Как измерить сопротивление изоляции


Цель работы:

Изучить методы измерения сопротивления изоляции электроустановок.

Задание:

  1. Ознакомиться с теорией по сопротивлению изоляции электросети.

  2. Изучить методы измерения сопротивления изоляции электроустановок.

  3. Провести экспериментальное определение сопротивления изоляции проводов, предложенных преподавателем, с помощью:

    1. Мегаомметра М 4100.

    2. Тераомметра Е6-13А.

    3. Мультиметра М-830В.

КРАТКАЯ ТЕОРИЯ

При снижении сопротивления изоляции в месте повреждения (загрязнение, увлажнение и т. п.) увеличивается ток, протекающий под действием рабочего напряжения сети; соответственно повышается температура нагреваэтого места. Повышение температуры нагрева изоляционного материала снижает его сопротивление, что приводит к соответствующему увеличению тока.


следнее вызывает новое повышение температуры и соответствующее дополнительное снижение сопротивления изоляции. Процесс нарастания электрического тока продолжается до тех пор, пока не установится равновесие между тепловыделением и теплоотводом (при какой-тоустановившейся температуре перегрева). В случае, когда условия охлаждения не соответствуют интенсивности тепловыделения в месте повреждения, наступает лавинообразное нарастание тока, приводящее к тепловому разрушению материала и дуговому замыканию. Поэтому при снижении сопротивления изоляции необходимо принимать меры к устранению неисправности.

Сопротивление изоляции сети

Сеть состоит из комплекса гальванически связанных электротехнических изделий – источника электроэнергии, распределительных щитов, приемников электроэнергии, линий связи и пр. Каждое изделие имеет определенное значение сопротивления изоляции.

Если все токоведущие части данной фазы находятся под электрическим потенциалом фф, а земля имеет электрический потенциал ф0, то сопротивления изоляции R0 этой фазы у всех элементов сети оказываются под одной и той же разностью потенциалов. Отсюда следует, что сопротивленияR0всех элементов сети включены между собой параллельно. Обычноизмеряют эквивалентное сопротивление изоляции не отдельных фаз, а сети в целом (или ее отдельных участков). Тогда


Как измерить сопротивление изоляции(3.1)

где Rni – сопротивление изоляции отдельного электротехнического изделия, n – количество изделий в сети.

То есть эквивалентное сопротивление изоляции сети относительно земли зависит от количества входящих в эту сеть электротехнических изделий и значений их сопротивления изоляции. Чем разветвленнее сеть, чембольше в ней элементов, тем ниже уровень ее сопротивления изоляции. При этом даже и случаи исправной изоляции у всех элементов значениеэквивалентного сопротивления изоляции сети может быть весьма низким. В разветвленной сети на фоне низкого значения эквивалентного сопротивления изоляции незаметно аварийное снижение сопротивления изоляции одного из элементов. Тем самым возрастает пожарная опасность разветвленных сетей.

Емкость относительно земли

Токоведущие части и корпус электротехнического изделия (либо земля) образуют своеобразный конденсатор, обладающий определенной емкостью. Действительно, здесь мы имеем две токопроводящие среды, изолированные друг от друга и находящиеся под разными потенциалами φф и φ0.


Так, на рисунке 3.1, а видно, что каждый элементарный участок провода длиной ΔLобладает емкостьюΔСотносительно земли. Эквивалентная емкость провода равна сумме этих частичных емкостей. Емкость жилы кабеля длиной 1 км относительно внешней металлической оплетки колеблется в диапазоне 0,1-1,0 мкФ в зависимости от ее сечения и конструкции кабеля. Каждый токоведущий элемент – обмотки электрическихмашин, трансформаторов и реле, печатный монтаж и пр. – имеет определенную емкость.

Емкость относительно земли – элемент, распределенный по длине линии. Однако при анализе условий электробезопасности распределенную емкость заменяют сосредоточенной эквивалентной и применяют аппарат теории цепей с сосредоточенными параметрами. Это справедливо, так как длина электромагнитной волны промышленной частоты 50 Гц равна 6000 км (λ = c/f), то есть она существенно больше геометрических размеров электрической сети любого промышленного объекта. Емкость как распределенный элемент учитывается при анализе нестационарных высокочастотных процессов типа импульсных перенапряжений в сети при внезапных замыканиях на землю и при расчете процессов в протяженных линиях передачи электроэнергии.


Как измерить сопротивление изоляции

Как измерить сопротивление изоляции

φФ = Uф

φ0 = 0

Рисунок 3.1 – Емкость токоведущих частей относительно земли: распределенная (а) и эквивалентная (б).

Другим источником емкости (основным по количественному значению) являются фильтры защиты аппаратуры автоматики и радиоэлектронной аппаратуры от помех. Эти фильтры устанавливают у источника помехи и в цепях питания радиоэлектронной аппаратуры.

В любой сети постоянною токи или промышленной частоты при каждом разрыве электрической цепи возникают высокочастотные электромагнитные колебания (электромагнитные помехи), которые как излучаются во внешнее пространство, так и проходят по сети. Генераторами подобных помех являются коммутационные аппараты (контакторы, реле), коллекторные электрические машины и тому подобные элементы. Другим источником помех является нелинейные элементы сети, искажающие форму кривой напряжения и генерирующие высокочастотные составляющие (например, полупроводниковые выпрямители).


Обычно уровень электромагнитных помех снижают путем применения емкостных помехоподавляющих фильтров.

Например, конденсаторы C1, включаются между каждой щеткой коллекторной электрической машины и корпусом. При этом для высокочастотной электромагнитной помехи внутри корпуса машины создается контур«щетка Щ1 – конденсатор C1 – корпус – конденсатор C1 – щетка Щ2», имеющий бесконечно низкое сопротивление

Хс =1/2πnfCl ->0

где n- кратность частоты помехи по отношению к основной гармонике 50 Гц. В результате помеха не выходит за пределы корпуса машины. Емкость каждого фильтра в зависимости от конкретных обстоятельств лежит в диапазоне 0,049-10 мкФ и более.

Емкость ухудшает изоляционные параметры сети, снижая эквивалентное сопротивление токоведущих частей относительно земли при исправной электрической изоляции. Например, если имеем эксплуатационный уровень эквивалентного сопротивления изоляции сети 600 кОм, то при значении емкости 1 мкФ он снижается в 200 раз – до 3 кОм; еслиемкость составляет 100 мкФ, то он падает в 20000 раз – до 30 Ом.


Емкость оказывает на сеть и другие виды негативного воздействия. Так, при каждом подключении приемников электроэнергии (отдельных участков сети) она в процессе своего заряда генерирует импульсные перенапряжения; при определенных обстоятельствах последние могут сформировать электрические пробои воздушных зазоров и дуговые замыкания.Паразитные емкостные связи способствуют выносу переменного напряжения сети питания в цепи систем автоматического управления и контроля; в результате нарушения работы систем автоматики могут сформироватьсяразнообразные аварийные ситуации на объектах.

Таким образом, анализ условий электробезопасности как на стадии разработки проекта электроустановки, так и при ее эксплуатации должен выполняться с учетом параметров цепей связи токоведущих элементов с землей. В качестве примера на рис. 3.1, б приведена эквивалентная схема трехфазной сети с изолированной нейтралью.

Как правильно измерить сопротивление изоляции электроустановок

Сопротивления изоляции распределены по сети. Обычно оперируют значениями эквивалентных величин. Вследствие этого линии связи между токоведущими частями и корпусом, показанные в упомянутой статье на схемах замещения (рис. 3.2), и соответствующие им подключения элементов к фазам (полюсам) сети и земле в природе отсутствуют. Поэтому измерить значение сопротивления изоляции непосредственным подключением какого-либо прибора к схемным линиям связи не представляется возможным. По этой причине обычно используют косвенные методы измерений – активные (с применением вспомогательного источника напряжения) или пассивные (с использованием рабочего напряжения сети в качестве оперативного напряжения).


В сетях с заземленной нейтралью выполняют периодический контроль при снятом рабочем напряжении, а в сетях, изолированных от земли, согласно п. 1.6.12 « Правил устройства электроустановок» – автоматическийконтроль под рабочим напряжением.

Представление о значении сопротивления изоляции дает лишь сила тока в измерительной цепи в установившемся режиме, так как в первыемоменты после приложения измерительного напряжения, а также при каждом изменении структуры и состава сети (например, при подключении новых электроприемников) в измерительной цепи протекают токи переходных режимов, обусловленные перезарядом емкости полюсов сети относительно корпуса или зарядом емкости подключаемого участка сети. Крометого, на результат измерений оказывает влияние рабочее напряжение электроустановки.

Правильный результат может быть получен лишь при соответствии принятого метода измерений параметрам контролируемой сети. Без соблюдения этого условия в одной и той же сети при измерении различными средствами могут быть получены данные, противоречащие одни другим.

Измерения при снятом рабочем напряжении

При снятом рабочем напряжении применяют метод наложения постоянного напряжения. Измерительный прибор – переносной либо щитовой мегаомметр И- содержит источник постоянного напряжения Е и миллиамперметр А (рисунок 3.2).


Как измерить сопротивление изоляции

Рисунок 3.2 – Измерение при снятом рабочем напряжении

Один полюс прибора (обычно положительный) подключается к токоведущей части (например, к клемме 1), а второй полюс – к корпусу проверяемого электротехнического изделия.

В установившемся режиме после заряда емкостей C1и С2относительно корпуса ток IИЗМ, протекающий под действием источника Е, на полюсе 1 разветвляется: его часть I’изм протекает через эквивалентное сопротивление изоляции R1 полюса 1, а другая часть I”изм – через сопротивление нагрузки Rн и эквивалентное сопротивление изоляции R2 полюса 2. Далее ток протекает по корпусу и суммируется в цепи миллиамперметра А.

Силу тока IИЗМ определяет выражение:


Iизм=E/{Rвн+R) (3.2)

где RBH – внутреннее сопротивление мегаомметра (миллиамперметра, источника измерительного напряжения и добавочного сопротивления Rд), R -эквивалентное сопротивление изоляции. Строго говоря, в последнем следовало бы учесть сопротивление RH, но обычно RH«R2 поэтому его влиянием допустимо пренебрегать (в тех случаях, когда внутреннее сопротивление контролируемого изделия соизмеримо с величиной сопротивления изоляции, такое допущение может приводить к ошибочным результатам, завышенным против фактических).

При RBH = const и Е = const сила тока в измерительной цепи зависит только от величиныR, поэтому миллиамперметр градуируют непосредственно в единицах сопротивления.

На практике обычно применяют переносные мегаомметры с питанием от сети переменного тока (типа MI27) или с автономным источником (типа М4100). В качестве последнего используют индукторный генератор с ручным приводом (скорость вращения рукоятки около 2 об/с). Чтобы уменьшить погрешность измерений из-за непостоянства скорости вращения рукоятки, в таких мегаомметрах в качестве измерительного прибора используют не миллиамперметр, а логометр, одна рамка которого подключенанепосредственно к источнику напряжения, а вторая, жестко связанная с ней, включена в измерительную цепь.


Для повышения достоверности измерений измерительное напряжение выбирают близким к рабочему напряжению контролируемой цепи. Для электрооборудования напряжением от 100 В до 400 В применяют мегаомметры напряжением 500 В. Безопасность измерений при этом достигается за счет ограничения силы тока в измерительной цепи до величины 1 мАдобавочным сопротивлением R = 0,5 МОм.

Измерения в сетях постоянного тока

Норвежская фирма Autronicaсоздала автоматизированную систему контроля сопротивления изоляцииSystemAJ-1 с генератором оперативного напряжения частотой 5 Гц. ФирмаMerlinGerin(Франция) выпускаетприборы Vigilohm System XM-200 с оперативным источником частотой 2,5 Гц.

В ряде случаев вместо источника напряжения непромышленной частоты используют вспомогательный источник постоянного напряжения переменной полярности. Так, фирмаBender(Германия), выпускает приборIRDH 265-4.

Метод уравновешенного моста

На этом методе, как правило, основана работа отечественных щитовых мегаомметров в сетях постоянного тока. Схема измерений этим методом приведена на рисунке 3.3, где использованы следующие обозначения:А – миллиамперметр; Rд – добавочное сопротивление; П – переключатель; Е – источник измерительного напряжения (до 150 В); Rп– потенциометр.

Плечами моста являются сопротивления изоляции R1 и R2 и сопротивления r1 и г2 плеч потенциометра Rп. Измерительный прибор и ограничительное сопротивление Rд включены в диагональ моста.

Как измерить сопротивление изоляцииРисунок 3.3 – Измерение сопротивления изоляции сети постоянного токаметодом уравновешенного моста

Сила тока Iизм в диагонали моста определяется выражением:

Как измерить сопротивление изоляции (3.3)

где R- эквивалентное сопротивление изоляции сети.

Измерение производится в два этапа. На первом этапе переключатель П устанавливают в положение 1 и перемещением движка потенциометра балансируют мост – добиваются отсутствия тока в диагонали моста. На втором этапе переключатель устанавливают в положение 2, подключая в диагональ моста источник измерительного напряжения Е. После окончания процессов перезаряда емкостей снимают показание миллиамперметра.

В сбалансированном мосте составляющая тока, определяемая вторым слагаемым, отсутствует. Поэтому при Е = const,Rд=constи при условииr1r2/Rn«R сила тока IИЗМ однозначно определяется сопротивлением изоляции R (приборы типа MI54, М1508, М1608, М1428, М1628).

Обычно при работе с сетями постоянного тока применяют методы измерений, основанные на использовании рабочего напряжения сети в качествеоперативного напряжения. Рассмотрим один из них.

Метод трех отсчетов вольтметра

Этот метод заключается в последовательном измерении вольтметром с известным сопротивлением r трех напряжений: U – рабочего; U1 – между положительным полюсом сети и землей; U2 – между отрицательным полюсом и землей. Расчет искомой величины сопротивления изоляции сетипроизводится по формуле:

Как измерить сопротивление изоляции(3.4)

Рассмотрим физические основания этого метода.

Как измерить сопротивление изоляцииКак измерить сопротивление изоляции

Как измерить сопротивление изоляции

Рисунок 3.4 – Измерение сопротивления изоляции

сети постоянного тока вольтметрами

а) – по методу двух вольтметров; б) и в) – по методу трех отсчетов вольтметра

На рисунке 3.4(а) показана эквивалентная схема сети постоянного тока с сопротивлениями изоляции полюсов R1, R2 и рабочим напряжением U.

Напряжения между полюсами сети и корпусом U’ и U” пропорциональны соответствующим сопротивлениям изоляции, то есть всегда выполняются следующие соотношения:

Как измерить сопротивление изоляции (3.5)

Если для измерения этих напряжений между полюсами сети и корпусом включить вольтметры V1 и V2 c равными внутренними сопротивлениями r, то получим:

Как измерить сопротивление изоляции(3.6)

При r»R выражение (3.6) будет совпадать с предыдущим.

Такой способ контроля (с использованием двух вольтметров) ранее применялся для индикации однополюсных снижений сопротивления изоляции и однополюсных замыканий на землю. Вольтметр, соответствующий полюсу с меньшим сопротивлением изоляции, имеет меньшее показание (зачастую вместо вольтметров включали две лампы накаливания).

Пользуясь результатами измерения напряжений U` иU”, определитьвеличины сопротивлений R1 и R2, соответственно и значение эквивалентного сопротивления изоляции сетиR, не представляется возможным, так как система уравнений (3.5) неполная: эквивалентная схема соcтоит из трех контуров, в то время как сама система содержит только два уравнения. Чтобы ее все-таки можно было разрешить, в сеть вносят нормированные искажения.

При включении вольтметра V по схеме рисунка 3.4(б) меняется эквивалентное сопротивление между положительным полюсом сети и землей (за счет шунтирования сопротивления изоляцииRiвнутренним сопротивлением вольтметра r). Оно становится равным:

Как измерить сопротивление изоляции(3.6)

Так как при этом сопротивление между отрицательным полюсом сети и корпусом не изменится, то уменьшается напряжение между положительным полюсом и землей: U1<U` (соответственноU`2>U”). При измерении по схеме рис. 3.4,в аналогично получаем:U2<U”. С условием того, чтоU’+U” =U, при измерении методом трех отсчетов всегда справедливо неравенство

U1+U2<U

Следует еще раз подчеркнуть, что оно образуется за счет намеренного поочередного уменьшения сопротивлений между полюсами сети и землей путем шунтирования сопротивлений изоляции R1иR2известным сопротивлениемr.

Теперь система уравнений, составленных для напряжений U1иU2, оказывается разрешимой, так как она содержит известные величиныU,U1,U2,rи две неизвестные величины:R1иR2. Решая систему относительно последних, получаем выражение (3.4) для эквивалентного сопротивления изоляции сети.

Соотношение величин напряжений UиU1+U2, определяющее точность измерений при данном сопротивлении изоляции сети, зависит от величины сопротивления вольтметраr. Еслиr>>R(например, при измерении ламповым, цифровым или электростатическим вольтметром), то при подключении вольтметра в сеть вносятся несущественные искажения, так как сопротивления между полюсами сети и землей практически не изменяются. Как следствие этого получаемU1+U2=U. Соответственно нулевыми будут результаты при расчетах по формуле (3.4).

Наибольшая точность измерений достигается при выполнении следующего соотношения: r= 0,8R, при которомU1+U2=0,44U. Обычно рекомендуется выбирать вольтметр с внутренним сопротивлением, приблизительно равным измеряемому сопротивлению изоляции.

Изложенное справедливо не только для силовых сетей, но и для низковольтных систем автоматики. В последних опасно выполнять контроль сопротивления изоляции с использованием щитовых мега-омметров, содержащих источник измерительного напряжения 100-150 В. Под действием этого источника при определенных условиях могут выйти из строя комплектующие систему полупроводниковые приборы и микросхемы.

Этот метод прост в выполнении и доступен, так как не требует применения специальной аппаратуры. Однако он имеет и ряд недостатков, связанных с необходимостью выполнения вычислений.

Опыт показывает, что целесообразна подмена расчетов по формуле (3.4) работой с соответствующими номограммами. В качестве примера нарис. 3.5 приведена номограмма, предназначенная для определения значения сопротивления изоляции сетей постоянного тока напряжением от 150 до 600 В.

Номограмма имеет три шкалы – рабочего напряжения U, суммы напряжений полюсов сети относительно корпуса U1+U2, и искомого значения сопротивления изоляцииR. Порядок работы с номограммой таков: к точкам шкалUиU1+U2, соответствующим полученным результатам измерений, прикладывается линейка; искомое значение считывается по шкалеR.

В практической деятельности не всегда имеется в наличии вольтметр с предусмотренным номограммой значением внутреннего сопротивления. Поэтому на рисунке 3.6 приведена номограмма, пригодная для работы сразличными типами вольтметров. Она состоит из двух параллельных шкал (U1 + U2 и R) и бинарного поля с координатами «напряжение сети – внутреннее сопротивление вольтметра». Работа с такой номограммой также несоставляет труда.

Как измерить сопротивление изоляции

Рисунок 3.5 – Номограмма для определения сопротивления изоляции сетей постоянного тока напряжением от 150 В до 600 В при измерении вольтметром с внутренном сопротивлением 100 кОм

Как измерить сопротивление изоляции

Рисунок 3.6 – Номограмма для определения сопротивления изоляции сетей постоянного тока напряжением от 150 В до 600 В при измерении вольтметром с внутренним сопротивлением от 50 до 200 кОм

Измерения в сетях переменного тока

Принцип действия большинства приборов, предназначенных для работы в сетях переменного тока, находящихся под рабочим напряжением, основан на использовании метода наложения постоянного измерительного напряжения (см. рисунок 3.6), аналогичного методу измерений при снятом напряжении. Так как под действием рабочего напряжения Uф в измерительной цепи может протекать, переменный ток, то для ее защиты применяют индуктивный или, как показано на схеме, емкостный фильтр (цепь R1—C1). Конденсатор С1 также защищает измерительную цепь от бросков тока IИЗМ в переходных режимах работы сети (при подключении электроприемников) (см. рисунок 3.7).

Как измерить сопротивление изоляции

Рисунок 3.7 – Контроль изоляции сетей переменного тока методом наложения постоянного напряжения

Измерение сопротивления изоляции производят при нажатой кнопке К, когда измерительная цепь замыкается через миллиамперметр А, проградуированный в единицах сопротивления. При «свободном» состоянии кнопки (в режиме автоматического контроля) цепь замыкается через резистор Rд, являющийся входным элементом блока сигнализации БС. Падение напряжения на этом резисторе, так же как и сила тока в измерительной цепи, однозначно определяется значением эквивалентного сопротивления изоляции сети. При уменьшении сопротивления изоляции это напряжение возрастает; в случае снижения сопротивления доопределенного значения (установленной для данной сети уставки срабатывания сигнализации Uycт) на выходе БС появляется соответствующий сигнал (световой или звуковой).

На таком принципе работают устройства «Электрон-1» (автоматический контроль и измерение), ПКИ (автоматический контроль) и щитовые мегаомметры М1423, М1503, М1527. М1623. М1603.

В процессе настройки или эксплуатации электроустановки нередко возникает необходимость измерять сопротивление изоляции «прикладным» методом, не обращаясь к штатным средствам контроля. Л.П. Подольским в 1946 г. предложен достаточно простой способ двух отсчетов вольтметра применительно к трехфазным сетям (см. рисунок 3.8).

Как измерить сопротивление изоляцииРисунок 3.8 – Измерение сопротивления изоляции сети переменного тока методом двух отсчетов вольтметра

Согласно этому способу измеряют напряжение U1 между одной из фаз сети и землей. Затем между этой фазой и землей включают дополнительное сопротивление известной величины R1 и измеряют напряжение U2; вместо сопротивления R1 подключают сопротивление R2 и вновь измеряют напряжение между фазой и землей Uз.

Величина эквивалентного сопротивления изоляции сети определяется по

формуле:

Как измерить сопротивление изоляции(3.7)

где q1 = (U1/U2)2 -1; q2 = (U, /U3) -1.

Для уменьшения погрешности измерений рекомендуется принимать R1=2R2, а величину 2R2– такой, чтобы после его подключения напряжение фазы относительно земли уменьшилось на 75 % (Uз=0.25U1).

Измерения в сетях двойного рода тока

В современных сетях переменного тока обычно присутствуют полупроводниковые выпрямители, подключенные непосредственно к фазам сети (без применения трансформаторов). Это могут быть как маломощные элементы (например, для питания катушек контакторов в магнитных пускателях), так и силовые агрегаты (питание электроприводов постоянного тока). В подобных сетях величина эквивалентного сопротивления изоляции определяется пятью составляющими: сопротивлениями изоляции rа, r0, rсфаз цепей переменного тока и сопротивлениями изоляцииR1иR2полюсов цепи постоянного тока.

Рассмотренные выше методы измерений в сетях переменного тока называются непригодными для сетей двойного рода тока. Это объяснятся тем, что в сети двойного рода тока полюса цепи постоянного тока имеют определенные; постоянные напряжения относительно земли – в зависимости от значения сопротивления их изоляции.

Через полупроводниковый выпрямитель эти напряжения в определенной закономерности переносятся на цепи переменного тока и влияют на работу приборов контроля изоляции. Так, в простейшем случае, при использовании трехфазного неуправляемого выпрямителя, собранного по схеме Ларионова, среднее значение напряжения между фазами сети переменного тока и землей определяется выражением:

Как измерить сопротивление изоляции(3.8)

где U– амплитуда фазного напряжения на входе выпрямительного моста; R1, R2 — сопротивления изоляции полюсов цепи постоянного тока; R-, R~ – эквивалентные сопротивления изоляции цепей постоянного и переменного тока соответственно.

Из этого выражения следует, что при равенстве величин R1 и R2 имеет место U = 0 и никаких искажений в работу приборов контроля не вносится.

Однако в общем виде R1≠R2, соответственно Ucp ≠ 0. В предельных случаях при однополюсном замыкании на корпус (R1<<R2 или R2<<R1) постоянная составляющая напряжения между фазами и землей UcpMax= ± 0,5 U (U – среднее значение напряжения на выходе выпрямительного моста). То есть постоянная составляющая напряжения между фазой и землей может произвольно изменять как величину, так и знак, по абсолютному значению достигая половины рабочего напряжения цепи постоянного тока.

В трехфазных сетях напряжением 380 В напряжение на выходе выпрямительного моста U=510 В. В приборах контроля изоляции измерительное напряжение Е существенно меньше (обычно оно равно 150 В), поэтому напряжение U оказывает существенное влияние на силу тока и напряжение в измерительной цепи, вносит дополнительную погрешность. Стрелка мегаомметра может занимать любое положение на рабочем участке шкалы, независимо от измеряемого значения сопротивления изоляции. Она может даже зашкаливать за отметки «о» и «∞», показывая лишенные физического смысла величины R<0 и R>∞ . В качестве примера на рисунке 3.9 приведены показания щитового мегаомметра типаM1503 в зависимости от значения сопротивления изоляции отрицательного полюса цепи постоянного тока при постоянном значении сопротивления изоляции положительного полюса (50 кОм) и эквивалентном сопротивлении изоляции цепей переменного тока 100 кОм (кривая 1). Кривая 2 соответствует фактическимзначениям эквивапентного сопротивления изоляции сети.

Из графиков видно, что кривые 1 и 2 совпадают только в одной точке, когда R1=R2= 50кОм. При низких значениях эквивалентного сопротивления изоляции (менее 10 кОм) стрелка прибора находится вблизи отметки «оо», и наоборот, при достаточно высоких сопротивлениях (более 25 кОм) прибор показывает R < 0.

ЛПО «Вибратор» выпускает мегаомметры типа M1428 и M1628, пригодные для работы в сетях двойного рода тока.

Как измерить сопротивление изоляции

Рисунок 3.9 – Эквивалентное сопротивление изоляции сети двойного рода тока

В сетях переменного и двойного рода тока можно применять метод, разработанный на кафедре безопасности жизнедеятельности СПб ТЭТУ «ЛЭТИ». Существо метода заключается в следующем. К фазам сети переменного тока подключается трехфазный выпрямительный мост, собранный на полупроводниковых диодах по схеме Ларионова (см. рисунок 3.10).

Вольтметром магнитоэлектрической системы поочередно измеряют три напряжения; Ucp — на выходе моста, U1— между положительным полюсом моста и землей, U2 — между отрицательным полюсом моста и землей. Расчет сопротивления изоляции сети выполняют по формуле:

Как измерить сопротивление изоляции(3.9)

аналогичной формуле (3.4) для метода трех отсчетов вольтметра в сетях постоянного тока. Существенно, что в подобных случаях измерения должны производиться вольтметром именно магнитоэлектрической системы, так как носителями информации о величине сопротивления изоляции являются только средние значения напряжений. Предел измерений вольтметра должен соответствовать величине Ucp, то есть для трехфазных сетей 380 В пригодны вольтметры со шкалой 0-600 В. Внутреннее сопротивление вольтметра выбирается в соответствии с рекомендациями, приведеннымивыше применительно к сетям постоянного тока.

Как измерить сопротивление изоляцииРисунок 3.10 – Измерение сопротивления изоляции сети двойного рода тока по способу ЛЭТИ

Этот метод пригоден для применения в однофазных и трехфазных сетях переменного тока, в сетях с управляемыми и неуправляемыми выпрямителями. Во избежание ошибок в расчетах здесь также рекомендуетсяприменять номограммы. Поскольку напряжение источников переменного тока стабильно, номограммы оказываются существенно более простыми (рис. 3.11).

Порядок выполнения работы

  1. Изучите теоретическую часть, прилагаемую к данной лабораторной работе.

  2. Сделайте расчет сопротивления своего тела (путь пролегания тока и площадь контактируемого с электродом участка тела – по заданию преподавателя).

  3. Проверьте расчет экспериментальным определением сопротивления указанного участка тела с помощью мультиметра М-830В.

  4. Сравните полученные результаты и сделайте соответствующие выводы.

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1. Для чего производится контроль сопротивления изоляции электроустановок ?

  2. Чем опасны емкостные явления между токопроводящими средами и землей?

  3. Как измерить сопротивление изоляции электроустановок при снятом рабочем напряжении?

  4. Как измерить сопротивление изоляции электроустановок методом уравновешенного моста?

  5. Как измерить сопротивление изоляции электроустановок методом трех отсчетов вольтметра?

  6. Что такое «номограмма»?

  7. Как измерить сопротивление изоляции электроустановок в сетях переменного тока?

  8. Как измерить сопротивление изоляции электроустановок в сетях двойного рода тока?

  9. Как измерить сопротивление изоляции электроустановок по схеме Ларионова?

Как измерить сопротивление изоляции

Рисунок 3.11 – Номограмма

studfiles.net

Устройство и принцип работы

Мегаомметр — устройство для измерения сопротивления изоляции проводов и кабелей. При помощи щупов прибор подключается к измеряемой линии, после чего включается. Мегаомметр любого типа содержит источник постоянного напряжения. С его помощью в созданной измерительной цепи он генерирует высокое напряжение, которым и проверяется состояние изоляции кабеля. В зависимости от модели набор калибровочных напряжений может быть разным, могут они подаваться только по одному (более простые и дешевые) или в комбинациях (более сложные и дорогие).

В данный момент в эксплуатации есть два вида приборов — старого типа со встроенной динамомашиной, которая приводится в действие расположенной на боку прибора ручкой. Есть также электронные мегаомметры, которые могут использовать для создания испытательного напряжения внешние (бытовая электросеть) или внутренние (батарейки, аккумуляторы) источники напряжения. Некоторые модели электронных мегаомметров могут измерять другие электрические параметры сети — напряжение, низкоомное сопротивление и т.п. То есть могут использоваться вместо мультиметра. Правда, у них обычно не очень большой набор калибровочных напряжений для проверки состояния изоляции (обычно это 500 В и 1000 В).

Напряжение калиброванное и его величина выставляется переводом переключателя в нужное положение, выбирается оно в зависимости от типа испытываемого оборудования. Результаты измерений сопротивления изоляции отображаются на шкале (в стрелочных приборах) или на цифровом экране. Для удобства восприятия у стрелочных приборов шкала откалибрована в КОм или МОм.

Принцип работы мегомметра основан на законе Ома: I=U/R, сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению. Во время тестирования необходимо найти сопротивление: R=U/I. Это и проделывает мегаомметр. Он выдает в цепь определенное напряжение (которое вы выставите), измеряет силу тока, пересчитывает и выдает результат на шкале. Это и будет сопротивление изоляции в тестируемой цепи.

Измерения мегаомметром

Сам процесс измерения несложен, но проводить его надо строго соблюдая правила и очередность действий. При поверке создается высокое напряжение, что при небрежном отношении может быть опасным. Потому внимательно читаем правила и строго их придерживаемся.

Подготовка к работе

Перед тем как пользоваться мегаомметром необходимо провести подготовительные работы. Для начала тестируемые цепи отключаются от нагрузки. Если измеряется сопротивление изоляции в домашней проводке, отключаем питание при помощи рубильника или выкручиваем пробки. При измерении кабелей розеточных групп, из розеток вынуть все вилки. При измерении проводки для освещения, из всех осветительных приборов (люстр, бра, точечных светильников) выкрутить лампочки. Только в таком виде — без нагрузки — кабели и провода можно проверять.

Еще один этап подготовки к работе с мегаомметром — подсоединение переносного заземления. Оно необходимо для снятия остаточного напряжения в измеряемых цепях.  К шине заземления в щитке крепится медный многожильный провод сечением не менее 1,5 квадрата. Второй его конец зачищается от изоляции, крепится к сухой палке. Провод надо прикрепить так, чтобы медью было удобно прикасаться к проводникам.

Требования по безопасности

На предприятиях измерения мегаомметром могут проводить работники с группой электробезопасности 3 и выше. Даже если измерения проводиться будут дома, надо действовать придерживаясь правил безопасности. Для этого перед тем как пользоваться мегаомметром надо выучить инструкцию. По инструкции надо:

  • Работать в диэлектрических перчатках (этим пунктом практически всегда пренебрегают, хотя, наверное, зря).
  • Перед началом работы подготовить линии, убедиться в отсутствии на линии людей. На предприятиях предписывают вывесить предупредительные плакаты («Не включать» и «Осторожно высокое напряжение»). Если измеряется длинная линия, аналогично можно поступить и в домашних условиях — лучше перестраховаться и повесть на щитке предупредительный плакат, чем лечить последствия поражения электротоком.
  • Все время держать щупы за изолированные рукоятки. Они имеют упоры для пальцев и рассчитаны на защиту от высокого напряжения.
  • Перед тем, как пользоваться мегаомметром, при помощи переносного заземления снять с линии остаточное напряжение. Так же поступать после каждого измерения.
  • Каждый раз закончив измерение, соединять щупы перекрещивая их неизолированные части. Этим снимается остаточное напряжение на приборе. В некоторых электронных моделях есть функция саморазряда, когда снятие остаточного напряжения проводится автоматически после каждого измерения. Если такой функции нет, не забывайте это делать самостоятельно.
  • После каждого измерения к каждому проводнику подводить переносное заземление для снятия остаточного напряжения.

Особое внимание уделите остаточному напряжению. При большой протяженности тестируемой линии накапливается значительный заряд, способный нанести даже летальные повреждения.

Подключение мегаомметра к тестируемой линии

В стандартную комплектацию входит три щупа. Один из низ имеет с одной стороны два наконечника. Он используется при измерениях экранированных кабелей для устранения токов утечки (щуп с буквой «Э» цепляется к кабельному экрану).

В верхней части прибора есть три гнезда, в которые подключаются щупы. Они промаркированы буквами:

  • З — для подключения защитного заземления;
  • Л — линия (подключается тестируемая линия);
  • Э — экран (используется, если необходимо исключить токи утечки).

При подготовке к работе в гнездо «Л» и «З» вставляются одинарные щупы. Так проводится большинство измерений. Только если надо исключить токи утечки берут двойной щуп. Один его наконечник с буквой «Э» вставляют в гнездо с аналогичной надписью, второй — в гнездо «Л».

Далее, при помощи зажимов-крокодилов, подключаем аппарат к измеряемой линии:

  • Если надо измерить сопротивление изоляции между жилами кабеля, оба щупа цепляем на оголенную часть проводов.
  • Если проверяется «пробой на землю», один щуп крепим к проводу, второй — к клемме «земля».

Других вариантов нет. Разве что с описанным выше случаем с экранированным кабелем. Но их в частных домах и квартирах практически не используют. Если все-таки есть кабель с экраном и надо исключить токи утечки, используем щуп с раздвоенным концом, провода экранирующей оплетки скручиваем в жгут и добавляем в общий пучок измеряемых проводов.

Проводим измерения

Теперь конкретно о том, как пользоваться мегаомметром. После того, как установили щупы на мегаомметре, надо выбрать тестовое напряжение. Для этого есть специальные таблицы в которых указывается, каким напряжением необходимо проверять сопротивление изоляции для самых разных приборов и устройств, а также какое сопротивление можно считать «нормальным».

Измеряемый объект Тестовое напряжение Минимально допустимое значение сопротивления изоляции Условия, примечания
Электропроводка и осветительная сеть 1000 В 0,5 МОм и выше Для помещений с нормальными условиями эксплуатации проверять 1 раз в 3 года, с повышенной опасностью – 1 раз в год
Стационарные электроплиты 1000 В 1 МОм и выше Плиту разогреть и отключить, проверять не реже 1 раза в год
Электрощиты, распределительные устройства, токопроводы (магистральные кабели) 1000-2500 В Не менее 1 МОм Проверку проводить с каждой линией отдельно
Устройства с напряжением до 50 В 100 В Смотреть по паспорту изделия, но не менее 0,5 МОм При измерениях полупроводниковые изделия шунтировать
Устройства с напряжением от 50 В до 100 В 250 В Смотреть по паспорту изделия, но не менее 0,5 МОм
Устройства с напряжением от 100 В до 380 В 500-1000 В Смотреть по паспорту изделия, но не менее 0,5 МОм Электромоторы и другие изделия
Устройства с напряжением от 380 В до 1000 В 1000-2500 В Смотреть по паспорту изделия, но не менее 0,5 МОм

При проверке сопротивления изоляции кабелей домашней проводки подают напряжение 500 В или 1000 В. Порядок действий такой:

  • Проводится подготовка объекта к измерению (описано выше).
  • Устанавливается переносное заземление.
  • Переключатель на приборе ставят в требуемое положение, выбирается шкала измерений (по величине ожидаемого сопротивления).
  • На линии проверяется отсутствие напряжения (индикаторной отверткой или мультиметром), после чего подключают щупы к измеряемым объектам.
  • Снимается переносное заземление.
  • Проводим измерения. На электронных нажимаем кнопку «тест», в ручных крутим ручку динамомашины до момента, когда загорится сигнальная лампа (это значит, тестовое напряжение создано).
  • Записываем показание прибора.
  • Отключаем щупы, снимаем остаточное напряжение на приборе и линии.

Если измеренное сопротивление изоляции больше либо равно паспортному значению (или тому, что указано в таблице), с устройством/кабелем все нормально. Если изоляция ниже требуемой есть два пути. Первый — искать причину, устранять, измерять по-новой. Второй — заменять.

Как померить сопротивление изоляции кабеля

Чаще всего приходится измерять сопротивление изоляции кабелей. Как пользоваться мегаомметром в этом случае? Если кабель уже находится в эксплуатации, его отключают от электропитания, убирают подключенную к нему нагрузку. Изменения проводят нескольких видов:

  1. Каждую жилу кабеля по отношению ко всем остальным, объединенным в пучок и заведенным туда же земляным проводом.
  2. Каждую жилу относительно земли (остальные провода не заземляются).
  3. Каждая жила относительно всех других проводников (каждую пару проводов).

Пункты 2 и 3 выполняют, если результаты первого измерения оказались ниже нормы. Эти измерения несложные, но, если жил много, занимают много времени. Хорошо что в электрике используются в основном трехжильные провода и только при подводе трехфазной сети их может быть больше.

При измерении на щитке все автоматы переводят в положение «выключено», убирают нагрузку, затем проводят измерения. Провода при этом можно из гнезд не доставать, а щупами касаться контактных винтов. Будьте внимательны: на входном автомате вводную линию (подключается в верхние гнезда) без отключения питания на подстанции измерять нельзя.

Если кабель экранирован (есть металлическая оплетка из проволоки, стальные или алюминиевые ленты), устанавливают щуп с раздвоенным наконечником, а экран добавляют в жгут к проводам и «земле».

elektroznatok.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.