100 Ом∙м допускается увеличивать указанные нормы в 0,01 ρо раз, но не более десятикратного.

Зануление (заземление) металлических корпусов переносных электроустановок осуществляют третьей жилой для однофазных или четвертой жилой для трехфазных электроприемников, находящейся в одной оболочке с фазными проводами.

Жилы этих проводов должны быть гибкими, медными, их сечение должно быть равно сечению фазных проводников и быть не менее 1,5 мм2.

Втычные соединители (вилки и розетки) должны быть выполнены так, чтобы соединение заземляющих и нулевых защитных проводников происходило до соединения фазных проводников, а рассоединение происходило в обратной последовательности. Обычно это достигают применением у вилки более длинного штыря для защитного проводника, чем для фазных проводов. Во всех случаях вилку подсоединяют к электроприемнику, розетку — к сети.

    1. Средства индивидуальной защиты от поражения электрическим то­ком

Средства индивидуальной защиты от поражения электрическим то­ком — электрозащитные сред­ства (ЭЗС), которые делятся на ос­новные и дополнительные.

Основные ЭЗС — это средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановок, что позволяет с помощью их прикасаться к токоведущим частям, находящимся под напряжением.

Для работы на электроустанов­ках до 1000 В к ним относятся: изолирующие штанги, изолирую­щие и электроизмерительные клещи, диэлектрические перчатки, слесарно-монтажный инструмент с изолированными рукоятка­ми, указатели напряжения.

При напряжении электроустановки свыше 1000 В основные средства включают изолирующие штан­ги, изолирующие и электроизмерительные клещи, указатели на­пряжения.

Дополнительные ЭЗС — это средства защиты, изоляция ко­торых не может длительно выдерживать рабочее напряжение электроустановок. Они применяются для защиты от напряжения прикосновения и шага, а при работе под напряжением исключи­тельно с основными ЭЗС.

К ним относятся: при напряжении до 1000 Вдиэлектрические галоши, коврики, изолирующие подставки; свыше 1000 Вдиэлектрические перчатки, боты, ков­рики, изолирующие подставки. ЭЗС должны иметь маркировку с указанием напряже­ния, на которое они рассчитаны, их изолирующие свойства под­лежат периодической проверке в установленные нормативами сроки.

Сроки испытаний защитных средств от поражения электрическим током представлены в табл.2.

Таблица 2

Сроки испытаний защитных средств от поражения электрическим током (фрагмент)

Защитное средство

Напряжение электроуста-новки

Срок периодичес-ких испытаний, мес.

Срок периодических осмотров, мес.

Изолирующие клещи

до 1000В

24

12

Указатели напряжения, работающие на принципе протекания активного тока

до 500В

12

перед употреблением

Инструмент с изолирующими рукоятками

до 1000В

12

то же

Перчатки резиновые диэлектрические

до 1000В

6

то же

Галоши резиновые диэлектрические

до 1000В

12

6

Коврики резиновые диэлектрические

до 1000В

24

12

studfiles.net


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.