Замер сопротивления заземления


Современный дом насыщен электроприборами. Чтобы их работа была эффективной и безопасной, выполняется заземление. Это несложное устройство обеспечит надежную защиту дома и живущих в нем людей от поражений электрическим током. Простейший контур заземления электрической сети представляет собой треугольник, состоящий из трех зарытых в грунт металлических штырей на глубину до 3 м. В верхней части стержни соединяются полосой при помощи сварки. К этой конструкции из дома ведет заземляющий проводник из круглой стали. Наивысшая точка заземляющего контура углубляется в землю не менее, чем на 0,5 м.

В качестве исходных материалов используется сталь, но не исключено применение и других металлов. Главное условие – все элементы контура изготавливаются из однородного сырья. И самый важный показатель надежности заземления – это величина сопротивления. Оптимальным вариантом считается показатель, не превышающий значение в 1 Ом. Предельная величина сопротивления — 4 Ома.

Чем измерить величину сопротивления

Выполнять замеры сопротивления заземления надо в следующих случаях:

  • по окончании монтажа электропроводки при новом строительстве;
  • после выполнения ремонта или реконструкции электрической сети и контура заземления;
  • периодически; на предприятиях составляются графики, владельцы частных домов периодичность проверки назначают самостоятельно, но не реже, чем один раз в полтора года.

Такие меры помогут предотвратить возможные поражения электрическим током, обезопасить проживание в доме, а также продлить срок службы бытового электрооборудования. Замеры сопротивления доверяют специалистам, или выполняют самостоятельно. Пользоваться следует специально предназначенными для этой цели приборами, так как измерить заземление с высокой точностью подручными средствами сложно.

Сопротивление заземления легко рассчитывается по формулам из учебника физики, если знать напряжение в сети и воспользоваться результатами замера силы тока специальными клещами. Причем измерения выполняются, не отключая заземляющую цепь. Исходные данные получают также от использования амперметра и вольтметра. Некоторые применяют тестер или контрольную лампу с наконечниками.

Кроме того, производители предлагают разнообразную измерительную технику. Например, классическую:

  • Прибор Ф 4103-М1 Ф 4103-М1для измерения сопротивления в диапазоне от 1 мкОма до 200 Ом. Подходит для контроля заземляющих контуров любой конфигурации и размеров.

  • Аппарат М416 М416проявил себя на протяжении длительного периода времени, как надежное устройство. Прибор работает точно и стабильно. Основное предназначение — измерение сопротивления заземлений величиной от 0,1 Ома до 1000 Ом.

Или современную:

  • Устройство ИС-10ИС-10. Представляет собой компактный прибор в защищенном ударопрочном корпусе. Оснащен встроенной памятью последних 40 измерений, автоматическим регулятором диапазона замеров, жидкокристаллическим дисплеем. Выполняет широкий спектр задач: измерения и тестирование многопроводным способом, а также контроль качества стыков проводов, кабелей, шин.
  • Прибор MRU 101MRU 101 относится к разряду профессионального оборудования. Для домашнего пользования его мощность слишком велика. Аппарату под силу измерить сопротивление до 20000 Ом. После подключения к исследуемому объекту устройство самостоятельно собирает данные, анализирует их и выдает результат на экран.

Все приборы, с которыми мы познакомились, стоят немалых денег и приобретать их для домашней мастерской вряд ли есть резон. Однако существует способ измерения сопротивления при помощи мультиметра. Это не очень сложно и сравнительно недорого.

Методика замера сопротивления заземления мультиметром

Проверке на величину сопротивления подвергается электрическая арматура внутри дома, а также металлосвязи и грунт снаружи. Внешнюю работу лучше выполнять в теплое сухое время года, поскольку мокрая почва способна сильно исказить данные. Состояние металлических конструкций для начала определяется визуальным осмотром. Стыки и контакты необходимо простучать небольшим молотком с заизолированной рукояткой. Проводник должен издавать дребезжащий звук. Затем к металлу подключается мультиметр, показания которого не могут превышать 0,05 Ом, если контур в порядке. Чтобы получить более точные значения, заземлитель в точках подключения прибора необходимо зачистить.

Удельное сопротивление почвы самостоятельно проверить нереально, нужна специальная аппаратура. Если такая оценка необходима, то следует обратиться к специалистам электросети.

Как измерять мультиметром сопротивление заземления в розетке?

Выполняем такие действия:

  1. Сначала удостоверимся, что напряжение в розетке есть. Для этого подключим любой прибор – лампу, телевизор.
  2. Отключаем подачу электроэнергии в дом – выворачиваем пробку или переключаем тумблер автомата.

  3. Освобождаем розетку от крышки и выясняем по какому принципу устроено заземление. Если заземляющий провод уходит в стену, то контур есть. Вариант подключения провода в клемме означает, что имеем дело с принципом «зануления» или отсутствием контура.розетка с заземлением
  4. Включаем обратно подачу электроэнергии в дом. Переключаем мультиметр в режим контроля напряжения и делаем замеры между фазой и нулем, затем – фазу с землей. Замечательно, когда вторая величина получается больше первой. А вот когда проверка фаза-земля показывает нулевое значение – это повод для тревоги. Это означает, что заземление в доме или повреждено, или отсутствует совсем.

Мультиметр не является специализированным прибором для получения точных параметров сопротивления. Поэтому перед выполнением проверки необходимо откалибровать сам аппарат, полностью зарядить аккумулятор. Эти меры помогут значительно снизить погрешность замеров.

Резюме

Грамотно и вовремя выполненные проверки технического состояния заземляющих устройств, в частности величины сопротивления контура, позволят избежать многих неприятностей с эксплуатацией электрических сетей и приборов. Для этого не надо приобретать дорогостоящие приборы или заказывать недешевые услуги. Вполне возможно обойтись простейшими приспособлениями и мультиметром.

mytooling.ru

Причины неисправностей на заземляющем контуре


При нормальной работе системы защиты, ток короткого замыкания фазы на корпус или утечки по глухозаземленной проводке, подходит на контур и через систему заземлителей снимается на землю.

Замер сопротивления заземления

Но при длительном использовании, заземлители окисляются под действием воды, на них происходит образование ржавчины. При продолжении действия вредной среды, очаг поражения расширяется и еще больше поражает металл, ржавчина изъедает сталь, местами коррозия металла разъедает стойки контура насквозь.

При этом меняется значение величины сопротивления электрического тока. При этом колья заземлителей могут разрушаться неравномерно. Это обусловлено неравномерным распределением в грунте химических веществ и щелочных, соляных растворов и некоторых кислот.

Затем происходит отслаивание металла поврежденного ржавчиной и глубинной коррозией, при этом происходит ухудшение или полное размыкание контакта контура и отдельного заземлителя. Этот процесс идет с нарастанием и в конечном итоге заземление перестает выполнять свои функции из-за изменения уровня сопротивления на контуре и его проводимости потенциала токов КЗ в землю.


Выполняя замеры, периодичность измерения сопротивления должна соответствовать правилам, мы избегаем возникновения аварийных ситуаций и поражение, электротоком человека, вовремя определяя момент выхода из строя защитного контура заземления.

Приборы для замеров

Для измерения сопротивления контура применяются электронные мультиметры, сменившие аналоговые устройства. При этом увеличилась точность уровня измерения при упрощении выполнения операции. По правилам ПУЭ, сопротивление заземлителя не менее одного раза в шестилетний период. Поэтому не затратно будет вызвать для проведения замеров профессионалов, которые имеют более точные и новейшие разработки промышленности.

Замер сопротивления заземления

Но если вы решили провести эту операцию самостоятельно, потребуется запастись следующими измерительными приборами:

  • измеритель сопротивления типа «МС- 08»;
  • измеритель заземляющего контура типа «М-416»;
  • тестер или мощный мультиметр.

Для более низкого уровня измерения и определения неисправности защиты, можно использовать мультиметр, дополнительно оснащенный токовыми клещами.

Способы выполнения замеров

Способов измерения сопротивления заземляющих устройств много и каждый достаточно точный, поэтому разберем их подробно, а какой из них применить решать вам:


  1. Замеряем значения напряжения и силы тока.

    Для этого, на удаленности от контура больше 20 метров, забиваем в грунт заземлитель и дополнительный электрод. Затем по проводам, подаем на них нагрузку. Выставляем мультиметр в сектор замены силы тока, определяем ее значение. Затем переключаем прибор в сектор замера напряжения, измеряем данную величину. По формуле Закона Ома определяем величину сопротивления на данном участке с глухозаземленной нейтралью.

    Замер сопротивления заземления

    Теперь проводим замер сопротивления на защитном контуре и определяем износ деталей защиты и возможную замену заземлителей. При этом необходимо учитывать значение сопротивления кабеля земли и проводящих особенностей земли на участке.

    К плюсам этого способа относят его простоту выполнения замеров. Недостаток – это малый уровень точности замера, и дополнительное устройство заземлителей для определения номинального значения.

    Если не требуется определения точного значения сопротивления на контуре, то процедуру измерений можно завершить. Для более точного замера выполняем следующую работу.


  2. Четырехпроводный метод замера.
    Работу следует выполнять в следующей последовательности:

    Выбираем, с помощью кнопки «Режим», нужный метод выполнения замеров.

    Рулеткой, замеряем длину диагонали защитного контура. Затем от контура проводим провода и подключаем их в гнезда на приборе.Замер сопротивления заземления

    Выносной заземлитель, забиваем в грунт. Расстояние до контура больше 20 метров, но не менее, полуторной диагонали устройства.

    2 стержень забиваем в землю на удалении больше3 размеров диагонали. Расстояние до контура не меньше 40 метров. Подключаем идущий от него провод на клемму прибора.

    Проверяем правильность подключение и выполняем замер. Затем, перемещая заземлитель, с изменением длины на 10% ближе ко 2 стержню, проводим серию измерений.

    При установке стержней, располагать их необходимо на одной линии с заземляемым контуром. При помехе напряжения на штырях, измеритель сопротивления покажет это на шкале. В этом случае необходимо перебить стержни и повторить измерение.

    Исходя из значений измерения, в зависимости от удаленности от защитного устройства, составляем график. При возрастании величины измерения в средней части графика – в этом случае истинным значением сопротивления будет величина не более 5% превышающая минимальную разницу между двумя точками графика.


  3. Трехпроводной метод замера проводится по схеме предыдущей схеме, но перед началом работы следует выбрать режим трехпроводного замера сопротивления.
  4. Способ замера на пробном заземлителе.

    Перед установкой защитного устройства проводится измерение по этому методу, для расчета контура заземления и замера удельного сопротивления.

    Работы выполняются в следующем порядке:

    Замер сопротивления заземленияПеред выполнением проверки, забиваем в грунт пробный заземлитель и оставляем небольшую часть над уровнем земли. Длина штыря должна быть такой же, как и предполагаемый заземлитель контура.

    При помощи мультиметра, определяем сопротивление заземлителя.

    Выполнив расчет, определяемся с размерами стержней и размера треугольника защиты.

    Такой метод в основном используется в небольших устройствах в частном доме.

  5. Компенсационная схема измерения.

    При этом способе, производится обследование промышленных высокоточных приборов. На одной линии с контуром, забиваем штыри в грунт. Основа для проведения замера – это зонд, подключенный к стержням.

    Замер сопротивления заземления

    Через первичную обмотку трансформатора, провода, грунт и стержни подается напряжение. На вторичной обмотке наводится электроток. Уравниваем величину напряжений, двигая ручку реохорда. При нулевом значении напряжении, мы получаем величину сопротивления защиты.


  6. Измерение с использованием резистора.

    В этом способе используется калиброванный резистор, через который на устройство защиты подается напряжение прямо от фазного проводника, подключенного в электрощитовой. Мультиметр проверяем, выставив на шкале, замер сопротивления и касаемся шупами друг друга. На экране нулевое значение – это устройство готово к работе. Выставляем максимальную величину сопротивления и измеряем его. Напряжение сети нам известно, сопротивление тоже. Производим расчет силы тока, который прошел через заземление. Следует помнить, что такое измерение следует проводить при выключенном проводе зануления от контура. На него подается фаза, через калиброванный резистор 46 Ом.

    Замер сопротивления заземленияК преимуществам этого вида замеров относят:

    Отсутствие необходимости забивания длинных стержней в грунт с последующим доставанием после измерения;

    Не приходится растягивать и собирать многометровые электрические провода;

    Для выполнения замеров не требуется занимать большую площадь дворовой территории.

  7. Измерение с применением специальных токовых клещей.

    Выполняя работу по замеру сопротивления, нет необходимости отключения заземляющего проводника. В электрическую сеть подается нагрузка и по проводам проходит электричество. «Обняв» губками клещей проводник, мы не нарушая изоляции и не прекращая работу цепи, получаем необходимое значение сопротивления заземляющего контура, после расчета по закону Ома используя напряжение и силу тока.

Замер сопротивления заземления

В заключение хочется напомнить

Производить измерения приходится на улице, поэтому нельзя работать в сырую и мокрую погоду.

Наиболее целесообразно проводить проверку контура в летом или зимой, но не при очень жаркой и морозной погоде. Специалисты считают – в это время грунт наиболее уплотняется, при этом его удельное сопротивление становится больше.

Замерить сопротивление заземления в домашних условиях не сложно. Главное помнить закон Ома для участка цепи и проводить расчеты и замеры не реже раза в год.

Измерение сопротивления заземлителей на производстве и многоквартирных домах проводится исходя из графика проверок, по результатам составляется акт приемки, в котором указывается допустимое сопротивление заземляющего устройства и данные замеров заносят в технологический журнал. В акте ставят росписи члены комиссии, и ставится печать организации проводящей проверку.

Выполнив все эти работы, вы можете спокойно и уверенно пользоваться электричеством в вашем доме.

evosnab.ru

Испытания заземления

Существует множество споров по поводу монтажа заземления и норм растекания тока по нему. Но в одном специалисты сходятся абсолютно единогласно — проверять качество установленного контура должен проверять специалист. Эта процедура позволит быть уверенным с правильном монтаже заземления в доме и позволит обезопасить себя и близких от опасного воздействия электрического тока. Испытания проводятся как на предприятиях, где часто работают генераторы и двигатели высокой мощности, так и в частных домах — измерение сопротивления заземления делается одним и тем же способом.

Измерение сопротивления2

Существует две основных разновидности испытаний: приемо-сдаточные и эксплуатационные. Первые проводятся в случаях, когда установка (или участок сети) уже полностью смонтированы и готовы к непосредственному использованию. Перед тем, как измерить сопротивление заземления, определяют, готов ли контур к поглощению токов в случае необходимости и соответствуют ли его параметры заявленным требованиям. Помимо всего прочего, необходимо регулярно контролировать, чтобы установленное заземление не теряло своих свойств с течением времени. Для этого проводятся эксплуатационные испытания — специалист проверяет готовый участок сети, который уже используется. Для осуществления такой процедуры нужно освободить сеть от потребителей, так что весь процесс требует небольшой подготовки.

Чем измеряют заземление

Для измерения этой величины применяется омметр — прибор, который изменяет сопротивление. При этом устройств для определения сопротивления заземления должны иметь определенные характеристики. Самая главная: очень низкая проводимость на входе. Диапазон измерений у таких приборов крайне небольшой: обычно он составляет от 1 до 1000 Ом. Точность измерения в аналоговых приборах не превышает 0.5–1 Ом, а в цифровых — до 0.1 Ома.

Измерение сопротивления3

Несмотря на повальное распространение китайских и европейских приборов, самым популярным остается М416, разработанный еще в СССР. Устройство имеет четыре диапазона измерения: от 0 до 10 Ом, от 0.5 до 50, от 2 до 200 и от 100 до 1000. Работает прибор от трех «пальчиковых» батареек. Несмотря на это, мобильным его назвать трудно — размеры корпуса не слишком комфортны.

Более продвинутой версией является Ф4103 — промышленный омметр с большим входным сопротивлением. Он еще менее транспортабельный, но имеет большее количество диапазонов измерения. Большой плюс такого прибора: работа с огромным диапазоном сигналов (от постоянного и пульсирующего тока — до переменного с частотой 300 Гц). Также порадует пользователя и диапазон рабочих температур: от –25 до 55 градусов по Цельсию.

Измерение сопротивления4

Как нужно измерять сопротивление

Существует два документа, которые регламентируют нормы сопротивления заземления в контуре и другие показатели. Первый — ПУЭ (Правила устройства электроустановок), на которые опираются при проведении приемо-сдаточного контроля. Эксплуатационные замеры же должны соответствовать Правилам технической эксплуатации электроустановок потребителей (ПТЭЭП).

Измерение сопротивления5

В обеих сводах правил существует разделение контуров на несколько типов — их нужно учесть до того, как измерить сопротивление заземления. Они отличаются в зависимости от напряжения, которое используется в сети и разновидности цепи. Всего имеется три типа контуров:

  1. Для подстанций и пунктов распределения, в которых напряжение не превышает 1000 вольт (вне зависимости от того, используется в сети переменный ток или постоянный).
  2. Для воздушных ЛЭП (линий электропередач), которые передают ток напряжением менее 1000 вольт.
  3. Для электроустановок с таким же максимально допустимым напряжением, использующимся в промышленных или бытовых целях.

Измерение сопротивления6

Нормы для каждого из типов

Для того, чтобы понять, какие нормативные и эксплуатационные показатели должны быть для каждого из типов:

  1. Для электрических установок. Проводить измерения сопротивления заземления нужно в непосредственной близости к подстанции. В зависимости от нагрузки, этот показатель может составлять 60, 30 или 15 Ом. Также стоит учитывать естественные заземлители — для них эти величины должны равняться 8, 4 или 2 Ома соответственно. Все три величины зависят от напряжения в сети. 60 и 8 Ом допускаются для однофазной сети в 200 вольт. 30 и 4 Ом — для трехфазной с напряжением 380 вольт. Минимальные значения (15 и 2 Ома) — для 660 вольт. В ходе эксплуатации сопротивление заземляющего контура также не должно падать ниже показателей, описанных в абзаце выше.
  2. Для пункта распределения или подстанции. Для установок с напряжением выше 100 киловольт (100 тысяч вольт) проводимость заземления при сдаче сети и при ее эксплуатации также остается неизменной и составляет 0.5 Ома. При этом обязательными требованиями при проверке являются глухой тип заземления и подключенная к нейтральному контуру. Также существуют нормы и для менее мощных установок, в которых напряжение лежит в пределах между 3 и 35 киловольт. В таком случае нужно 250 делить на расчетный ток замыкания в землю — результирующее значение будет необходимым сопротивлением в Омах. Показатель, согласно ПТЭЭП, не должен превышать 10 Ом в любом случае.
  3. Для воздушных линий электропередач. Рассчитывается в зависимости от проводимости грунта, на котором стоят опоры ЛЭП:
  • для грунта с удельным сопротивлением менее 100 Ом на метр — 10 Ом;
  • с удельным сопротивлением 100…500 Ом на метр — 15 Ом;
  • с удельным сопротивлением 500…1000 Ом на метр — 20 Ом;
  • с удельным сопротивлением 1000…5000 Ом на метр — 30 Ом.

Измерение сопротивления7

Для ЛЭП с напряжением тока менее 1000 вольт — до 30 Ом (для опор с защитой от попадания молнии). В ином случае сопротивление должно быть 60, 30 или 15 Ом для сетей с напряжением до 660, 380 или 220 вольт соответственно.

От чего зависит сопротивление заземления

Как уже говорилось выше, у тока есть одна важная особенность — он течет по тому участку цепи, который меньше всего этому сопротивляется. Сама величина сопротивления зависит от множества факторов:

  1. Материала. Ряд материалов имеет особую (атомарную) структуру, которая подразумевает наличие большого числа свободных электронов. Если такие материалы попадают в действие любого магнитного поля или покдлючаются к источнику питания, то легко проводят электрический ток. В своем большинстве это утверждение относится к металлам. Другие материалы не имеют свободных электронов и их сопротивление току крайне высоко. Если напряжение (сила, «толкающая» электроны) ниже допустимого значения, то проводимость будет равняться нулю или крайне малым значениям. При превышении показателя произойдет пробой и образовавшийся нагар будет иметь свойства проводника. Логично, что материалом для заземления могут быть именно только представители первой группы материалов — именно она обеспечивает минимальное сопротивление.
  2. Его температуры. Темпатура определяет, насколько быстро электроны передвигаются внутри материала. Следовательно, чем ниже она у проводника, тем лучше он проводит заряд. Обратная зависимость тоже носит характер прямой пропорции — после ее повышения его сопротивление будет падать. Расчет сопротивления заземления должен производиться с учетом этого параметра.
  3. Наличия примесей. Основная часть проводников делается из меди. Старые провода изготавливаливались из алюминия, но такие решения имеют сразу несколько недостатков. К сожалению, кабеля и провода из этого материала быстрее перегреваются и плавятся, да и сопротивление промышленно добываемого алюминия ниже, чем таковое у меди. Химически чистый же металл является лучшим проводником, превосходя по проводимости даже серебро. Дело в примесях: они имеют гораздо более высокие показатели сопротивления. Этот же момент стоит учитывать при расчете заземления.

Измерение сопротивления8

Понятное дело, что в идеале сопротивление должно быть минимальным — для этого нужно использовать медный контур большого сечения. Но дело в том, что медь быстро окисляется, да и стоимость такого решения будет крайне высокой. Следовательно, были разработаны нормы для минимального порога заземления. Этот показатель не нужно превышать для того, чтобы в нужный момент под нагрузкой контур выполнил возложенную на него функцию и отвел заряд в землю.

Формула расчета

Формула расчета сопротивления заземления одиночного вертикального заземлителя:

Формула

где:
ρ — сопротивление грунта на единицу длины (Ом×м)
L — протяженность заземлителя (в метрах)
d — ширина заземлителя (в метрах)
T — расстояние от поверхности земли до середины заземлителя (в метрах)

Для электролитического заземления:

Формула расчета сопротивления заземления одиночного горизонтального электрода с добавлением поправочного коэффициента:

Формула2

где:

ρ — сопротивление грунта на единицу длины (Ом×м);
L — протяженность заземлителя (в метрах);
d — ширина заземлителя (в метрах);
T — расстояние от поверхности земли до середины заземлителя (в метрах);
С — относительное содержание электролита в окружающем грунте.

Коэффициент C варьируется от 0.5 до 0.05. Со временем он уменьшается, так как электролит проникает в грунт на больший объем, при это повышая свою концентрацию. Как правило, он составляет 0.125 через 6 месяцев выщелачивания солей электрода в плотном грунте и через 0.5–1 месяц выщелачивания солей электрода в рыхлом грунте. Процесс можно ускорить путем добавления воды в электрод при монтаже.

Измерение сопротивления9

Расчетное удельное электрическое сопротивление грунта (Ом×м) — параметр, определяющий собой уровень «электропроводности» земли как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземлителя.

Это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Итоги и выводы

Заземление — важный элемент электрической цепи, который обеспечивает защиту от коротких замыканий, поражения током или попадания молнии в один из ее участков. Ключевым показателем здесь является сопротивление: чем оно меньше, чем больше тока «уведет» контур и тем ниже будет вероятность серьезного удара или повреждения оборудования. Сопротивление заземления регламентируется двумя документами: ПУЭ и ПТЭЭП. Первый используется для приема только что сданного участка сети, второй — для контроля уже эксплуатируемого участка.

Измерение сопротивления10

Нельзя пренебрегать нормами контроля, которые призваны проверить качество заземления и работу контура в условиях полной нагрузки. Процедуры производятся как непосредственно после создания цепи, так и в процессе ее использования. Частота проверок зависит от нагрузки на сети и целей, для которых используется контур. Нормы сопроивления при этом вовсе не отличаются. Различают три типа норм: для линий электропередач, трансформаторов и электрических установок. С повышением рабочего напряжения по экспоненте возрастает максимальная величина сопротивления. Также учитывается и ряд специфических показателей (например, удельная проводимость грунта). Исходя из нее можно получить максимальное регламентированное сопротивление.

Основными способами для увеличения эффективности работы заземлителя является использование разных конфигураций проводника. Ключевая задача заключается в том, чтобы предельно повысить площадь прямого контакта контура с землей. Для этого используется один или несколько проводников. В последнем случае их могут соединять как последовательно, так и параллельно.

Также для замера сопротивления контура заземления важно знать и поправочные коэффициенты — например, при вычислении минимально допустимого сопротивления заземления учитывается также удельное содержание материала в грунте и сопротивление повторного заземления. Для получения этого показателя нужно использовать специальное оборудование.

profazu.ru

Виды заземления

  1. Рабочее – заземление определённых мест, например, нейтральных точек трансформаторов. Служит для правильной эксплуатации электроустановок.
  2. Защита от молний – заземление приёмников молний для стока возникающих токов на металлоконструкции, в жилом доме или другом строении.
  3. Защитное – заземление корпусов бытовых приборов или не токопроводящих частей электроустановок. Защищает от поражения электрическим током при случайном прикосновении к деталям, не предназначенным для пропускания электрического тока.

Заземляющие устройства (ЗУ) должны снимать заряды с частей электроустановок, на которых не должно быть напряжения, образующегося в следующих случаях:

  • статическое электричество;
  • наведение напряжения;
  • вынос потенциала;
  • электрический разряд.

В качестве устройства (очага) заземления, выступает закопанный в грунт контур из металлических стержней, вместе с подключёнными к нему проводниками. Место соединения с ЗУ провода от защищаемого оборудования называется точкой заземления.

В большей степени напряжение появляется, когда нарушается изоляция или повреждаются проводники. В обычных условиях контур защитного заземления контактирует с корпусами бытовых приборов и не работает, пока на нём по какой-либо причине не появится потенциал.

Когда цепи исправны, через него не проходят никакие токи, кроме фоновых. Как только на металлическом корпусе бытового электроприбора появляется потенциал, начинается его стекание на землю, через заземляющий контур.

При этом на нетоковедущих частях из металла, напряжение должно снижаться до более низкого уровня. Если нарушается целостность контура заземления или соединённых с ним проводов, напряжение на них остаётся высоким со стороны источника тока, что представляет значительную опасность для человека.

Периодичность замеров сопротивления защитного заземления регламентируется ПТЭЭП (1 раз в 6 лет). Кроме того, делается регулярная проверка его исправности.

Для проверки соответствия ЗУ, нормативным требованиям, производится замер его сопротивления растеканию тока Rз. В идеале оно должно быть равно нулю, но на практике это невозможно.

Факторы учета сопротивления

Величина (Rз) складывается из нескольких составляющих:

  1. Сопротивление металла, закопанного в грунт электрода и на его контакте с проводником. В связи с хорошей проводимостью применяемых материалов (сталь с медным покрытием или медь), а также при надёжном соединении с проводом, величинами сопротивлений обычно пренебрегают.
  2. Сопротивление между грунтом и штырём, которым можно пренебречь, если электрод сидит плотно, а его место контакта свободно от краски и других диэлектрических покрытий. Со временем сталь корродирует, и электропроводность электрода снижается. Поэтому целесообразно использовать омедненные стержни и периодически измерять сопротивление растеканию. Места сварки покрываются лаком, чтобы уменьшить коррозию.
  3. Сопротивление грунта – это основной фактор, который следует учитывать. Особенно это относится к близлежащим слоям. По мере удаления их, сопротивление снижается, и на определённом расстоянии принимается за нулевое.
  4. Неоднородность электрических характеристик грунта трудно учесть. Поэтому важным является замер фактического Rз. На одиночную простую конструкцию заземлителя, преимущественно влияют поверхностные слои грунта, а на контурную – глубинные.

Объект испытания

Проверке подвергаются искусственные ЗУ, которые выполняются в виде одиночных электродов или контуров. К ним не относятся PEN,-и PE-проводники, входящие в виде отдельной жилы в состав кабеля.

Искусственные ЗУ выполняются в виде:

  1. Углублённого заземлителя из горизонтальных стальных полос или круга, уложенных на дно котлована.
  2. Вертикального заземлителя из угловой стали – вбиваемых стержней или труб. Они размещаются в грунте на дистанции не меньше их длины и объединяются в контур горизонтальными полосами или круглым стержнем на глубине около 0,5 м. Распространённой конструкцией в частном доме, и не только в нём, является треугольная. Обвязка для заземляющих электродов учитывается в расчётах.

Элементы меняются, если их коррозия превышает 50%. На электроустановках проверка производится выборочно, где действие коррозии максимально. Там обязательно проверяются заземления нейтралей. На ВЛ контролируется не менее 2% опор. При этом выбираются участки с наиболее агрессивным грунтом.

Значения Rз для каждого вида заземлителя приводятся в ПУЭ и таблице.

Максимально допустимое значение Rз

Характеристика электроустановки Удельное сопротивление грунта, Ом*м Сопротивление заземляющего устройства, Ом
Искусственный заземлитель, к которому присоединяются нейтрали генератора и трансформаторов, а также повторные заземлители нулевого провода (в том числе во вводах помещения) в сетях с заземленной нейтралью на напряжение, В:
660/380 до 100 | свыше 100 15 | 0,5*p
380/220 до 100 | свыше 100 30 | 0,3*p
220/127 до 100 | свыше 100 60 | 0,6*p
Примечание: p — удельное сопротивление грунта.

Измерение сопротивления заземлителя

Методика основана на законе Ома для определённого места электроцепи. Величина сопротивления вычисляется, если к ЗУ от источника напряжения подать ток и замерить его с высокой точностью. В принципе это можно сделать мультиметром, но погрешность здесь будет высокая. Поэтому применяются только приборы высокой точности.

Методы измерения сопротивления заземлителя:

  1. Метод пробного электрода. Замеры производят до монтажа заземляющего устройства.

Перед тем как проверить заземление, на испытуемом участке в грунт забивают одиночный пробный заземлитель, равный по длине будущему устройству и выступающий над землёй.

Затем тестером измеряют Rз, после чего по его величине и геометрическим размерам стержня рассчитывают удельное сопротивление земли (ρ), в Ом:

ρ = 2πRзl/[ln(4l/d)], где

  • l – длина стержня, м;
  • d – диаметр стержня, м.
  1. Метод вертикального электрического зондирования (ВЭЗ). На рисунке ниже изображена четырёхэлектродная схема измерения.

К наружным стержням (1) и (2) подключают ЭДС, а разность потенциалов замеряют на расположенных внутри стержнях (3) и (4).

  1. Метод вольтметра и амперметра. При измерениях собирается цепь из заземляющих устройств, основного (потенциального, П) и дополнительного (токового, Т) электродов, забиваемых в грунт.

Затем к ЗУ и Т прикладывается стабилизированное напряжение с последующим измерением амперметром (А) проходящего тока. К зачищенной поверхности контура защитного заземления и потенциальному электроду подключается вольтметр (V), которым измеряется падение напряжения между ними.

Электрод П располагается в зоне нулевого потенциала грунта и должен находиться на достаточно большом расстоянии от ЗУ и электрода Т.

Сопротивление заземления находится как частное, от деления измеренного значения напряжения на величину тока. Полученный результат можно принять как окончательный, в первом приближении. Уточнённый расчёт получится, если учитывать сопротивление соединительных проводов.

На рисунке выше изображена принципиальная электрическая схема и как собираются схемы измерения Rз с прибором МС-08. Первая из них отличается большей точностью, а во второй следует из показаний прибора вычесть сопротивления проводников, соединяющих заземлитель с клеммами (I1) и (E1).

Как видно из схем на рисунке выше, расстояния между заземлителями требуются большие и не всегда в городских условиях метод можно применить. Кроме того, показания прибора искажают металлические коммуникации.

  1. Компенсационный метод. Для измерений применяют высокоточные промышленные приборы.

Общим с предыдущим методом является аналогичное заглубление двух электродов. Их размещают на одной линии, захватывая исследуемый контур заземления.

В качестве прибора используется измерительный зонд, который подключают к дополнительным электродам 1 и 3, а также как можно ближе к шине 2 контура заземления.

Переменная ЭДС подаётся через заглублённые в грунт, дополнительные стержни, землю, соединительные проводники и первичную обмотку трансформатора тока (ТТ). На его вторичной обмотке появляется ток (I1). Реохордом «б» выставляется равенство напряжений U2 = U1. Оно достигается путём установки на ноль показаний прибора V, подключённого к реохорду через трансформатор ИТ.

Искомая величина Rз находится из системы уравнений:

U1=I1∙ Rз;

U2=I2∙ Rаб;

U1= U2;

I1=I2.

После решения системы устанавливается, что Rз=Rаб. Остаётся определить величину Rаб. Для этого на подвижной части ручки устанавливается стрелка, служащая указателем значения Rаб, на неподвижной шкале.

Таким образом, путём вращения ручки реостата и установки показаний прибора V на ноль, по положению стрелки реохорда можно найти Rз.

  1. Замеры Rз с использованием калиброванного резистора. Электричество подаётся на ЗУ напрямую с фазы питания через охлаждаемый калиброванный резистор Rкр.

Ток через ЗУ определяется по измеренному напряжению Uкр на резисторе и известной величине сопротивления.

Падение напряжения на ЗУ находится по разности напряжений (рабочего и на резисторе): Uз = Uф — Uкр.

Сопротивление заземляющего устройства находится из формулы: Rз = Rкр (Uф — Uкр)/Uкр. Здесь не учитываются сопротивления проводников, а также сопротивление заземления нейтрали трансформатора на подстанции, поскольку их значениями можно пренебречь. Погрешность метода составляет около 10%.

Измерения производят путём отключения провода PE сети от заземлителя, на который затем подаётся фазное напряжение через калиброванное сопротивление типа НР-64/220 (46 Ом). Выделяемая мощность составляет сотни ватт, что требует его водяного охлаждения.

Преимуществом метода является его простота: не требуются тяжёлые электроды и многометровые провода, а измерения производятся на небольшом участке земли. Он является эффективным в городских условиях, например, в многоэтажном доме, где проходит множество коммуникаций.

  1. Измерение Rз с применением токовых клещей. Современный метод измерения производится без отключения заземляющей цепи.

Он удобен и в доме, и на предприятии. При этом учитываются сопротивления соединений, что повышает точность замеров. На рисунке ниже представлена схема измерения и её эквивалентная схема.

В цепь Rз подаётся напряжение Е и по ней проходит ток. Измерив его величину клещами, можно получить все исходные данные для расчёта Rз.

Сопротивление находится из соотношения Rз = E/I. Напряжение Е известно, а сопротивление находится по данной формуле, если измерить величину тока с помощью клещей.

Приборы для измерения

С развитием энергетики, приборы измерения совершенствуются в плане удобства использования и получения более точных результатов. Практически все аналоговые приборы заменены на цифровые с микропроцессорами.

Процессы замеров стали проще, точность повысилась, а результаты сохраняются в памяти. Стоимость приборов высокая. Периодичность измерений составляет 1 раз в 6 лет, и приобретать для этого прибор не стоит.

Кроме характеристик измерительных приборов, важно качественно подготовить шинопровод к подключению контактирующих с ним проводников. Места соединения очищаются от коррозии, а также применяют струбцины с винтовыми зажимами, чтобы продавить верхний слой металла в месте контакта проводника с электродом.

Измерения выполняются с отключением главного автомата щита управления или отсоединением от заземлителя РЕ-проводника. Иначе, может возникнуть аварийный режим с прохождением тока короткого замыкания через тестер и ЗУ.

Прибор МС-08 применяется для замеров, методом амперметра и вольтметра, где устанавливаются 2 электрода на расстоянии более 25 м от заземлителя. Ток в цепи создаётся генератором, приводимым во вращение вручную через редуктор.

После сборки схемы и подключения прибора, сопротивления вспомогательных заземлителей компенсируются. Если этого сделать не удаётся, вокруг дополнительного заземлителя увлажняется грунт. Измерения производят на разных диапазонах, пока тестер не даст заметные показания. Они не должны колебаться после окончательной установки.

Прибор М-416 удобен для измерений, так как имеет небольшой вес, шкалу с вращением и фиксацией измеренных значений, собран на полупроводниках с автономным питанием.

Тестер СА 6415 с токовыми клещами и ЖК-дисплеем позволяет измерять заземление без применения дополнительных электродов. При этом нет необходимости отключать РЕ-проводник от электродов. Трудоёмкость метода значительно меньше по сравнению с другими.

elquanta.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.