Измерение заземления


Измерение сопротивления заземления

То, что правилами требуется периодически измерять сопротивление заземления, это не просто чья-то придумка или блажь, это, прежде всего, вопрос безопасности человеческой жизни. Существуют определённые нормативы и замеры должны им соответствовать. В статье мы рассмотрим, как замерить сопротивление заземления мультиметром и другими измерительными приборами.

Перед тем, как проверить заземление в частном доме очень важно, чтобы вы поняли саму суть этой процедуры, для чего она выполняется, какую основную цель преследует, почему это так необходимо?

Что такое заземление?

Защитное заземление – это преднамеренное соединение с землёй тех частей электрического оборудования, которые при нормальной работе электросети не находятся под действием напряжения, но могут попасть под его влияние в результате пробоя изоляции. Основной целью заземления является защита людей от действия электрического тока.

Главная составляющая защитного заземления – это контур. Он представляет собой конструкцию естественных или искусственных заземлителей, то есть несколько заземляющих электродов соединяются в единое целое. В качестве электродов чаще всего используют прутья из стали. Медные пруты применяют реже в силу того, что это дорого.


Медные заземляющие пруты

Но если есть финансовые возможности, то имейте в виду, что медь является идеальным вариантом и наилучшим проводником.

По логике понятно, что контур заземления должен располагаться в земле. Так как нас интересует защита дома, то неподалёку от строения и силового щитка выбирается подходящее место с нормальным грунтом. В землю вбиваются три штыря так, чтобы они располагались треугольником, и расстояние между ними было 1,5 м.

Эти электроды необходимо вбить максимально глубоко (их длина должна быть не менее 2 м).

Теперь понадобится сварочный аппарат и металлическая шина, с помощью которых электроды нужно увязать между собой в равносторонний треугольник. Контур готов, теперь к нему нужно закрепить медный проводник, который дальше идёт в щиток и подсоединяется там к заземляющей шинке. А на эту шинку выводятся заземляющие проводники от всех розеток.

Перед использованием необходимо проверить контур на заземляющее сопротивление.

О том, что такое заземление – на следующем видео:


В чём суть работы заземления?

Принцип действия защитного заземления основывается на главном качестве электрического тока – протекать по проводникам, которые обладают наименьшим сопротивлением. На сопротивление человеческого тела оказывают влияние многие факторы, но в среднем оно приравнивается к 1000 Ом.

Электрическое сопротивление человеческого тела

Согласно Правилам устройства электроустановок (ПУЭ) контур заземления должен иметь сопротивление гораздо меньшее (допускается не более 4 Ом).

А теперь смотрите, в чём заключается принцип действия защитного заземления. Если какой-то электрический прибор неисправен, то есть произошёл пробой изоляции и на его корпусе появился потенциал, и кто-то прикоснулся к нему, то ток с поверхности прибора будет уходить в землю через человека, путь будет выглядеть как «рука-тело-нога». Это смертельная опасность, величина тока 100 мА вызывает необратимые процессы.

Защитное заземление сводит этот риск до минимума. Современные электроприборы имеют внутреннее соединение заземляющего контакта штепсельной вилки с корпусом. Когда прибор посредством вилки включён в розетку и в результате повреждения на его корпусе появляется потенциал, то он уйдёт в землю по заземляющему проводнику с низким сопротивлением. То есть ток не пойдёт через человека с сопротивлением 1000 Ом, а побежит через проводник, у которого эта величина намного меньше.


Вот почему важным этапом в обустройстве электрического хозяйства в наших жилых домах является измерение сопротивления заземления. Нам нужна 100 % уверенность, что эта величина ниже наших человеческих 1000 Ом.

Какими могут быть значения сопротивления заземления

И запомните, что это процедура не разового характера, измеряться сопротивление должно периодически, а сам контур надо постоянно поддерживать в исправном состоянии.

Проверка заземления розеток

Если вы купили дом или квартиру, и вся электрическая часть в помещении уже была смонтирована до вас, как проверить заземление в розетке?

Для начала предлагаем вам произвести визуальный осмотр. Отключите вводной автомат на квартиру и разберите одну розетку. У неё должна быть соответствующая клемма, к которой подсоединяется заземляющий проводник, как правило, он имеет жёлто-зелёное цветовое исполнение. Если всё это присутствует, значит, розетка заземлена. Если же вы обнаружили только два провода – коричневый и синий (фазу и ноль), то розетка не имеет защитного заземления.

В то же время наличие жёлто-зелёного проводника ещё не говорит об исправности заземления.

Эффективность контура можно определить специальным прибором, без которого не обходится ни один электрик, мультиметром. Алгоритм этой проверки выглядит следующим образом:

  • В распределительном щитке включите вводной автомат, то есть в розетках должно присутствовать напряжение.
  • На приборе установите режим измерения напряжения.

Мультиметр выставляется на измерение напряжения

  • Теперь необходимо щупами прибора прикоснуться к фазному и нулевому контакту и померить между ними напряжение. На приборе должна высветиться величина порядка 220 В.
  • Аналогичный замер произведите между фазным и заземляющим контактами. Измеряемое напряжение будет немного отличаться от первой величины, но сам факт появления на экране каких-то цифр говорит о том, что в помещении присутствует заземление. Если на экране прибора никаких цифр нет, значит, контур заземления отсутствует либо он в неисправном состоянии.

Когда нет мультиметра, проверить работу контура можно тестером, который собирается своими руками. Вам понадобятся:

  • патрон;
  • лампочка;
  • провода;
  • концевики.

Электрики называют подобный тестер «контрольной лампочкой» или сокращённо «контролькой». Прикоснитесь одним концевым щупом к фазному контакту, вторым дотроньтесь до нулевого. Лампочка при этом должна загореться. Теперь концевик, которым вы прикасались к нулю, переведите на усик заземляющего контакта. Если лампочка снова загорится, значит, контур заземления в рабочем состоянии. Лампа не будет гореть, если защитное заземление не рабочее. Слабое свечение станет свидетельством плохого состояния контура.


Лампа-контролька электрика

Если к проверяемой цепи подключено УЗО, то во время проверочных действий оно может сработать, это означает, что заземляющий контур работоспособен.

Обратите внимание! Может быть такая ситуация, что во время прикосновения концевиками к фазному и заземляющему контактам лампа не загорелась. Попробуйте тогда с фазного контакта переместить щуп на нулевой, возможно во время подключения розетки ноль с фазой были попутаны.

В идеале надо начинать проверочные действия с того, что при помощи индикаторной отвёртки определять в коммутационном аппарате фазный контакт.

Наглядно этот способ показан на видео:

О неисправном либо неподключенном контуре заземления могут также свидетельствовать такие косвенные ситуации:

  • бьётся током стиральная машина или водонагревательный бойлер;
  • слышится шум в колонках, когда работает музыкальный центр.

Проведение замеров

И всё же в вопросе, как замерить сопротивление заземления, лучше пользоваться не мультиметром, а мегаомметром. Наилучшим вариантом считается электроизмерительный переносной прибор М-416. Его работа основывается на компенсационном методе измерения, для этого пользуются потенциальным электродом и вспомогательным заземлителем. Его измерительные пределы от 0,1 до 1000 Ом, работать прибором можно при температурных режимах от -25 до +60 градусов, питание осуществляется за счёт трёх батареек напряжением 1,5 В.

Мегаомметр М-416

А теперь пошаговая инструкция всего процесса как измерить сопротивление контура заземления:

  • Прибор расположите на горизонтальной ровной поверхности.
  • Теперь произведите его калибровку. Выберите режим «контроль», нажмите красную кнопку и, удерживая её, установите стрелку в положение «ноль».
  • Некоторое сопротивление есть и у соединительных проводов между выводами, чтобы свести к минимуму это влияние расположите прибор поближе к измеряемому заземлителю.
  • Выберите нужную схему подключения. Можете проверить сопротивление грубо, для этого выводы соедините перемычками и подключите прибор по трёхзажимной схеме. Для точности измерений следует исключить погрешность, которую дадут соединительные провода, то есть между выводами снимается перемычка и применяется четырёхзажимная схема подключения (кстати, она нарисована на крышке прибора).
  • Выполните забивание в землю вспомогательного электрода и стержня зонда на глубину не меньше 0,5 м, имейте в виду, что грунт должен быть плотный и не насыпной. Для забивания используйте кувалду, удары должны быть прямыми, без раскачивания.

Специализированные приборы комплектуются штырями

  • Место, где будете подсоединять проводники к заземлителю, зачистите напильником от краски. В качестве проводников применяйте медные жилы сечением 1,5 мм2. Если используете трёхзажимную схему, то напильник будет выполнять роль соединительного щупа между заземлителем и выводом, так как с другой его стороны подсоединяется медный провод сечением 2,5 мм2.
  • И теперь переходим уже непосредственно к тому, как измерить сопротивление заземления. Выберите диапазон «х1» (то есть умножение на «1»). Нажмите красную кнопку и вращением ручки стрелку установите на «ноль». Для больших сопротивлений необходимо будет выбрать и больший диапазон («х5» или «х20»). Так как мы выбрали диапазон «х1», то цифра на шкале и будет соответствовать измеренному сопротивлению.

Наглядно, как проводится измерение заземления на следующем видео:

Некоторые основные параметры и правила

Неважно, в какое время года вы будете производить замеры, показания всегда должны соответствовать следующим нормам:


Для источников с однофазным напряжением Для источников с трёхфазным напряжением Величина сопротивления заземления
127 В 220 В 8 Ом
220 В 380 В 4 Ом
380 В 660 В 2 Ом

Замеры рекомендуется выполнять при определённых погодных условиях, когда земля считается наиболее плотной.

Измерения лучше проводить с сухую солнечную погоду

Идеальное время – это середина лета (когда грунт сухой) и середина зимнего периода (когда земля сильно промёрзшая).

Мокрый грунт сильно повлияет на растекаемость тока, поэтому измерения, проведённые в сырую и влажную погоду в весенний или осенний период, будут искажёнными.

Есть ещё способ производить замеры токоизмерительными клещами, но самым лучшим вариантом будет обращение в специализированную службу. Электротехническая лаборатория произведёт все необходимые измерения и выдаст соответствующий протокол, в котором будут указаны место проведения испытаний, характер и удельное сопротивление грунта, величины замеров с сезонным поправочным коэффициентом.

yaelectrik.ru

Испытания заземления


Существует множество споров по поводу монтажа заземления и норм растекания тока по нему. Но в одном специалисты сходятся абсолютно единогласно — проверять качество установленного контура должен проверять специалист. Эта процедура позволит быть уверенным с правильном монтаже заземления в доме и позволит обезопасить себя и близких от опасного воздействия электрического тока. Испытания проводятся как на предприятиях, где часто работают генераторы и двигатели высокой мощности, так и в частных домах — измерение сопротивления заземления делается одним и тем же способом.

Измерение сопротивления2

Существует две основных разновидности испытаний: приемо-сдаточные и эксплуатационные. Первые проводятся в случаях, когда установка (или участок сети) уже полностью смонтированы и готовы к непосредственному использованию. Перед тем, как измерить сопротивление заземления, определяют, готов ли контур к поглощению токов в случае необходимости и соответствуют ли его параметры заявленным требованиям. Помимо всего прочего, необходимо регулярно контролировать, чтобы установленное заземление не теряло своих свойств с течением времени. Для этого проводятся эксплуатационные испытания — специалист проверяет готовый участок сети, который уже используется. Для осуществления такой процедуры нужно освободить сеть от потребителей, так что весь процесс требует небольшой подготовки.

Чем измеряют заземление


Для измерения этой величины применяется омметр — прибор, который изменяет сопротивление. При этом устройств для определения сопротивления заземления должны иметь определенные характеристики. Самая главная: очень низкая проводимость на входе. Диапазон измерений у таких приборов крайне небольшой: обычно он составляет от 1 до 1000 Ом. Точность измерения в аналоговых приборах не превышает 0.5–1 Ом, а в цифровых — до 0.1 Ома.

Измерение сопротивления3

Несмотря на повальное распространение китайских и европейских приборов, самым популярным остается М416, разработанный еще в СССР. Устройство имеет четыре диапазона измерения: от 0 до 10 Ом, от 0.5 до 50, от 2 до 200 и от 100 до 1000. Работает прибор от трех «пальчиковых» батареек. Несмотря на это, мобильным его назвать трудно — размеры корпуса не слишком комфортны.

Более продвинутой версией является Ф4103 — промышленный омметр с большим входным сопротивлением. Он еще менее транспортабельный, но имеет большее количество диапазонов измерения. Большой плюс такого прибора: работа с огромным диапазоном сигналов (от постоянного и пульсирующего тока — до переменного с частотой 300 Гц). Также порадует пользователя и диапазон рабочих температур: от –25 до 55 градусов по Цельсию.

Измерение сопротивления4

Как нужно измерять сопротивление

Существует два документа, которые регламентируют нормы сопротивления заземления в контуре и другие показатели. Первый — ПУЭ (Правила устройства электроустановок), на которые опираются при проведении приемо-сдаточного контроля. Эксплуатационные замеры же должны соответствовать Правилам технической эксплуатации электроустановок потребителей (ПТЭЭП).

Измерение сопротивления5

В обеих сводах правил существует разделение контуров на несколько типов — их нужно учесть до того, как измерить сопротивление заземления. Они отличаются в зависимости от напряжения, которое используется в сети и разновидности цепи. Всего имеется три типа контуров:

  1. Для подстанций и пунктов распределения, в которых напряжение не превышает 1000 вольт (вне зависимости от того, используется в сети переменный ток или постоянный).
  2. Для воздушных ЛЭП (линий электропередач), которые передают ток напряжением менее 1000 вольт.
  3. Для электроустановок с таким же максимально допустимым напряжением, использующимся в промышленных или бытовых целях.

Измерение сопротивления6

Нормы для каждого из типов

Для того, чтобы понять, какие нормативные и эксплуатационные показатели должны быть для каждого из типов:

  1. Для электрических установок. Проводить измерения сопротивления заземления нужно в непосредственной близости к подстанции. В зависимости от нагрузки, этот показатель может составлять 60, 30 или 15 Ом. Также стоит учитывать естественные заземлители — для них эти величины должны равняться 8, 4 или 2 Ома соответственно. Все три величины зависят от напряжения в сети. 60 и 8 Ом допускаются для однофазной сети в 200 вольт. 30 и 4 Ом — для трехфазной с напряжением 380 вольт. Минимальные значения (15 и 2 Ома) — для 660 вольт. В ходе эксплуатации сопротивление заземляющего контура также не должно падать ниже показателей, описанных в абзаце выше.
  2. Для пункта распределения или подстанции. Для установок с напряжением выше 100 киловольт (100 тысяч вольт) проводимость заземления при сдаче сети и при ее эксплуатации также остается неизменной и составляет 0.5 Ома. При этом обязательными требованиями при проверке являются глухой тип заземления и подключенная к нейтральному контуру. Также существуют нормы и для менее мощных установок, в которых напряжение лежит в пределах между 3 и 35 киловольт. В таком случае нужно 250 делить на расчетный ток замыкания в землю — результирующее значение будет необходимым сопротивлением в Омах. Показатель, согласно ПТЭЭП, не должен превышать 10 Ом в любом случае.
  3. Для воздушных линий электропередач. Рассчитывается в зависимости от проводимости грунта, на котором стоят опоры ЛЭП:
  • для грунта с удельным сопротивлением менее 100 Ом на метр — 10 Ом;
  • с удельным сопротивлением 100…500 Ом на метр — 15 Ом;
  • с удельным сопротивлением 500…1000 Ом на метр — 20 Ом;
  • с удельным сопротивлением 1000…5000 Ом на метр — 30 Ом.

Измерение сопротивления7

Для ЛЭП с напряжением тока менее 1000 вольт — до 30 Ом (для опор с защитой от попадания молнии). В ином случае сопротивление должно быть 60, 30 или 15 Ом для сетей с напряжением до 660, 380 или 220 вольт соответственно.

От чего зависит сопротивление заземления

Как уже говорилось выше, у тока есть одна важная особенность — он течет по тому участку цепи, который меньше всего этому сопротивляется. Сама величина сопротивления зависит от множества факторов:

  1. Материала. Ряд материалов имеет особую (атомарную) структуру, которая подразумевает наличие большого числа свободных электронов. Если такие материалы попадают в действие любого магнитного поля или покдлючаются к источнику питания, то легко проводят электрический ток. В своем большинстве это утверждение относится к металлам. Другие материалы не имеют свободных электронов и их сопротивление току крайне высоко. Если напряжение (сила, «толкающая» электроны) ниже допустимого значения, то проводимость будет равняться нулю или крайне малым значениям. При превышении показателя произойдет пробой и образовавшийся нагар будет иметь свойства проводника. Логично, что материалом для заземления могут быть именно только представители первой группы материалов — именно она обеспечивает минимальное сопротивление.
  2. Его температуры. Темпатура определяет, насколько быстро электроны передвигаются внутри материала. Следовательно, чем ниже она у проводника, тем лучше он проводит заряд. Обратная зависимость тоже носит характер прямой пропорции — после ее повышения его сопротивление будет падать. Расчет сопротивления заземления должен производиться с учетом этого параметра.
  3. Наличия примесей. Основная часть проводников делается из меди. Старые провода изготавливаливались из алюминия, но такие решения имеют сразу несколько недостатков. К сожалению, кабеля и провода из этого материала быстрее перегреваются и плавятся, да и сопротивление промышленно добываемого алюминия ниже, чем таковое у меди. Химически чистый же металл является лучшим проводником, превосходя по проводимости даже серебро. Дело в примесях: они имеют гораздо более высокие показатели сопротивления. Этот же момент стоит учитывать при расчете заземления.

Измерение сопротивления8

Понятное дело, что в идеале сопротивление должно быть минимальным — для этого нужно использовать медный контур большого сечения. Но дело в том, что медь быстро окисляется, да и стоимость такого решения будет крайне высокой. Следовательно, были разработаны нормы для минимального порога заземления. Этот показатель не нужно превышать для того, чтобы в нужный момент под нагрузкой контур выполнил возложенную на него функцию и отвел заряд в землю.

Формула расчета

Формула расчета сопротивления заземления одиночного вертикального заземлителя:

Формула

где:
ρ — сопротивление грунта на единицу длины (Ом×м)
L — протяженность заземлителя (в метрах)
d — ширина заземлителя (в метрах)
T — расстояние от поверхности земли до середины заземлителя (в метрах)

Для электролитического заземления:

Формула расчета сопротивления заземления одиночного горизонтального электрода с добавлением поправочного коэффициента:

Формула2

где:

ρ — сопротивление грунта на единицу длины (Ом×м);
L — протяженность заземлителя (в метрах);
d — ширина заземлителя (в метрах);
T — расстояние от поверхности земли до середины заземлителя (в метрах);
С — относительное содержание электролита в окружающем грунте.

Коэффициент C варьируется от 0.5 до 0.05. Со временем он уменьшается, так как электролит проникает в грунт на больший объем, при это повышая свою концентрацию. Как правило, он составляет 0.125 через 6 месяцев выщелачивания солей электрода в плотном грунте и через 0.5–1 месяц выщелачивания солей электрода в рыхлом грунте. Процесс можно ускорить путем добавления воды в электрод при монтаже.

Измерение сопротивления9

Расчетное удельное электрическое сопротивление грунта (Ом×м) — параметр, определяющий собой уровень «электропроводности» земли как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземлителя.

Это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Итоги и выводы

Заземление — важный элемент электрической цепи, который обеспечивает защиту от коротких замыканий, поражения током или попадания молнии в один из ее участков. Ключевым показателем здесь является сопротивление: чем оно меньше, чем больше тока «уведет» контур и тем ниже будет вероятность серьезного удара или повреждения оборудования. Сопротивление заземления регламентируется двумя документами: ПУЭ и ПТЭЭП. Первый используется для приема только что сданного участка сети, второй — для контроля уже эксплуатируемого участка.

Измерение сопротивления10

Нельзя пренебрегать нормами контроля, которые призваны проверить качество заземления и работу контура в условиях полной нагрузки. Процедуры производятся как непосредственно после создания цепи, так и в процессе ее использования. Частота проверок зависит от нагрузки на сети и целей, для которых используется контур. Нормы сопроивления при этом вовсе не отличаются. Различают три типа норм: для линий электропередач, трансформаторов и электрических установок. С повышением рабочего напряжения по экспоненте возрастает максимальная величина сопротивления. Также учитывается и ряд специфических показателей (например, удельная проводимость грунта). Исходя из нее можно получить максимальное регламентированное сопротивление.

Основными способами для увеличения эффективности работы заземлителя является использование разных конфигураций проводника. Ключевая задача заключается в том, чтобы предельно повысить площадь прямого контакта контура с землей. Для этого используется один или несколько проводников. В последнем случае их могут соединять как последовательно, так и параллельно.

Также для замера сопротивления контура заземления важно знать и поправочные коэффициенты — например, при вычислении минимально допустимого сопротивления заземления учитывается также удельное содержание материала в грунте и сопротивление повторного заземления. Для получения этого показателя нужно использовать специальное оборудование.

profazu.ru

Основные понятия

Сопротивление заземляющего устройства (оно так же именуется сопротивление растеканию тока) имеет прямо пропорциональную взаимосвязь с напряжением и обратно пропорциональную с током растекания в «землю».

Измерение заземления

Можно выделить три вида заземлений:

  • рабочее. С его помощью заземляются определенные места, оно используется в процессе эксплуатации электрооборудования;
  • защита от молний. Молниеприемники заземляются с целью перенаправления на металлические конструкции токов, которые возникают под воздействием молний;
  • защитное. Используется для защиты от поражающего действия электрического тока, если кто-то непреднамеренно соприкоснется с деталью, которая при нормальной работе не должна пропускать ток.

Существует несколько методик измерения сопротивления заземляющих устройств, которые будут рассмотрены более детально. Способы измерений определяются специалистами электротехнической лаборатории и зависят от конкретных условий эксплуатации оборудования.

Применение амперметра и вольтметра

Метод заключается в следующем. С двух сторон от конструкции заземления, которое подлежит проверке, на равном удалении (около 20 метров) размещают два электрода (основной и дополнительный), после чего на них подается переменный ток. По образованной таким образом цепи начинает протекать электрический ток, а его значение отображается на дисплее амперметра.

Измерение заземления

Подключенный к заземляющему устройству и основному заземлителю вольтметр покажет уровень напряжения. Чтобы определить общее сопротивление заземления нужно воспользоваться законом Ома, разделив значение напряжения, показанного вольтметром, на ток, значение которого показывает амперметр. Этот способ измерений является наиболее простым, но имеет невысокий уровень точности, поэтому чаще всего используются иные методы.

Компенсационный метод

Данная методика дает возможность проводить измерения сопротивления заземления с использованием готовых приборов, которые выпускает промышленность. Известные модели таких приборов – Ф4103-М1, М416, ИС-10 и другие. Как и в предыдущей методике, здесь применяются два электрода, углубляемые аналогичным образом в почву. Далее необходимо к заземляющему устройству подключить сам измерительный прибор, а его провода зафиксировать на укрепленных в грунте электродах.

Измерение заземления

Генерируется ток, движущийся сквозь первичную обмотку трансформатора прибора, которым осуществляется измерение сопротивления заземляющего проводника. Одновременно с этим на вторичной обмотке наводится ЭДС, и вольтметр показывает определенное значение. С помощью реохорда на измерительном приборе добиваются того, чтобы стрелка на вольтметре находилась в нулевом положении. Это будет свидетельствовать о равенстве напряжений U1 и U2. Вращая ручку реостата, необходимо зафиксировать значение сопротивления заземления по показаниям стрелки реохорда.

Трехпроводный метод

В этом методе измерение сопротивления заземления проводится с помощью специальных измерителей, как старого образца (например, мегаомметром), так и современного, использующих цифровые технологии и микропроцессоры (например, MRU-200).

Измерение заземленияНеобходимо очистить от коррозии шинопровод заземляющего устройства, после чего подключить к нему контакт измерителя. На указанном в инструкции расстоянии в почву вбиваются электроды, к которым прикрепляются катушки. Их концы подключают к измерительному прибору и убеждаются, что схема готова к функционированию. Необходимо учитывать, что напряжение помехи между укрепленными в земле электродами не должно быть больше чем 24 Вольта. Если этого не удалось добиться, то необходимо электроды разместить иначе.

Нажатием кнопки на приборе запускают процесс автоматического измерения сопротивления, наблюдая на дисплее показания. Для большей точности следует провести несколько замеров и убедиться, что показания отличаются друг от друга не более чем на 5%.

Если имеется необходимость добиться повышенной точности измерения, может использоваться четырехпроводный метод, который исключает влияние сопротивления измерительных приборов.

Токовые клещи

Главным достоинством данного метода является то, что не нужно использовать дополнительное оборудование и производить отключение заземления.

Достаточно просто использовать клещи для измерения величины сопротивления.

Измерение заземления

Токовые клещи функционируют на основе взаимоиндукции. В головке измерительных клещей спрятана обмотка (первичная обмотка). Ток в ней генерирует ток в заземляющем проводнике, играющем роль вторичной обмотки. Чтобы узнать величину сопротивления, нужно разделить показатель ЭДС вторичной обмотки на значение тока, которое было измерено клещами (оно появляется на дисплее клещей). В более современных приборах ничего делить не надо. При соответствующих настройках значение сопротивления заземления сразу же отображается на дисплее.

Периодичность проверки

Проведение визуальных осмотров, измерений и вскрытие грунта (если это нужно) проводится на основании графика, который составляется и утверждается предприятием, однако эти сроки должны находиться в пределах 12 лет. Наиболее корректные результаты можно получить, если померить сопротивление заземления в середине лета или зимы. Именно тогда почва обладает максимальным сопротивлением. Важно помнить, что измерения стоит проводить в сухую погоду.

Измерение заземления

Минимальный уровень сопротивления заземляющих устройств, который допускается, нормируется «Правилами устройства электроустановок». Если электроустановка работает с напряжением до 1000 В, то значение сопротивления должно находиться в пределах от 2 до 8 Ом в зависимости от уровня напряжения (2 – если 660 В, 4 – если 380 В, 8 – если 220 В). В электроустановках напряжением свыше 1000 В уровень сопротивления не должен превышать 0,5 Ом.

evosnab.ru

Для чего необходимы измерения

Блестящее решение перечисленных ниже задач достигается идеальным нулевым сопротивлением в заземляющей цепи:

  1. Не допустить появления напряжения на корпусе технологических машин.
  2. Добиться эффективного опорного потенциала электроаппаратуры.
  3. Полностью устранить статические токи.

Правда, электротехнический опыт показывает: результат под идеальный нуль получить невозможно.

В любом случае, заземлённый электрод выдаёт какое-никакое сопротивление. Конкретную величину resistance определяют:

  • сопротивление электрода в точке контакта с проводящей шиной;
  • контактная область между земляным электродом и грунтом;
  • структура грунта, дающая разное сопротивление.

Практика измерений сопротивления контура заземления отмечает, что первыми двумя факторами вполне можно пренебречь, но при соблюдении логичных условий:

  1. Заземляющий электрод сделан из металла с высокой электропроводимостью.
  2. Тело штыря электрода тщательно зачищено и плотно посажено в грунт.

Остаётся фактор третий – резистивная поверхность грунта. Он видится главной расчётной деталью для измерений сопротивления контура заземления.

Вычисляется же благодаря формуле:

R = pL / A

где: p – удельное сопротивление грунта, L – условное заглубление, А – рабочая площадь.

Обзор измерительных способов

Существует несколько вариантов измерения сопротивления контура заземления, каждый из которых вполне точно позволяет определить искомую величину.

3-точечная система определения

Так, например, часто применяется методика 3-х точечной схемы, основанная на эффекте падения потенциала.

Измерения выполняют за три основных шага:

  1. Замер напряжения на электроде Э1 и зонде Э2.
  2. Замер силы тока на электроде Э1 и зонде Э3.
  3. Расчёт (формулой R = E / I) сопротивления заземляющего электрода.

Для этой методики точность замеров логически зависима от места инсталляции зонда Э3. Его рекомендуется внедрять в грунт на удалении — оптимально за пределы так называемой области ЭСЭ (эффективного сопротивления электродов) Э1 и Э2.

Измерения по технологии «62%»

Если структура грунта под размещение заземляющего электрода отличается однородным содержимым, методика «62%» для определения сопротивлений контуров заземления обещает хорошую результативность.

Способ применим под схемы с единственным заземляющим электродом. Точность показаний здесь обусловлена возможностью расположения рабочих зондов  на прямолинейном участке, относительно заземляющего электрода.

Точки инсталляции контрольных зондов

Упрощённый двухточечный метод

Применение этого способа измерений требует наличия ещё одного качественного заземления помимо того, которое будет подвергаться исследованию. Методика актуальна для территорий густонаселённых, где часто нет возможности широко оперировать вспомогательными рабочими электродами.

Метод двухточечного измерения отличается тем, что одновременно показывает результат для двух устройств заземления, включенных последовательно. Этим и объясняются требования к высокому качеству исполнения второго заземления, чтобы не учитывать его сопротивление. При вычислениях также измеряется сопротивление заземляющей шины. Полученный результат вычитывают из результатов общих замеров.

Точность этого способа оставляет желать лучшего по сравнению с двумя вышеизложенными. Здесь существенную роль играет расстояние между заземляющим электродом, сопротивление которого измеряется и вторым заземлением. Стандартно такая методика не применяется. Это своего рода альтернатива, когда нельзя использовать другие способы измерений.

Точные измерения по четырём точкам

Для большинства вариантов измерения сопротивлений наиболее оптимальным способом, помимо 2-х и 3-х точечных, считается 4-х точечная технология. Такой технологией замеров наделены приборы, подобные тестеру 4500 серии. Судя из наименования метода, на рабочей площадке в одну линию и на равных расстояниях размещаются четыре рабочих электрода.

Генератор тока прибора подключается на крайние электроды, в результате чего между ними течёт ток, значение которого известно. На других клеммах прибора подключены два внутренних рабочих электрода. На этих клеммах присутствует значение падения напряжения. Конечный результат по замерам – сопротивление заземления (в Омах), значение которого прибор демонстрирует на дисплее.

Приборами из серии 4500 часто пользуются для измерения напряжения прикосновения. Устройством при помощи специального модуля генерируется в земле напряжение небольшой величины – имитация повреждения кабеля. Одновременно на шкале прибора указывается ток, текущий по цепи заземления. Показания на экране берут за основу и умножают на предполагаемую величину тока в земле. Таким способом вычисляют напряжение прикосновения.

К примеру, максимальное значение ожидаемого тока на участке повреждения равно 4000А. На экране прибора отмечается величина 0,100. Тогда величина напряжения прикосновения будет равна 400В (4000*0,100).

Измерение прибором С.А6415 (6410, 6412, 6415)

Уникальность этого способа – возможность проведения замеров без отключения заземляющей цепи. Также здесь следует выделить преимущественную сторону, когда измерять общее сопротивление устройства заземления допустимо методом включения в цепь заземления резистивной составляющей всех соединений.

Принцип работы примерно следующий:

  1. Специальным трансформатором в цепи создаётся ток.
  2. Ток течёт в образованном контуре.
  3. С помощью синхронного детектора регистрируется измеряемый сигнал.
  4. Полученный сигнал преобразуется АЦП.
  5. Результат выводится на ЖК-дисплей.

Устройство оснащается модулем (избирательный усилитель), благодаря которому полезный сигнал эффективно очищается от разного рода помех – н.ч. и в.ч. шумов. Лапами клещей в их сочленённом состоянии образуется возбуждаемый контур, охватывающий проводник заземления.

Инструкция измерения прибором С.А6415

Последовательность действий при работе с прибором серии С.А6415 доходчиво описывается в инструкции, прилагаемой к этому уникальному устройству.

Например, есть необходимость провести измерения сопротивления заземления какого-либо электрического модуля (трансформатора, электросчётчика и т.п.). Последовательность действий:

  1. Открыть доступ к заземляющей шине, сняв защитный кожух.
  2. Захватить клещами проводник (шину или непосредственно электрод) заземления.
  3. Выбрать режим измерения «А» (измерение тока).

Максимальное значение тока прибора составляет 30А, поэтому в случае превышения этой цифры выполнять измерение нельзя. Следует снять прибор и повторить попытку измерений в другой точке.

Когда полученная на шкале величина тока укладывается в допустимый диапазон, можно продолжить работу переключением прибора на измерение сопротивления «?». Высвеченный на дисплее результат покажет общее значение сопротивления, включая:

  • электрод и шину заземления;
  • контакт нейтрали с электродом заземления;
  • контакт соединений на линии между нейтралью и заземляющим электродом.

Работая с клещами, следует иметь в виду: завышенные показания прибора по сопротивлению заземления, как правило, обусловлены плохим контактом заземляющего электрода с грунтом. Также причиной высокого сопротивления может быть оборванная токоведущая шина. Высокие цифры сопротивлений в точках соединений (сращиваний) проводников тоже могут влиять на показания прибора.

Общие рекомендации по измерению УСГ

Прежде чем сооружать цепь заземления, следует получить точные сведения о том, в область каких грунтов будет закладываться заземляющий электрод. Часто для определения значений «p» грунта предлагается обращаться к существующим таблицам. Однако этот вариант с таблицами даёт чисто ориентировочные данные. Поэтому полагаться на них не стоит. Истинные значения сопротивления грунта могут отличаться в разы.

Вариант #1: однослойный грунт

Если грунт имеет однородную составляющую, его удельное сопротивление измеряют методикой «пробного электрода».

Метод предполагает выполнение определённой процедуры в два этапа:

  1. Берут стержневой контрольный зонд длиной чуть больше глубины проектной закладки.
  2. Погружают зонд в землю строго вертикально на глубину проектной закладки.
  3. Оставшийся над поверхностью земли конец используют для замера сопротивления растекания (Rr).
  4. Определяют УСГ по формуле p = Rr * Ψ.

Желательно выполнить процедуру несколько раз в различных точках рабочей площадки. Альтернативные замеры помогают достичь точных результатов измерений сопротивления грунта.

Вариант #2: многослойный грунт

Для такой ситуации замер УСГ выполняют методом ступенчатого зондирования. То есть контрольный зонд погружается до рабочей глубины ступенями и в положении каждой ступени выполняются измерения удельного сопротивления.  Вычисления среднего УСГ производятся с помощью формул для каждого отдельного измерения.

Затем, исходя из климатических особенностей местности, находят значения для сезонных изменений. Таким способом (достаточно сложным) получают расчётные значения УСГ верхних слоёв. Нижележащие слои рассматриваются как не подверженные сезонным изменениям и потому расчёт для них ограничивается несколько упрощённым измерением и вычислением.

Требования к исполнению работ

Работы подобного плана, конечно же, выполняются квалифицированным персоналом, представляющим специализированные организации. Так, за эксплуатацию силовых щитков в жилых домах, как правило, отвечают коммунальные службы. Производить какие-либо измерения в этих точках разрешается только через обращение к этим службам.

Электрические цепи относятся к опасным системам. Несмотря на то, что коммуникации бытового сектора рассчитаны под напряжение менее 1000В, это напряжение смертельно для человека. Требуется соблюдать все необходимые меры безопасности при обращении с электрическим оборудованием. Обывателю зачастую такие меры попросту неведомы.

Выводы и полезное видео по теме

Выполнение измерений на практике с помощью прибора:

Исполнение работ, связанных с проверкой сопротивления заземления, требуется обязательно, независимо от сложности электрической схемы и категории объекта, где устанавливается или установлено и эксплуатируется электрооборудование. Многие специализированные организации готовы предоставлять такие услуги.

sovet-ingenera.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.