Измерение сопротивления заземляющих устройств


Заземляющие устройства служат для отведения накопившегося заряда электроустановки в землю, чтобы этот заряд не был передан случайным образом любому другому объекту, коснувшегося аппарата электрооборудования. Неверно подключенная или вовсе не подключенная электроустановка не может быть введено в эксплуатацию как потенциальный источник смертельной опасности. Избежать нарушений поможет плановые проверки и измерение сопротивления заземляющих устройств.

Правила устройства электроустановок

В последнем, седьмом издании ПУЭ в разделе 1 гл.1.8 п. 1.8.37, указаны нормируеиые значения сопротивлений заземляющих устройств в зависимости от их вида и характеристик. Так, подстанции и распределительные пункты напряжением выше 1 кВ, представляют собой электроустановки электрических сетей с глухозаземленной и эффективно заземленной нейтралью, либо электроустановки электрических сетей с изолированной нейтралью, с нейтралью, заземленной через дугогасящий реактор или резистор. Первые должны иметь сопротивление не более 0,5 Ом, вторые – 250/Iр.


Воздушные линии электропередач должны иметь сопротивление заземляющих устройств опор ВЛ в зависимости от удельного сопротивления грунта: до 100 – 10 Ом, более 100 до 500 – 15 Ом, более 500 до 1000 – 20 Ом, более 1000 до 5000 – 30 Ом, более 5000 – ρ•6•103. Заземляющие устройства опор ВЛ с разрядниками на подходах к распределительным устройствам с вращающимися машинами рассчитываются отдельно.

Электроустановки напряжением до 1 кВ делятся на три вида:

  • Электроустановки с источниками питания в электрических сетях с глухозаземленной нейтралью (или средней точкой) источника питания (система TN): в непосредственной близости от нейтрали – сопротивление 15/30/60 Ом;
  • Электроустановки с учетом естественных заземлителей и повторных заземлителей отходящих линий – сопротивление 2/4/8 Ом;
  • Электроустановки в электрических сетях с изолированной нейтралью (или средней точкой) источника питания (система ГГ) – сопротивление 50/I, более 4 Ом не требуется.

В данном случае измерение сопротивления заземляющих устройств должно соответствовать не только групповым, но и частным характеристикам, поскольку в некоторых электроустановках предусмотрено различное сопротивление (кратное минимальному), согласно линейному напряжению в 660, 280 и 220 В соответственно.

Воздушные линии электропередачи напряжением до 1 кВ, имеющие заземляющие устройства опор ВЛ с повторными заземлителями PEN (РЕ) – проводника, рассчитаны на сопротивление в 30 Ом. В формулах использованы обозначения: Iр– расчетный ток замыкания на землю, I – полный ток замыкания на землю.

Характеристики заземляющего устройства

Характеристики ЗУ должны отвечать требованиям ГОСТ и ПУЭ и, обеспечивая основные функции электроустановки, выполнять следующие действия:


  • стабилизация потенциалов относительно земли;
  • защита от статического электричества;
  • отвод рабочих токов;
  • отвод в грунт молнии;
  • защита изоляции низвокольтных цепей и электрооборудования;
  • защита от перенапряжений;
  • релейная защита от замыкания в землю;
  • защита подземного оборудования от токовых перегрузок;
  • обеспечение взрыво- и пожаробезопасности.

Измерение сопротивления заземляющих устройств гарантирует выполнение всех этих функций, если замеры показывают норму.

Замеры заземляющих устройств проводятся по следующим параметрам:

  • сопротивление заземляющего устройства для электростанций, высоковольтных линий электропередач, установок подстанций;
  • напряжение заземляющего устройства при стекании с него тока замыкания на землю;
  • для установок выше 1 кВ с эффективно заземленной нейтралью, за исключением высоковольтных линий электропередач, замеряется напряжение прикосновения.

Измерение сопротивления растеканию заземлителя (З) – Rраст, производится с помощью вспомогательного электрода ( токовый электрод – Т) и зонда (потенциальный электрод – П) – см. рисунок 1. Посредством источника прибора и вспомогательного электрода через проверяемый электрод (заземлитель), сопротивление растеканию которого определяется, пропускается ток Iраст. Сопротивление составляет :


Rраст = Uраст / Iраст

Измеряя с помощью зонда Uраст и пропуская ток растекания через заземлитель, измеряем прибором R раст , шкала которого проградуирована в омах.

Измерение сопротивления заземляющего устройства (ЗУ)

рисунок 1

Проверка правильности заземления

Электролаборатория нашей организации в первую очередь проводит визуальный осмотр заземляющих устройств, чтобы определить, правильно ли они смонтированы, и каким способом осуществлено заземление. Заземление производится либо выносным способом, либо контурным расположением заземляющих проводников. Контурное расположение заземлителей обеспечивает выравнивание потенциалов при однофазном замыкании на землю. Еще одним положительным эффектом является уменьшение значений напряжения прикосновения и шагового напряжения вблизи ЛЭП, благодаря взаимному влиянию заземляющих устройств. Измерения сопротивления заземляющих устройств в этом случае надо производить с учетом этого взаимовлияния.


Элементы заземляющих устройств в помещениях должны быть размещены в соответствии с проектом, и при осмотре не должно быть затруднений в доступе к ним. Однако, они также должны быть надежно защищены от механических повреждений. При укладке по полу проводники ЗУ размещают в специальных заглубленных канавках. Если возможно осаждение едких паров, воздействие газов и т.д., то рекомендуется крепить проводники скобами так, чтобы между ними и стеной был зазор не менее 10 мм. Это же относится и к помещениям с повышенной влажностью. Для того, чтобы сопротивление заземляющих устройств соответствовало требованиям объекта, необходимо подводить проводники к каждому корпусу электрооборудования, делая ответвления от главной заземляющей шины (ГЗШ). Таким образом, мы получаем параллельное подключение, которое является единственно правильным: последовательное подключение объектов один к другому, а потом к ЗУ – запрещено, поскольку является источником повышенной опасности: сопротивление заземляющего устройства представляет собой сумму сопротивлений заземлителя относительно земли и заземляющих проводников.

Измерение сопротивления заземляющих устройств должно производиться с учетом времени года: поскольку сопротивление заземлителя относительно земли есть отношение напряжения на заземлителе к току, проходящему через заземлитель в землю, то величина сопротивления заземлителя зависит от удельного сопротивления грунта. Наиболее высокое сопротивление фиксируется зимой, когда грунт промерзает, либо летом, в засушливый период – расхождение с весеннее-осенними показателями может составлять несколько раз. Раньше применялись коэффициенты сезонности, которые рассчитывались и с помощью них проводилась корректировка значений сопротивлений ЗУ.


В установках с суммарной мощностью генераторов и трансформаторов 100 кВА допускается значение сопротивления ЗУ, равное 10 Ом, в установках с меньшей мощностью – 4 Ом. Допустимая величина напряжения прикосновения в сетях до 1000 В не должна превышать 40 В. В установках свыше 1000 В допускается сопротивление заземления R3 меньше или = 125/I3 Ом, но не более 4 Ом или 10 Ом. В случае необходимости возможности экстренного отключения участка сети без помощи оператора, в установках свыше 1000 В с большими токами замыкания на землю сопротивление заземляющего устройства не должно быть более 0,5 Ом. Эти показатели указаны в ГОСТ, ПУЭ, проекте. Обязательно при измерении сопротивления заземляющих устройств сравнивать полученное значение с нормируемым или расчетным проектным.

Методика проведения измерения сопротивления заземляющих устройств в Санкт-Петербурге

Проведение измерения сопротивления заземляющих устройств осуществляется в соответствии с нормами по пункту 1.7.101 ПУЭ (7 изд.) и пункту 26.4 ПТЭЭП. Методика подходит для измерения сопротивления устройств молниезащиты и удельного сопротивления грунта. Для измерений используются приборы М416 или Ф4103-М1, тестеры заземления MRU-100, MRU-101, MRU-105, MRU-120, C.A 6460, Fluke, Megger, ИС-10/1, TV 440N и другие. Мы используем надежное и опробованное современное испытательное оборудование и средства измерений ведущих отечественных и зарубежных производителей.


К работе допускаются лица из электротехнического персонала не моложе 18 лет, обученные и аттестованные на знание требований НД: ПОТ, ППБ, инстукций и методики измерения сопротивления заземляющих устройств. Сотрудники должны быть обеспеченны инструментом, индивидуальными защитными средствами, спецодеждой и средствами измерений, исправными и прошедшими периодическую поверку. Состав бригады должен быть не менее двух человек. Особое внимание должно быть уделено безопасности при подаче напряжения от постороннего источника питания. Требуется проверить соединительные провода и питающий кабель на наличие двойной изоляции, так же, как и понижающий трансформатор. Приборы в схемах измерений должны быть установлены на изолированном основании. Измерения надо проводить в сухой период, а в загазованных помещениях, либо в помещениях со взрывоопасными средами, следует сначала устранить источник опасности. По результатам измерений сопротивления заземляющих устройств составляется протокол установленной формы. Лица, допустившие нарушения ПТБ или ПТЭЭП, несут ответственность в соответствии с действующим Законодательством.

  • ПУЭ (Правила устройства электроустановок) 7-е издание, раздел 1, гл. 1.8, п. 1.8.39, пп. 5, таб. 1.8.38; гл. 1.7, п 1.7.103.
  • РД 34.45-51.300-97 “Объем и нормы испытаний электрооборудования”, глава 28.
  • РД 153-34.0-20.525-00 Методические указания по контролю состояния заземляющих устройств электроустановок.

 


Вид электроустановки Характеристика электроустановки Сопротивление, Ом
1. Подстанции и распределительные пункты напряжением выше 1 кВ Электроустановки электрических сетей с глухозаземленной и эффективно заземленной нейтралью. 0,5
Электроустановки электрических сетей с изолированной нейтралью, с нейтралью, заземленной через дугогасящий реактор или резистор 250/Iр*
2. Воздушные линии электропередачи напряжением выше 1 кВ Заземляющие устройства опор ВЛ (см. также 2.5.129 – 2.5.131) при удельном сопротивлении грунта, ρ, Ом·м:  
до 100 10
более 100 до 500 15
более 500 до 1000 20
более 1000 до 5000 30
более 5000 ρ·6·103
Заземляющие устройства опор ВЛ с разрядниками на подходах к распределительным устройствам с вращающимися машинами см. главу 4.2
3. Электроустановки напряжением до 1 кВ Электроустановки с источниками питания в электрических сетях с глухозаземленной нейтралью (или средней точкой) источника питания (система TN):
в непосредственной близости от нейтрали
15/30/60**
с учетом естественных заземлителей и повторных заземлителей отходящих линий 2/4/8**
Электроустановки в электрических сетях с изолированной нейтралью (или средней точкой) источника питания (система ГГ) 50/I***, более 4 Ом не требуется
4. Воздушные линии электропередачи напряжением до 1 кВ Заземляющие устройства опор ВЛ с повторными заземлителями PEN (РЕ) – проводника 30
Iр* – расчетный ток замыкания на землю;
** – соответственно при линейных напряжениях 660, 280, 220 В;
I*** – полный ток замыкания на землю.

www.gorod812.com

Принцип работы заземляющего устройства

В обычных условиях контур заземления, соединенный посредством РЕ-проводника с системой выравнивания потенциалов и с корпусом каждого находящегося в здании электроприбора, бездействует: кроме незначительных по величине фоновых, токи по нему не идут.

При нарушении изоляции электропроводки и аварийной ситуации на поверхности корпуса поврежденного электроприбора образуется опасное напряжение, которое по контуру заземления переходит на потенциал земли. Благодаря этому величина напряжения, попавшего на непроводящие элементы, снижается до абсолютно неопасного значения, не способного нанести травму соприкасающегося с корпусом поврежденного прибора через землю человеку.


При нарушении контура заземления либо РЕ-проводника пути для отвода напряжения нет, и ток будет протекать сквозь тело человека, находящегося между землей и потенциалами неисправного бытового электроприбора. Читайте также статью: → «Монтаж контура заземления в доме».

Почему заземляющее устройство становится неисправным?

При находящемся в работоспособном состоянии контуре ток по РЕ-проводнику переходит на токопроводящие электроды, находящиеся в контакте с почвой, а по ним постепенно переходит на потенциал земли. Весь поток делится на несколько составных частей.

При продолжительном пребывании в агрессивной среде грунта металлические поверхности тоководов окисляются, на них образуется окисная пленка. По мере развития коррозионных процессов прохождение тока ухудшается, электрическое сопротивление конструкции повышается. Возникающая на металлических элементах ржавчина, как правило, носит общий характер, хотя, местами можно увидеть ярко выраженные следы глубокой коррозии. Этот факт объясняется тем, что находящиеся в почве постоянно химически активные растворы щелочей, солей и кислот распределены неравномерно.


Частицы разрушенного коррозией металла отходят от тела проводника, ухудшая либо вовсе прекращая местный электрический контакт. Таких точек со временем возникает все больше, на фоне постепенно увеличивающегося сопротивления контура заземляющее устройство постепенно снижает проводимость и неспособно отвести в почву опасный потенциал. Своевременное выполнение замеров сопротивления заземления позволяет определить момент наступления критического состояния контура.

Максимально допустимое сопротивление заземления

Для каждого типа заземлителя сопротивление нормируется согласно ПУЭ (р — сопротивление грунта).

Характеристика электроустановки, В Сопротивление грунта удельное, Ом∙м Сопротивление заземления
660/380 <100

˃100

15

0,5р

380/220 <100

˃100

30

0,3р

220/127 <100

˃100

60

0,6р

Приборы для измерения сопротивления

Для выполнения замеров сейчас используются преимущественно современные цифровые приборы, пришедшие на смену устаревшим аналоговым устройствам. Сама технология выполнения измерений намного упростилась, улучшилась точность.Так как замеры необходимо выполнять 1 раз в шестилетний период, для выполнения измерений сопротивления заземления частных домов из-за дороговизны приборов экономически выгодно пригласить специалистов, имеющих все необходимое оборудование.

Для выполнения замеров чаще всего применяются следующие специальные виды приборов:

  • МС-08;
  • М-416 на полупроводниках и питанием от батареи;
  • Тестер СА-6415, оснащенный токовыми клещами.

Методика определения состояния ЗУ основывается на законе Ома для участка цепи. Для проверки через проверяемый элемент пропускается электроток от прошедшего калибровку источника напряжения, проводятся высокоточные замеры проходящего тока и определяется значение сопротивления. Читайте также статью: → «Расчет заземляющих устройств».

Выполнение замеров
Выполнение замеров

Способ амперметра и вольтметра

По причине того, что контур постоянно всем свои объемом работает в грунте, именно его необходимо оценивать при выполнении измерений. С этой целью в почву на расстоянии не менее 20 м от подлежащего контролю заземляющей системы погружаются основной электрод и дополнительный, на которые подается переменный ток.

 

Схема заземления
а) Принципиальная электрическая схема; б, в) Схемы сборки с прибором МС-08

По устроенной источником ЭДС, проводами и заглубленными в почву электродами цепи течет электрический ток, сила которого определяется при помощи амперметра. На поверхность заземляющего контура, очищенного во избежание малейшей погрешности, и контакты основного заземляющего электрода устанавливается вольтметр, замеряющий снижение напряжения на линии промеж контуром заземления и основным стержнем. При делении величин напряжения на силу тока определяется общее сопротивление исследуемой части цепи.

Если к точности измерений не предъявляется высоких требований, то можно ограничиться и этой величиной. При необходимости получения точных результатов, вычисленное значение следует откорректировать, вычтя из него сопротивление проводов и учтя воздействие диэлектрических свойств грунта на характер токов растекания в почве.

  • Основными преимуществами такого метода являются простота и несложность выполнения замеров для частных домов.
  • Недостаток — не обеспечивается требуемая точность измерений.

Трехпроводной способ измерения сопротивления

При выполнении работ по этому методу исходя из требований безопасности требуется отключение автоматического выключателя в вводном щитке питания либо снятия с заземлителя РЕ-проводника.

  • Проводник подключается замеряющему прибору и струбцине. На определенном удалении в землю забиваются стержни заземлителя, на которые навешиваются катушки с проводниками, концы которых подключаются.
  • Контакты проводов устанавливаются в разъемы измерительного устройства, проверяется работоспособность схемы к производству замеров и определяется напряжение помехи между электродами-штырями, значение которого должно быть менее 24В.
  • При большем напряжении следует изменить точки установки электродов и перепроверить эту величину. Снимаются показания с экрана устройства.

Совет #1. В целях контроля правильности выполнения работы следует провести несколько измерений, переставляя потенциальный стержень на различные расстояния. Отличие полученных значений друг от друга допускается до 5%.

Метод пробного электрода

Измерения необходимо производить до установки ЗУ. Порядок выполнения работ следующий:

  • перед проверкой в почву забивается немного возвышающийся над ней пробный стержень-заземлитель идентичный по длине будущему постоянному устройству;
  • определяется сопротивления тестером;
  • выполняется расчет удельного сопротивления грунта с учетом геометрических размеров пробного штыря.

Такой метод применим только при установке несложных заземляющих устройств, к примеру, при заземлении индивидуального дома. Читайте также статью: → «Для чего выполняется заземление крыши дома».

Четырехэлектродная схема измерения

Такая схема измерения, иначе называющаяся способом вертикального электрозондирования (ВЭЗ), дает достаточную точность результатов, так как при ней учитываются свойства всех слоев грунта — от глубинных до поверхностных. К внешним стержням (№1 и №2) подключается ЭДС, а на штырях, находящихся внутри (№3 и №4), определяется разность потенциалов.

Четырехэлектродная схема измерений
Четырехэлектродная схема измерений

Компенсационный способ выполнения замеров

При выполнении замеров таким способом потребуются промышленные высокоточные приборы. Пара стержней-электродов заглубляется в землю на единой линии так, чтобы охватить заземляющий контур. Основным средством измерения является зонд, подключающийся к стержням №1 и №2 на максимальном приближении к шине (2) заземляющего контура.

Выполнение замеров компенсационным способом
Выполнение замеров компенсационным способом

Через погруженные в почву дополнительные штыри, грунт, проводники и первичную обмотку трансформатора подается электродвижущая сила. На вторичной обмотке возникает ток (I1). Реохордом (б) напряжения устанавливаются так, чтобы U1=U2, достигающееся обнулением показаний вольтметра, подключенного к реохорду посредством трансформатора.

Совет #2. Значение сопротивления заземления определяется установкой показаний вольтметра на ноль и кручением ручки реостата исходя из положения стрелки реохорда.

Применение калиброванного резистора

Измерение сопротивления через резистор
Измерение сопротивления через резистор

Через охлаждаемый резистор на заземляющее устройство электричество подается непосредственно с фазы питания. По известному значению сопротивления и определенному напряжению выявляется сила проходящего через заземлительное устройство тока. Измерения производятся при отсоединении РЕ-проводника от заземлителя, на который через калиброванное сопротивление 46 Ом подается фазное напряжение.

Преимущество данного метода, особенно эффективного в стесненных условиях города, заключается в следующем:

  • нет нужды в заглублении тяжелых электродов;
  • не требуется наличие многих метров проводов;
  • все измерения выполняются на малой площади земли.

Использование токовых клещей

При работе с клещами нет необходимости в отключении цепи заземления. В цепь подается напряжение и по ней начинает протекать ток. Определив его силу клещами, становятся известны все значения, требующиеся для выполнения расчета сопротивления.

Использование токовых клещей
а) Схема измерения; б) Схема эквивалентная

Что влияет на сопротивление заземления?

Сопротивление ЗУ находится в прямой зависимости от удельного сопротивления грунта, которое в разных условиях может иметь различные значения. Оно зависит от:

  • состава грунта;
  • температуры;
  • времени года.
Типы почв Сопротивление удельное, кОм·см
Минимальное Среднее Максимальное
Зольные, засоленные, пустынные, шлаки 0,59 2,37 7,0
Глины, глинистые сланцы, илистая, суглинок 0,34 4,06 16,0
То же с песком или гравием 1,02 15,8 135,0
Гравий, песок, камни с небольшим количеством глины или суглинка 59,0 94,0 458,0

Сопротивление почвы значительно меняется при повышении влажности. Потому, перед монтажом заземления и выполнением замеров крайне важно четко определить тип, геологический состав почв, находящихся на участке.

Влажность, % Сопротивление удельное, кОм·см
Земля Суглинок песчаный
0 >0,109 >0,109
2,5 250 150
5 165 43
10 53 18,5
15 19 10,5
20 12 6,3
30 6,4 4,2

Ошибки при выполнении замеров

Наиболее часто встречающимися ошибками являются:

  • выбор для выполнения замеров на электроустановках точек не с максимальным воздействием коррозии, а в случайном порядке;
  • пренебрежение проверки заземления нейтралей при сильной коррозии;
  • размещение основного и дополнительного электродов слишком близко от заземляющего устройства при замерах методом амперметра и вольтметра.

Часто задаваемые вопросы

Вопрос №1. Какие участки следует выбирать для контроля ВЛ?

Для выполнения замеров рекомендуется выбирать участки с наиболее агрессивными грунтами. При этом контролю подлежат не менее 2% опор.

Вопрос №2. Можно ли вместо высокоточных приборов использовать другие средства измерения?

В принципе, замеры можно произвести и мультиметром, но его применение чревато получением данных со слишком большой погрешностью.

Вопрос №3. Когда лучше всего проводить измерения?

Выполнять замеры лучше всего в разгар лета либо в середине зимы при благоприятной погоде и максимальном сопротивлении почвы.

Вопрос №4. Какова периодичность выполнения замеров?

Проверка производится сразу же после сдачи дома в эксплуатации. Согласно нормативам, периодичность замеров сопротивления должно проводиться каждые 6 лет, но для себя лучше выполнять их каждый год.

Вопрос №5. При выполнении нескольких замеров какой результат принимать окончательным?

Реальное значение сопротивления необходимо принимать по самому худшему результату.

electric-tolk.ru

Что такое заземление.

Заземление – это намеренное соединение частей и узлов электрооборудования, не находящихся в нормальном состоянии под напряжением с электродом, установленном в земле. При этом необходимо обозначить такое понятие как сопротивления растеканию.

Сопротивление растекания

При замыкании на землю, по мере удаления от электрода потенциал будет падать и, в конце концов, станет нулевым. Таким образом, сопротивление растеканию заземлителя – это параметр характеризующий сопротивление земли в месте установки электрода. Понятие сопротивления растеканию особенно актуально в сетях выше 1000 В.

Для чего нужно заземление.

Заземление необходимо для предотвращения поражения человека воздействием электрического тока, в случае его появления там, где при нормальных условиях его не должно быть. При касании корпуса прибора, находящимся под напряжением, сила тока, проходящего через тело человека, может оказаться смертельной.

Для чего нужно заземление

Необходимостью снижения разности потенциалов и обусловлено применение защитного заземления. Кроме этого, замыкание на землю приводит к увеличению силы тока и, как следствие, к срабатыванию защитных устройств. Нормы сопротивления защитного заземления регламентируются ПУЭ, а также документом называемым «Правила и нормы испытания электрооборудования».

Конструкция заземления.

Заземление – это комплекс технических устройств защитного типа, состоящий из:

  1. Заземлителя — одного или нескольких вертикальных проводников (стержней), имеющих электрический контакт с землей и связанных между собой.
  2. Заземляющего проводника (путь для тока замыкания), соединяющего заземляемый объект и заземлитель.

 

Устройство заземления

На каждое заземление составляется паспорт. В паспорт заносится схема заземляющего устройства (длина, и схема расположения электродов контура), тип, удельное сопротивление грунта, а также результаты замера сопротивления заземления. Обязательным приложением к паспорту является акт на скрытые работы. Данный акт необходим в связи с тем, что большая часть заземляющего устройства находится под землей и этот акт представляет собой схему расположения элементов заземляющего устройства. В случае, если паспорт на заземление отсутствует, эксплуатация объекта запрещена.

Методика измерения сопротивления защитного заземления.

Для проверки сопротивления заземления используется метод амперметра-вольтметра, заключающийся в том, что через измеряемое сопротивление течет ток определенной величины и одновременно измеряется падение напряжения. Разделив значение тока на величину падения напряжения, получаем значение сопротивления. В принципе, под понятием измерения сопротивления заземления, подразумевается измерение сопротивления растеканию. Правила и нормы испытаний электрооборудования задают минимальное сопротивление заземления, рассчитанные с точки зрения безопасности. Нормы различаются в зависимости от типов электроустановок (глухозаземленная или изолированной нейтралью). Класс использованного напряжения также влияет на нормы сопротивления.

Приборы для измерения заземления.

Бытовой тестер для такой проверки использовать нельзя, так как он не способен генерировать достаточно высокое напряжение. Для измерений используется, как приборы уже давно выпускающиеся (МС-08, М-416 и др.), так и новые средства измерения, выполненные на современной электронной базе и характеризующиеся малым потреблением тока от источника питания. В настоящее время измерение защитного заземления можно выполнить также цифровым мультиметром или специальным тестером.

Порядок проведения измерения заземления (сопротивления растеканию заземлителя).

Для проведения проверки необходимо помимо прибора иметь два электрода (токовый и потенциальный) с проводами достаточной длины, как образец, можно предложить отрезок гладкой арматуры или трубы круглого сечения.
В зависимости от сложности конструкции заземлителя, измерение сопротивления проводят по двум разным схемам:

  1. Простой (одиночный) заземлитель.
    Применяется «линейная» схема подключения электродов. Потенциальный электрод устанавливают  на расстоянии не менее 20 м. от заземлителя, а токовый не менее, чем в 10-12 м. от потенциального.
  2. Сложный заземлитель.
    Используется, когда простая схема неприменима, ввиду того, что при расчетах сопротивление заземления она не будет соответствовать минимально допустимым нормам. Представляет собой несколько вертикальных стержней вбитых в землю, электрически связанных между собой (электросваркой, чтобы снизить переходное сопротивление). Такое устройство называется контуром заземления. В этом случае необходимо определить наибольшее расстояние (диагональ) защитного контура заземления. Потенциальный электрод нужно вбивать на расстоянии равным пяти диагоналям от места присоединения заземляющего проводника. Токовый зонд забивается не менее, чем в 20 м. от потенциального. Измерительный прибор необходимо располагать как можно ближе к выводу заземления.

Порядок проведения измерений.

Так как в настоящее время самый распространенный прибор для проведения измерения является измеритель сопротивления заземления М-416, в дальнейшем, как образец, будет рассматриваться именно это средство измерений. Данный прибор относится к системе, в которой принцип измерений основан на компенсационном методе.
Запрещается для проверки пользоваться приборами, не имеющих действующего клейма о поверке, результаты которой должны заноситься в паспорт на средство измерения.

  1. Проверить наличие элементов питания в батарейном отсеке, убедившись, что их напряжение находится в пределах нормы;
  2. Откалибровать прибор, установив переключатель диапазонов в положение 5 Ом (контроль), ручкой реохорда установить стрелку как можно ближе к нулевой отметке. При этом на шкале должны быть показания 5 Ом;
  3. Отсоединить контур от заземляющего проводника;
  4. Присоединить прибор к соответствующим электродам;
  5. Тщательно зачистив вывод измеряемого заземлителя (для того чтобы исключить влияние, которое может оказать на конечный результат переходное сопротивление), присоединить к нему прибор.

Примечание: В зависимости от планируемых показателей сопротивления заземления измерение прибор нужно подключать по двух- или четырехпроводной схеме. Первая применяется, если предполагаемое сопротивление более 5 Ом, а вторая для измерения более низких значений (при этом разделяются пути прохождения тока и измерения разности потенциалов, для исключения влияния сопротивления присоединяемых проводов при измерении). В этом случае присоединение к заземлителю осуществляется двумя проводниками. Паспорт прибора содержит наглядные рисунки, которые позволят произвести подключения без ошибок.

  1. Установить переключатель диапазонов в положение, соответствующее наибольшей чувствительности (Х1), нажав кнопку «Измерение», регулятором установить стрелку на нуль. При этом на шкале реохорда будет отражен искомый результат проверки сопротивления заземлителя. Если стрелка не устанавливается на нуль, необходимо переключателем выбрать другой диапазон и показания реохорда умножить на соответствующий множитель.

Примечание: Если измерение проводится тестером или мультиметром, необходимость выбора множителя отпадает — эти приборы обладают функцией автоматического выбора предела шкалы.
ВАЖНО! После проведения измерений, если сопротивление заземления в пределах нормы необходимо вновь присоединить заземляющий проводник к заземлителю!

Оформление результатов измерений (протокол).

После окончания измерений нужно оформить протокол результата замера. Протокол представляет собой бланк определенной формы, в котором отражаются наименование объекта, схема установки заземляющих стержней и их соединений (для этого понадобится паспорт объекта и акт на скрытые работы). Также протокол должен отражать схему контура заземления и метод, по которому проводилось измерение. В протокол необходимо включить графу, в которой указан прибор или тестер (его тип, заводской номер и пр.), которым проводилось испытание. Результаты, полученные при измерении, заносятся в паспорт заземляющего устройства.
Отдельно представляется протокол испытания переходных сопротивлений. Переходное сопротивление (также, его еще называют металлосвязью) – это возможные потери на пути прохождения тока, связанные со сварочными, болтовыми и др. соединениями всего контура заземления. Это испытание проводится специальным тестером – микроомметром.

ВАЖНО! Проводить испытания и выдавать протокол измерения сопротивления заземления может только испытательная лаборатория, аккредитованная в системе органов стандартизации.
После окончания измерений составляется соответствующий акт, и заземляющее устройство считается годным к эксплуатации.

electry.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.