Для каких целей применяется защитное заземление


Важной мерой, обеспечивающей электробезопасность обслуживающего электроустановки персонала, является защитное заземление или зануление металлических нетоковедущих (конструктивных) частей электроустановок и электрооборудования, нормально не находящихся под напряжением, но могущих оказаться под напряжением относительно земли в аварийных режимах (в случае повреждения изоляции).

Заземлением называется преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

Заземление подразделяется на:

  1. рабочее заземление;
  2. защитное заземление.

ПУЭ дают следующие основные определения в отношении заземлений:

Рабочим заземлением называется заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (для обеспечения надлежащей работы установки в нормальных и аварийных режимах).


Рабочее заземление может осуществляться непосредственно или через специальные аппараты (сопротивления, разрядники, реакторы и др.)

Защитным занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.

Нулевой защитный проводник – защитный проводник в электроустановках до 1 кВ, предназначенный для присоединения открытых проводящих частей к глухозаземленной нейтрали источника питания.

Нулевой рабочий (нейтральный) проводник (N) – проводник в электроустановках до 1 кВ, предназначенный для питания электроприемников и соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока.

Заземляющее устройство – совокупность заземлителя и заземляющих проводников.

Заземляющий проводник – проводник, соединяющий заземляющую точку с заземлителем.

Заземлитель – проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.


Напряжение на заземляющем устройстве – напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземлитель и зоной нулевого потенциала.

Сопротивление заземляющего устройства – отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.

Заземление служит для превращения замыкания на корпус в замыкание на землю с целью снижения напряжения на корпусе относительно земли до безопасной величины.

Защитное заземление

Основное назначение защитного заземления:

  1. устранение опасности поражения электрическим током в случае прикосновения к корпусу или другим нетоковедущим металлическим частям электроустановки оказавшимся под напряжением.

Защитное заземление применяют в 3 х х фазных сетях до 1 кВ с изолированной нейтралью и в сетях выше 1 кВ с любым режимом нейтрали . Принципиальная схема защитного заземления представлена на рис. 4.7.

Для каких целей применяется защитное заземление

Рис.4.7. Принципиальные схемы защитного заземления (а) в сети с изолированной нейтралью и (б) в сети с заземленной нейтралью.
1 – корпуса защитного оборудования;
2 – заземлитель защитного заземления;
3 – заземлитель рабочего заземлений нейтрали источника тока; R3 и Ro – сопротивления защитного и рабочего заземлений.


Принцип действия защитного заземления основан на снижении напряжения между корпусом, оказавшимся под напряжением, и землёй до безопасной величины .

Поясним это на примере сети до 1 кВ с изолированной нейтралью.

Если корпус электрооборудования не заземлен и он оказался в контакте с фазой, то прикосновение к такому корпусу человека равносильно прикосновению к фазному проводу. В этом случае ток, проходящий через человека, можно определить по формуле (2.5).

Для каких целей применяется защитное заземление

При малом сопротивлении обуви, пола и изоляции проводов относительно земли этот ток может достигать опасных значений.

Если же корпус заземлён, то ток, проходящий через человека при R об = R n = 0, можно определить из следующего выражения:

Для каких целей применяется защитное заземление (4.1)

Это выражение получено следующим путем:

с заземленного корпуса (рис. 4.8) ток стекает в землю через заземлитель (I з ) и через человека (I h ). Общий ток определяется выражением:

Для каких целей применяется защитное заземление

где:
R общ – общее сопротивление параллельно соединенных R з и R h :

Для каких целей применяется защитное заземление


Для каких целей применяется защитное заземление

Рис.4.8. К вопросу о принципе действия защитного заземления в сети с изолированной нейтралью.

Из схемы на рис. 4.8

I h ×R h =I з R з = I общ ×R общ., откуда ток через тело человека будет:

Для каких целей применяется защитное заземление

выполнив простейшие преобразования получим выражение (4.1).

При малом R з по сравнению с R h и R из это выражение упрощается:

Для каких целей применяется защитное заземление(4.2)

где:
R з – сопротивление заземления корпуса, Ом

При R з = 4 Ом, R h =1000 Ом, R из =4500 Ом, ток через тело человека будет:

Для каких целей применяется защитное заземление

Такой ток безопасен для человека.

Напряжение прикосновения в этом случае будет также незначительно:

U пр =I h ×R h = 0,00058×1000=0,58 В

Чем меньше R з – тем лучше используются зашитные свойства защитного заземления.

Функциональное заземление.. Защитное заземление.. Источники помех в сетях заземления.. Способы защиты оборудования от помех.. Сеть с изолированной нейтралью..


льваническая развязка по питанию.. Разделительный трансформатор.. Электромагнитная совместимость оборудования (ЭМС).. Варианты функционального заземления.. Реконструкция действующих объектов.. Проектирование новых объектов.. Независимое функциональное заземление.. Главная заземляющая шина (ГЗШ).. Шина функционального заземления (ШФЗ).. Зона нулевого потенциала.. Защитная шина РЕ.. Функциональная шина FE.. Шина уравнивания потенциалов.. Сопротивление функционального заземления.. Обоснование проектных решений.. Ящик функционального заземления..

Функциональное (рабочее) заземление используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в обычном режиме, не в целях электробезопасности, поэтому его использование в качестве единственной системы заземления категорически запрещается.

Данный вид заземления может совмещаться с защитным заземлением или выполняться дополнительно к нему исходя из требований производителя оборудования, заказчика или нормативных документов.

Защитное заземление зачастую является источником перенапряжений и кондуктивных помех в слаботочных системах автоматического управления, измерительного, информационного или другого чувствительного к воздействию помех оборудования, что побуждает к поиску эффективных способов защиты подобного оборудования от различного рода помех и перенапряжений.

Способы защиты информационного оборудования от помех


1. Сеть с изолированной нейтралью. Радикальным решением описанных выше проблем с помехами по защитному заземлению является применение гальванической развязки по питанию (IT – сеть) с раздельным заземлением силовой и измерительной части системы, что исключает протекание токов помехи от силовой земли.
Осуществление гальванической развязки может выполняться с помощью развязывающего (разделительного) трансформатора или с помощью автономных источников питания: гальванических батарей и аккумуляторов.

Основная идея гальванической развязки заключается в том, что в электрической цепи полностью устраняется путь, по которому возможна передача кондуктивной помехи. Поскольку в такой сети нет гальванической связи между землей, фазой и нейтралью, то не образуется замкнутый токовый контур с землей и касание любого из силовых выходов разделительного трансформатора является безопасным. Токи утечки на землю составляют микроамперы, что значительно меньше уровня токов безопасности и не представляет угрозы для человека.
Разделительный трансформатор, кроме того, является хорошей защитой от импульсных, грозовых перенапряжений, что обеспечивает более надежную работу подключенной аппаратуры.
Таким образом , высокая надежность, электробезопасность и помехозащищенность сетей с изолированной нейтралью является их неоспоримым преимуществом.
Вместе с тем, применение разделительных трансформаторов с системами контроля изоляции (СКИ) требует достаточно больших затрат и возникает законный вопрос о целесообразности таких расходов. Эта тема заслуживает .


2. Электромагнитная совместимость оборудования (ЭМС).

В большинстве случаев сбоев и отказов в работе систем автоматики, вычислительной и измерительной техники можно избежать соблюдением требований электромагнитной совместимости оборудования и правил выполнения заземления таких систем:

Применение оборудования, которое отвечает требованиям соответствующих стандартов на электромагнитную совместимость (ЭМС);
Применение в цепях питающих фидеров устройства защиты от перенапряжений;
Присоединение металлических оболочек кабелей к совмещенной системе уравнивания потенциалов;
Разделение силовых и сигнальных кабелей и правильное выполнение их пересечений;
Применение сигнальных и информационных кабелей, соответствующих требованиям изготовителя к электромагнитной совместимости;
Силовые и сигнальные кабели должны быть отделены от токоотводов системы молниезащиты минимальным расстоянием либо при помощи экранирования в соответствии с МЭК 62305-3.
Электропитание слаботочных микропроцессорных устройств необходимо производить от источников бесперебойного электропитания (UPS), имеющих помехоподавляющие сетевые фильтры.
Наружные протяженные сети электроснабжения необходимо прокладывать кабелем с экранирующей оболочкой, подключаемой к действующему контуру защитного заземления.
Соединение заземлителей функционального и защитного заземления с целью уравнивания потенциалов между ними должно выполняться в одной точке на шине СУП или ГЗШ – токи утечки по РЕ проводнику не должны попадать на экраны кабелей.


3. Правильно выполненное заземление. Это один из основных и доступных методов уменьшения импульсных помех и перенапряжений, которые приводят к сбоям при работе слаботочного микропроцессорного оборудования. Правильное заземление обычно решает бо льшую часть вопросов снижения перенапряжений и помех.

4. Уравнивание потенциалов между заземляющими устройствами разных назначений является основным условием обеспечения электробезопасности персонала. В помещениях, предназначенных для работы чувствительной к помехам аппаратуры, обязательно делают систему уравнивания потенциалов. По внутреннему периметру здания должен располагаться кольцевой соединительный проводник, соединенный с главной заземляющей шиной. Кольцевые проводники уравнивания потенциалов должны располагаться также на каждом этаже. Пример внутреннего контура системы уравнивания потенциалов по периметру здания показан на рис. 1 .

Для каких целей применяется защитное заземление

Рис. 1


Варианты функционального заземления

1. Реконструкция уже действующих объектов. В этом случае по условиям работы информационного оборудования часто требуется низкоомный заземлитель, который выполняется дополнительно к имеющемуся защитному заземлению электроустановки здания.


r /> Согласно ПУЭ 1.7.55 «В первую очередь должны быть соблюдены требования, предъявляемые к защитному заземлению ». Другими словами – на первом месте должна быть защита жизни и здоровья людей. Соответственно, шина функционального заземления (ШФЗ) должна быть соединена с защитным заземлением на главной заземляющей шине (ГЗШ) основной системы уравнивания потенциалов электроустановки здания, как показано на рис. 2 .

Для каких целей применяется защитное заземлениеДанная схема заземления позволяет обеспечить электробезопасность в соответствии с требованиями ГОСТ Р 50571-4-44-2011 (МЭК 60364-4-44) , а также ПУЭ гл. 1.7 при условии, что имеющееся защитное заземление выполнено в полном соответствии с ПУЭ.
Опыт реконструкции действующих объектов показывает, что практически на всех объектах, особенно находящихся в эксплуатации 10 и более лет, обнаруживаются те или иные недостатки по заземлению: коррозия заземляющих устройств, несоответствие требованиям к сопротивлению заземлителя, несоблюдение требований электромагнитной совместимости…
Поэтому перед установкой информационного оборудования необходимо провести обследование устройств защитного заземления. Обследование заземляющих устройств включает в себя: внешний осмотр, вскрытие (при необходимости) находящихся в земле проводников, а также комплекс измерений параметров заземляющих устройств.
По результатам измерений должен быть выполнен соответствующий объем работ по восстановлению параметров защитного заземления, который целесообразно совместить с монтажом функционального заземления и переходом (при необходимости) на систему электропитания TN-S или TN-C-S.


Низкоомный заземлитель функционального заземления при этом желательно выполнять по «лучевой» схеме заземления, которая обеспечивает стабильную работу оборудования. В стесненных условиях возможно использование составного, глубинного заземлителя.

Функциональное заземление имеет свои требования к сопротивлению заземления, соответствующие требованиям предприятия-изготовителя аппаратуры или ведомственным нормам. Например, для средств вычислительной техники и информатики согласно СН 512-78 сопротивление заземления должно быть не более 1 Ом, для высокочувствительной медицинской аппаратуры в соответствии с Пособием по проектированию к СНиП 2.08.02-89 – не более 2 Ом и т. д.

2. Проектирование новых объектов.

Для каких целей применяется защитное заземлениеРис. 3

При проектировании новых объектов появляется возможность выполнить заземляющее устройство повторного защитного заземления на вводе в электроустановку здания на требуемое сопротивление функционального заземления , которое должно быть одновременно использовано для всех видов оборудования здания.
Схема заземляющего устройства повторного защитного заземления на требуемое сопротивление функционального заземления показана на рис. 3 .
В здании устанавливается главная заземляющая шина (ГЗШ), к которой подключаются: заземляющий проводник повторного защитного заземления, РЕN проводник, проводник системы уравнивания потенциалов, РЕ шина питающей линии в системе TN, заземляющее устройство системы молниезащиты 2-й и 3-й категорий, а также шина функционального заземления (ШФЗ).

Такая схема в последнее время получает широкое распространение при проектировании новых объектов и соответствует высокому уровню электробезопасности.

3. Независимое функциональное заземление. Иногда заземлитель функционального заземления приходится размещать отдельно, вне зоны влияния естественных и искусственных заземлителей электроустановки здания.

Выполнение функционального заземления, не связанного с заземляющим устройством защитного заземления и основной системой уравнивания потенциалов здания, нужно рассматривать как особый случай , в котором должны быть приняты специальные меры защиты людей от поражения электрическим током, исключающие возможность одновременного прикосновения к частям, присоединенным к системе уравнивания потенциалов электроустановки здания и к частям оборудования, присоединенным к независимому заземляющему устройству функционального заземления.

Всегда существует возможность возникновения разности потенциалов между раздельными системами заземления, если эти системы заземления находятся в пределах зоны ненулевого потенциала. Опасная разность потенциалов может возникнуть, например, при коротком замыкании на корпус электрооборудования в сети TN-S (до срабатывания системы защиты), при срабатывании молниезащиты (шаговое напряжение), при воздействии внешних электромагнитных полей и др.
С точки зрения электробезопасности вариант независимого функционального заземления (не связанного с заземляющим устройством защитного заземления) допусти м, если аппаратура питается от разделительного трансформатора или заземлители разных назначений находятся на таком расстоянии, что между ними есть зона нулевого потенциала. Расстояние между двумя этими заземлителями должно быть ≥ 20 м.
Подробнее о территориально сближенных и независимых заземляющих устройствах см. в статье Схема независимого функционального заземления показана на рис. 4 .

Для каких целей применяется защитное заземлениеНеобходимость устройства независимого функционального заземления может возникнуть, например, когда производитель информационного оборудования прямо указывает на необходимость автономного заземления (без отдельной «функциональной земли» оборудование не работает). В этом случае в шкафу с оборудованием производитель предусматривает две шины заземления:
защитная РЕ;
функциональная FE.
Функциональная шина FE изолирована от корпуса шкафа. К ней присоединяются экраны сигнальных (контрольных) кабелей. Шина FE соединяется медным изолированным кабелем (во избежание контакта с металлическими конструкциями здания) сечением не менее 1х25 мм2 с заземлителем, удаленным от заземлителя защитного (или любого другого) заземления на расстояние не менее 20 м. Защитное же заземление корпуса шкафа выполняется PE проводником на шину уравнивания потенциалов, соединенную с главной заземляющей шиной. Заметим, что эта шина FE внутри шкафа предусматривается самим заводом-изготовителем оборудования.

В качестве иллюстрации на рис. 5 приведен вариант независимого функционального заземления, не связанного с заземляющим устройством защитного заземления.

Для каких целей применяется защитное заземление

Рис. 5

Обоснование проектных решений

Чтобы не возникало сложностей с согласованием и сдачей проекта, нужно быть внимательным при получении ТЗ на проектирование. Если на проектируемом объекте применяется чувствительное к воздействию помех оборудование, то нужно сразу же запросить у заказчика или у производителя паспорта на данное оборудование, где должна быть обоснована необходимость устройства независимого заземлителя и указано требуемое сопротивление функционального заземления. Паспорта (сертификаты) на применяемое оборудование прилагаются к проекту и служат обоснованием проектных решений на всех этапах согласования проекта.
Независимое функциональное заземление выполняется по схеме на рис. 4.

Если независимый функциональный заземлитель производителем оборудования не предусматривается , то в этом случае функциональное заземление должно быть выполнено по одной из схем (рис. 2, 3 ) с учетом требований к электромагнитной совместимости. Изолированная шина функционального заземления в этом случае может быть установлена в отдельном ящике заземления, исключающем одновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции.
Пример такого ящика функционального заземления показан на рис. 6 .

Содержание:

В процессе эксплуатации электрооборудования возникает необходимость в использовании заземляющих устройств. В зависимости от назначения, может использоваться защитное и рабочее заземление. В первом случае обеспечивается безопасность персонала, работающего на электроустановках, а во втором случае речь идет о нормальной работе устройств в обычном и аварийном режимах. Оба заземления различаются между собой и не могут быть использованы совместно. Для того чтобы лучше понять назначение и принцип действия, нужно подробнее рассмотреть каждое из них.

Что называется защитным заземлением

Устройств защитного заземления выполняется путем преднамеренного электрического соединения с землей металлических частей, к которым не подведен электрический ток и которые могут неожиданно оказаться под напряжением.

Главной функцией защитного заземления считается надежная защита людей от поражения током в случае соприкосновения с металлическими нетоковедущими частями, которые оказываются под напряжением по разным причинам, в основном, из-за повреждения изоляции.

Защитное заземление не следует путать с , рабочим и повторным заземлением, нулевым защитным проводником. Его действие в первую очередь направлено на снижение до безопасного значения напряжений шага и прикосновения, образующихся при замыкании на корпус. Это достигается снижением потенциала заземленного оборудования за счет уменьшения сопротивления заземляющего устройства. Одновременно выравниваются потенциалы основания, где находится человек и самого заземленного оборудования.

Защитное заземление используется в следующих областях:

  • В , напряжением до 1 кВ с .
  • В однофазных двухпроводных сетях переменного тока, изолированных от земли, с напряжением до 1 кВ.
  • В двухпроводных сетях постоянного тока, в которых изолирована средняя точка обмоток источника тока.
  • В сетях переменного и постоянного тока с любыми режимами обмоток источника тока при напряжении более 1 кВ.

Непосредственное соприкосновение с землей или ее эквивалентом осуществляется с помощью заземлителей. Они разделяются на два основных типа:

  1. Искусственные заземлители. Применяются только в целях заземления. Они изготавливаются из различных стальных конструкций и не должны окрашиваться. Для защиты от коррозии может использоваться оцинкованное покрытие, увеличенное количество заземлителей, специальная электрическая защита. В некоторых случаях в качестве заземлителя может использоваться электропроводящий бетон.
  2. Естественные заземлители. С этой целью используются электропроводящие части сетей и коммуникаций в зданиях и сооружениях, находящиеся в соприкосновении с землей. Заземление электроустановок рекомендуется выполнять в первую очередь из естественных заземлителей. Следует использовать трубы водопровода и системы отопления, конструкции зданий и сооружений из металла и железобетона, рельсовые пути, свинцовые оболочки кабелей и т.д. Нельзя использовать трубопроводы, по которым подаются горючие жидкости, газы или смеси.

levevg.ru

Защитное заземление — преднамеренное соединение с землей металлических частей оборудования, не находящихся под напряжением в обычных условиях, но которые могут оказаться под напряжением в результате нарушения изоляции электроустановки.

Назначение защитного заземления — устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т. е. при «замыкании на корпус».

Принцип действия защитного заземления — снижение до безопасных значений напряжений прикосновения и шага, обусловленных «замыканием на корпус». Это достигается уменьшением потенциала заземленного оборудования, а также выравниванием потенциалов за счет подъема потенциала основания, на котором стоит человек, до потенциала, близкого по величине к потенциалу заземленного оборудования.

Область применения защитного заземления — трехфазные трех-проводные сети напряжением до 1000 В с изолированной нейтралью и выше 1000 В с любым режимом нейтрали (рис. 71).

Принципиальные схемы защитного заземления

Рис. 71. Принципиальные схемы защитного заземления:
а — в сети с изолированной нейтралью до 1000 В и выше; б — в сети с заземленной нейтралью выше 1000 В, 1 — заземленное оборудование; 2 — заземлитель защитного заземления; 3 — заземлитель рабочего заземления; r3. rо — сопротивления соответственно защитного и рабочего заземлений

Типы заземляющих устройств. Заземляющим устройством называется совокупность заземлителя — металлических проводников, находящихся в непосредственном соприкосновении с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. Различают два типа заземляющих устройств: выносное (или сосредоточенное) и контурное (или распределенное).

Выносное заземляющее устройство характеризуется тем, что заземлитель его вынесен за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточен на некоторой части этой площадки.

Недостаток выносного заземления — отдаленность заземлителя от защищаемого оборудования, вследствие чего коэффициент прикосновения а = 1. Поэтому этот тип заземления применяется лишь при малых токах замыкания на землю и, в частности, в установках напряжением до 1000 В, где потенциал заземлителя не превышает допустимого напряжения прикосновения.

Достоинством такого типа заземляющего устройства является возможность выбора места размещения электродов с наименьшим сопротивлением грунта (сырое, глинистое, в низинах и т. п.).

Контурное заземляющее устройство характеризуется тем, что его одиночные заземлители размещаются по контуру (периметру) площадки, на которой находится заземляемое оборудование, или распределяются по всей площадке по возможности равномерно.

Безопасность при контурном заземлении обеспечивается выравниванием потенциала на защищаемой территории до такой величины, чтобы максимальные значения напряжений прикосновения и шага не превышали допустимых. Это достигается путем соответствующего размещения одиночных заземлителей.

Внутри помещений выравнивание потенциала происходит естественным путем через металлические конструкции, трубопроводы, кабели и подобные им проводящие предметы, связанные с разветвленной сетью заземления.

Выполнение заземляющих устройств. Различают заземлители искусственные, предназначенные исключительно для целей заземления, и естественные — находящиеся в земле металлические предметы другого назначения.

Для искусственных заземлителей применяют обычно вертикальные и горизонтальные электроды.

В качестве вертикальных электродов используют стальные трубы диаметром 3—5 см и угловую сталь размером от 40 X 40 до 60 X 60 мм длиной 2,5—3 м. В последние годы находят применение стальные прутки диаметром 10—12 мм и длиной до 10 м.

Для связи вертикальных электродов и в качестве самостоятельного горизонтального электрода используют полосовую сталь сечением не менее 4 X 12 мм или сталь круглого сечения диаметром не менее 6 мм.

Для установки вертикальных заземлителей предварительно роют траншею глубиной 0,7—0,8 м, после чего с помощью механизмов забивают трубы или уголки.

В качестве естественных заземлителей можно использовать: проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих или взрывоопасных газов, а также трубопроводов, покрытых изоляцией для защиты от коррозии; обсадные трубы артезианских колодцев, скважин, шурфов и т. п.; металлические конструкции и арматура железобетонных конструкций зданий и сооружений, имеющие соединение с землей; свинцовые оболочки кабелей, проложенные в земле. Естественные заземлители обладают, как правило, малым сопротивлением растеканию тока и поэтому использование их для целей заземления дает весьма ощутимую экономию. Недостатками естественных заземлителей являются доступность их неэлектротехническому персоналу и возможность нарушения непрерывности соединения протяженных заземлителей (при ремонтных работах и т. п.).

В качестве заземляющих проводников, предназначенных для соединения заземляющих частей с заземлителями, применяют, как правило, полосовую сталь, а также круглую сталь и т. п. Прокладку заземляющих проводников производят открыто по конструкциям зданий, в том числе по стенам на специальных опорах. Заземляющие проводники в помещениях должны быть доступны для осмотра.

Присоединение заземляемого оборудования к магистрали заземления осуществляется с помощью отдельных проводников. При этом последовательное включение заземляемого оборудования не допускается.

Согласно требованиям Правил устройства электроустановок сопротивление защитного заземления в любое время года не должно превышать:

4 Ома — в установках напряжением до 1000 В; если мощность источника тока (генератора или трансформатора) меньше 100 кВА, то сопротивление заземления допускается 10 Ом;

0,5 Ом — в установках напряжением выше 1000 В с большими токами замыкания на землю (больше 500 А);

250/I3, но не более 10 Ом — в установках напряжением выше 1000 В с малыми токами замыкания на землю и без компенсации емкостных токов; если заземляющее устройство одновременно используется для электроустановок напряжением до 1000 В, то сопротивление заземления не должно превышать 125/I3, но не более 10 Ом (или 4 Ом, если это требуется для установок до 1000 В). Здесь I3 — ток замыкания на землю.

Оборудование, подлежащее заземлению. Защитному заземлению подлежат металлические нетоковедущие части электрооборудования, которые из-за неисправности изоляции могут оказаться под напряжением, и к которым возможно прикосновение людей и животных. При этом в помещениях с повышенной опасностью или особо опасных заземление является обязательным при номинальном напряжении электроустановки выше 36 В переменного и 110 В постоянного тока, а в помещениях без повышенной опасности — при напряжении 500 В и выше. Лишь во взрывоопасных помещениях заземление выполняется независимо от величины напряжения.

Предыдущая Для каких целей применяется защитное заземление Вперед

ohrana-bgd.narod.ru

Основные цели, задачи заземления

Основной задачей защитного заземления, согласно требованиям ГОСТа – предупреждение воздействия на людей пиковыми токами при КЗ и отведения напряжения с корпусов электроустановок через устройство заземления в грунт. Все меры принимаются для предупреждения возможностей получения электротравм.

Принцип действия защитного зануления и заземления – понижение до минимального уровня силы тока и поражающих факторов при прикосновении к короткозамкнутым деталям электроприборов и установок. При этом происходит понижение уровня напряжения на корпусах защищенных приборов, потенциалы выравниваются в связи с ростом этой величины на поверхности до уровня равного потенциала оборудования с земляным проводом.

Для каких целей применяется защитное заземление

Областью применения являются трехфазное оборудование и цепи. Они должны оборудоваться глухозаземленной нейтралью при напряжении ниже 1000. В, при большем напряжении цепи выбирается любой способ проведения нейтрального провода.

Основной целью устройства защиты является снижение уровня напряжения до безопасного значения на корпусе оборудования и контуре защиты, а также снижение силы тока, идущего через корпус человека при касании участка под напряжением. Номинальное значение напряжения цепи переменного тока свыше 380 В и значении постоянного тока в 440 В – такие электрические цепи подлежат обязательному оснащению заземлением, особенно при особо опасных условиях и местах повышенной опасности.

Обязательно должны заземляться устройство с металлическим корпусом:

  • Для каких целей применяется защитное заземлениестанки;
  • приборы;
  • корпуса электрощитовых;
  • пульты управления механизмами;
  • металлический корпус кабеля и муфт;
  • металлические трубы для укладки проводов.

При КЗ фазного провода на корпуса устройств, и касании человека их рукою, через его тело проходит опасный по величине электрический ток. При заземлении, основная часть напряжения уйдет на контур, потому, что его сопротивление меньше чем человеческого тела.

Отличие рабочего заземления от защитного

Рабочее заземление. Принцип работы – это выполнение соединения с землей несколько отдельно стоящих объектов электросхемы здания. Это могут быть нейтраль обмотки генератора, и других различных устройств. Оно предназначено для обеспечения правильной работы электроустановки, независимо от условий его применения. Осуществление этого вида защиты происходит, непосредственно соединяя заземляемые корпуса электроустановок с заземлителями.

Для каких целей применяется защитное заземление

Достаточно редко, рабочее заземление может проводиться с помощью специализированных приспособлений – это могут быть пробивные предохранители, резисторы.

Защитное зануление и заземление, как указывалось выше, выполнение работ по электрическому соединению с металлическими нетоковедущими частями устройств. При этом основной работой защитного контура, является предохранение нанесения электротравм при касании человеком корпуса оборудования, потому, что ток с него отводится на заземляющий контур, сопротивление которого меньше чем сопротивление человеческого тела.

Поэтому отличием этих двух защитных устройств, является принцип их работы. Если рабочее уравнивает потенциалы, то защитное отводит ток на заземляющий контур, как правило, по глухозаземленной нейтрали. Но при оснащении своего помещения любым из видов защиты, наибольшая эффективность работы, будет достигаться при условии, что токи короткого замыкания не будут увеличиваться в связи с уменьшением уровня сопротивления заземлителя.

Для каких целей применяется защитное заземление

Еще о чем следует помнить. Ни один заземляющий контур не сможет выполнить работу автоматов отключения тока и устройства защитного отключения при утечках тока. А также эти приборы, не смогут выполнить свою работу надежно, без защитного заземления.

Требования к защитному заземлению

Защитное заземление – это наиболее жесткое устройство, чем зануление цепи. Здесь предусмотрена прокладка отдельной шины, довольно небольшого уровня сопротивления, которая идет к системе заземлителей, забитых в землю в виде треугольника. Расчет защитного заземления, требует знания множества формул и наличия множества исходных данных. Поэтому принято для жилого фонда применять типовые проекты контура заземления для каждого региона.

Установка зануления предусматривает прокладку шины нейтрали или любого другого способа отвода тока в однофазной цепи. При этом, значения сопротивлений каждого проводника зануления до подстанции или питающего трансформатора, складываясь, образуют значение сопротивления защитного устройства. Эта величина может изменяться, но требования к защитному заземлению и занулению, предусматриваю общее значение максимально возможного уровня сопротивления цепи.

Бытовое заземление

Для каких целей применяется защитное заземлениеКак правило, системы электроснабжения, должны иметь сопротивление защитного заземления, должно быть от 4 Ом, до 30 Ом. Для обустройства, как правило, применяют стальные уголки и полоса шириной 40 мм. Предусматривают использование медной шины, достаточного сечения, согласно ГОСТу. Это обязательное требование. При использовании защитного проводника с медным проводом 0,5 мм2 нам не хватит и 100 метров провода для достижения критического значения. Наиболее строгие требования предъявляются при обслуживании участков:

  1. Установки, с напряжением цепи до 1000. В, оснащаются устройством, сопротивление которого, не должно превышать 0,5 Ома. Значение заземленного контура измеряют при помощи специального измерительного прибора – измерителем сопротивления. Это измерение проводится двумя дополнительными заземлителями. Разведя их на определенное расстояние, выполняем замер, затем сдвигая электрод, проводим несколько замеров. Самый худший результат принимается за номинальное значение.
  2. Для обслуживания цепи трансформатора, других источников питания, при величинах напряжения от 220 В до 660 В – величина сопротивления заземления должна быть от 2 Ом до 8 Ом.

evosnab.ru

Что это такое?

Итак, что называется защитным заземлением. Традиционно процесс заземления представляет собой объединение любой точки электросети или оборудования, а также электрических установок с устройствами заземляющего типа. Данный вид устройств является совокупностью одного или сразу нескольких эффективных заземляющих элементов и специальных проводников, пригодных для заземления.

Защитные заземлители в виде одного элемента или совокупности проводящих частей, чаще всего прибывают в стандартном электрическом контакте с грунтом. К важным конструкционным особенностям заземлителя относится количество проводящих частей, их длина и тип размещения электродов, что рассчитывается в зависимости от предъявляемых к заземлителю требований и способностей земли выполнять защиту от электрического тока.

Применяемые в настоящее время защитные заземлители бывают не только естественными, но и искусственного типа. Первый вариант является наиболее распространенным, и чаще всего бывает представлен:

  • водопроводными трубами, проложенными в грунтах;
  • конструкциями построек из металла, имеющих достаточное соединение с грунтом;
  • кабельными оболочками из металла, за исключением алюминиевых проводов;
  • обсадными трубами, установленными внутри артезианских скважин.

Заземлитель естественного типа подсоединяется к сети заземления минимум в паре мест.

Все используемые на сегодняшний день искусственные защитные заземлители могут быть представлены:

  • стальными трубами, диаметр которых составляет 30-50 мм при толщине стенок в 3,5 мм и длине 200-300 см;
  • стальными полосами, имеющими толщину в 0,4 см и более;
  • стальным уголком толщиной в 0,4 см и более;
  • стальными прутами, имеющими диаметр в 1 см и более, при длине около 10-11 м.

Следует отметить, что применение искусственных заземлителей в грунтах агрессивного типа, включая излишне кислые или щелочные почвы, сопровождается коррозийными изменениями металлов. Именно поэтому заземлители в таких почвах должны быть представлены медью, омедненными или оцинкованными элементами.

При выборе искусственного заземлителя нужно избегать использования алюминиевых кабельных оболочек и голых алюминиевых проводников, потому что под воздействием почвы происходит окисление.

Назначение

Рассмотрим, для каких целей применяется защитное заземление. На сегодняшний день, к основным сферам применения традиционной системы защитного заземления относятся:

  • использование электрических установок с напряжением не выше 1 тыс. V, внутри сети с заизолированной централью токового источника;
  • использование электрических установок с напряжением свыше 1 тыс. V, внутри сетей с заизолированной или глухо-заземленной централью токового источника.

Согласно установленным нормативам ГОСТ-12.1.030-8, защитным заземлением должны обладать все электрические установки в условиях:

  • номинальных показателей напряжения, равного 380 V или больше;
  • переменных токовых величин, равных показателям 440 V или больше;
  • любого постоянного тока.

Обязательным является эффективное защитное заземление всех металлических элементов электрической установки или оборудования, которые доступны для людей, а также не обладают другими видами надежной защиты.

Особое внимание уделяется защитному заземлению при номинальном напряжении в пределах 42-380 V, переменных показателей — в диапазоне 110-440 V и при постоянном токе, если работы осуществляются в зоне повышенной опасности.

Принцип действия

контур заземленияГлавным действием является снижение показателей напряжения при прикосновении к корпусу электрических приборов до безопасных для жизни и здоровья величин, что обуславливается малым сопротивлением заземлителя.

Таким образом, основное защитное воздействие системы заземления базируется на паре принципов, представленных:

  • Снижением до безопасных показателей разности потенциалов, которые возникают между подлежащим заземлению токопроводящим прибором и токопроводящими предметами, обладающими естественным типом заземления.
  • Токоотводом утечки в результате контакта токопроводящего предмета, подлежащего заземлению и фазной жилы кабеля. Грамотно спроектированная система при проявлении токовой утечки вызывает немедленное срабатывание устройств защиты или УЗО.

Системы, имеющие глухо-заземлённую нейтраль, характеризуются стандартным срабатыванием предохранителя в результате попадания фазного потенциала на поверхность с заземлением.

Как показывает практика, наибольшую эффективность система заземления показывает исключительно в комплексе с установкой УЗО-приборов. При таких условиях значительные нарушения в изоляции потенциала на заземлённом предмете не превышают безопасные величины.

Устройство защитного заземления

Главный элемент представлен заземляющим контуром, состоящим из электродов металлического типа, которые размещаются внутри земли.

Чаще всего электроды являются стержнями, уголками, трубами или листами, которые рассеивают токовые величины, а показатели эффективности такого процесса напрямую зависят от качественных характеристик грунта и климатических особенностей.

Прежде чем приступить к самостоятельному обустройству эффективной системы заземления, требуется правильно определиться с параметрами электрической проводимости грунта и уровнем сопротивления:

  • для глинистых грунтов — 20 Ом х М;
  • для песчаных грунтов — 10-60 Ом х М;
  • для садового грунта — 40 Ом х М;
  • для гравийного грунта — 300 Ом х М.

Правильное устройство заземления является необходимым условием при использовании сетей электрического снабжения, включая частные домовладения и квартиры.

Такая не слишком сложная система безопасного пользования электричеством позволяет предотвратить поражение током.

Подсоединение корпуса к заземлителю может осуществляться при помощи стального провода с сечением в 2,4 см. Внутри грунта элементы соединяются стальной шиной с сечением 5,0-12,0 см, а также медным проводом с сечением в 2,5 см.

Монтаж защитного заземления

В процессе самостоятельного монтажа системы защитного заземления, на треугольном контуре надежно фиксируется проводник заземляющего типа.

Особенностью установки электродов является отсутствие покрытия в виде диэлектрических антикоррозионных составов.

В этом случае допускается только нанесение лака на свариваемые участки.

Особые требования предъявляются также к проводнику, который протягивается от контура до электрической установки:

  • высокие показатели прочности;
  • гарантированная долговечность;
  • устойчивость к коррозийным изменениям.

В качестве проводников рекомендуется применять стальные ленты размерами 0,5х3,0 см или металлические стержни диаметром не менее 1,0 см. При незначительных нагрузках может также применяться традиционная катанка.

В соответствии с современными требованиями и стандартами, электрическая проводка внутри жилых зданий производится трёхжильными кабелями, в которых один из проводов является заземляющим. Защиту требуется подключать на участках от контура до корпуса эксплуатируемого электрического прибора.

Все электрические розетки и вилки приборов должны в обязательном порядке иметь специальные заземляющие контакты, подсоединяемые с корпусу.

Попадание фазы на прибор в условиях нарушения изолирующего слоя, сопровождается возникновением токовой утечки, в результате чего срабатывает УЗО или защитные автоматы.

proprovoda.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.