Заземление искусственное и естественное


Монтаж и эксплуатация электрических сетей

Новости и информация

Введение

Непрерывное развитие народного хозяйства страны обуславливает высокие темпы роста объемов электромонтажных работ по сооружению новых, расширению, техническому перевооружению, реконструкции и техническому обслуживанию действующих электроустановок. В связи с этим непрерывно повышаются требования к инженерным кадрам, работающим в области монтажа и эксплуатации электроустановок. Изучение курса «Монтаж и эксплуатация электрических сетей», будет способствовать подготовке высококвалифицированных специалистов.

Предметом изучения дисциплины являются современные приемы монтажа и методики выполнения работ по техническому обслуживанию электрических сетей. В плане подготовки инженера-энергетика дисциплина является важным звеном и отражением требования квалификационной характеристики.

Целью изучения дисциплины является формирование общих теоретических знаний и овладение организационными и техническими вопросами монтажа и эксплуатации электрических сетей.


Задачей изучения дисциплины является ознакомление с организационными и практическими вопросами монтажных и пусконаладочных работ, работ по ремонту, испытанию и техническому обслуживанию, научной организации труда электротехнических элементов электроэнергетических систем.

Будущий специалист должен знать основы выполнения монтажных работ и работ по техническому обслуживанию и эксплуатации воздушных и кабельных линиях электропередачи. Он должен уметь использовать нормативные документы (Правила устройства электроустановок, Межотраслевые правила по охране труда при работе в электроустановках, Правила технической эксплуатации электрических станций и сетей и т.п.) при организации выполнения электромонтажных работ по сооружению, ремонту, испытанию и техническому обслуживанию электротехнических элементов электроэнергетических систем.



Источник: elektro-montagnik.ru

Все новости

02.03.16                            , 

Существует два вида заземления: искусственное и естественное. Роль естественного заземления выполняют части металлических конструкций объекта, постоянно находящиеся в земле: арматура фундамента, водопровод, обсадные трубы и т.д. Искусственное заземление — это отдельная самостоятельная конструкция, монтирующаяся в землю. Практически каждый подрядчик сталкивается с вопросом при установке заземления, какой заземлитель лучше: искусственный или естественный?


Для ответа на данный вопрос обратимся к нормативным документам, а именно к пунктам 1.7.54 и 1.7.109 “Правил Устройства Электроустановок” (ПУЭ). Здесь мы видим ответ: для заземления подойдут как естественные, так и искусственные заземлители. Давайте выясним, в каких случаях правильнее применить тот или иной способ? Разберем подробнее каждый из вариантов.

Заземление искусственное и естественное

Вариант 1. Естественный заземлитель

Если вы решили использовать естественный заземлитель, то вам нужно знать о многих факторах: типе фундамента объекта, его материале, а также об агрессивности грунта. В разделе ПУЭ 1.7.109 изложены варианты конструкций объекта, которые можно применить в качестве заземлителя. Самым распространенным из них является фундамент. Различают несколько видов фундамента: ленточный, столбчатый, свайный и плитный. Выбор основы зависит от плотности грунта, сейсмической активности, рельефа поверхности, уровня грунтовых вод и глубины промерзания грунта. В качестве материала используют: арматуру, бетон, кирпич, дерево, бут, асбестоцементные или металлические трубы. Подробную информацию о фундаменте можно найти в нормативной документации (СНБ 5.01.01-99 Основания и фундаменты зданий и сооружений). Таким образом, при решении использования вашего фундамента в качестве заземлителя, нужно удостовериться, что он имеет электрически связанные металлические части.


Все элементы естественного заземлителя должны быть объединены в общий контур и контактировать с землей для отвода токов непосредственно или через бетон. Также, выбранный заземлитель должен удовлетворять требованиям ПУЭ касательно величины площади поперечного сечения проводника (Таблица 1.7.4). В процессе эксплуатации естественного заземлителя, нельзя допустить разрушение его структуры или нарушение работы устройств, связанных с ним.

Не допускаются в качестве заземлителя трубы канализации и центрального отопления, а также трубопроводы для горючих и взрывоопасных смесей. Трубы легко поддаются коррозии металла, разрывая при этом электрический контакт. Данный вид заземления безусловно более экономичный: не требует затрат на материалы, монтаж и демонтаж заземляющего устройства, но в ходе его длительной эксплуатации, ремонт поврежденных участков будет стоить не меньше, чем установка отдельного заземления.

Естественный заземлитель
Естественный заземлитель

Вариант 2. Искусственный заземлитель

Представляет собой совокупность электродов, установленных в земле и объединенных с электрооборудованием с помощью заземляющего проводника. В качестве материала электродов применяют омедненную сталь, оцинкованную сталь или черные металлы:


  1. Омедненная сталь — имеет наиболее высокую электропроводность и сцепление с различными материалами. Соединение меди и стали крепче, чем с цинком, поэтому омедненные стержни прочнее, чем оцинкованные. Медь менее электрохимически активная, чем цинк и сталь, что увеличивает срок службы до 100 лет.

  2. Оцинкованная сталь — коррозионностойкий материал с низким удельным сопротивлением. Электроды из данного металла имеют высокую устойчивость к кислотным средам со средним сроком службы 30 лет.

  3. Черные металлы — имеют высокую механическую прочность, но быстро разрушаются при эксплуатации в агрессивной среде грунта, образуя ржавчину и коррозию. И, как следствие, получаем высокое сопротивление растекания тока, представляющее опасность для жизни человека.

Размеры проводников должны соответствовать требованиям ГОСТ Р 50571.5.54-2013. Множество вариантов установки заземляющего устройства помогает обеспечить нужную площадь контакта поверхности заземлителя с грунтом, что в свою очередь позволяет влиять на значение сопротивления растеканию тока. Преимуществом искусственного заземлителя является то, что его можно установить глубоко в землю, где удельное сопротивление ниже за счет грунтовых вод, которые стекают вниз. Это обеспечивает стабильность итогового сопротивления.


Искусственный заземлитель
Искусственный заземлитель

Подведем итоги: можно выбрать в качестве заземлителя любой из описанных выше вариантов, главное подойти к данному вопросу ответственно. Для безопасности вашего дома и продолжительного срока службы, выбирайте заземление с антикоррозионным покрытием, изготовленным в соответствии с нормативными правилами. Позвоните или напишите в наш Технический центр и мы подберем для вашего объекта нужный комплект заземления.

Источник: zandz.com

Искусственное и естественное заземление: какое выбрать?

grounding-house

Для обустройства дачного дома необходимость создания заземления такая же, как и при строительстве коттеджа. Заземление на даче может быть естественным или искусственным. Для небольших домов можно обеспечить и естественный вариант, но важно учитывать не только габариты здания, но и максимальное напряжение.

Естественное заземление

Такой тип заземления достаточно надежный, но важно понимать, что напряжение в доме должно быть не выше 1 кВт.


кже нужно учесть, что конструкция, которая используется как заземлитель, должна соприкасаться с землей. При этом возможны состыковки, соединительные элементы – например между собой соединены две трубы. Главное, чтобы трубы были металлическими (нельзя путать с алюминием). Подойдут также оболочки кабелей, ведущие к земле и уходящие под нее. Также хорошо естественное заземление работает при использовании железобетонных конструкций фундамента. Еще на этапе строительства это лучше учесть.

Не используются как элементы естественного заземления газовые трубы, водопроводные трубы, отопительные элементы, любые трубы, наполненные взрывоопасными или легко воспламеняемыми составами.

Искусственное заземление

Электроды для искусственного заземления могут быть выполнены из стали, меди, оцинкованного материала. Профиль сечения может быть округлым, угловым, прямоугольным, трубным. Запрещено использовать элементы, которые заизолированы, утеплены или окрашены. В процессе использования их ни при каких обстоятельствах нельзя окрашивать или обрабатывать другими составами, изолировать.

Чтобы система заземления была надежной и правильно функционировала, нужно также правильно обустроить контур заземления, который распределяет сопротивление между человеком и системой. При этом заземлители могут размещаться как вертикально, так и горизонтально.

© Mixstuff 2012. Права на опубликованный перевод принадлежат владельцам вебсайта mixstuff.ru Все графические изображения, использованные при оформлении статьи принадлежат их владельцам. Знак охраны авторского права распространяется только на текст статьи. Использование материалов сайта без активной индексируемой ссылки на источник запрещено.

mixstuff.ru

Искусственное заземление — Большая Энциклопедия Нефти и Газа, статья, страница 1


Искусственное заземление

Cтраница 1

Искусственное заземление ( аноды) под действием тока корродирует, вследствие чего оно через определенное время требует замены. Процессы коррозии наиболее активны на глубине 0 30 — 0 35 м ниже поверхности земли. По указанной причине не следует размещать аноды на такой малой глубине, так как в этом случае верхняя часть металлического заземления под влиянием коррозии может отделиться от основного металла еще до того, как потребуется его замена.  [2]

Искусственным заземлением называется заземлитель, специально выполненный для целей заземления.  [3]

Для электродов искусственных заземлений применяются забиваемые в землю отрезки бракованных газовых труб диаметром 50 — 75 мм, стержни того же или меньшего диаметра или обрезки профилированной стали при условии, что толщина материала за-землителя не менее 3 5 мм. Верхний конец каждого электрода должен находиться на глубине не менее 0 5 — 0 8 м от поверхности почвы.  [4]

В устройства искусственного заземления не требуется.  [5]


При устройстве искусственного заземления в землю вертикально забивают трубы, стержни и сталь углового профиля, обеспечивая надлежащий контакт с грунтом. Заземлители обычно имеют длину 2 5 — 3 0 м, при заглублении их верхний конец располагается на уровне грунта или несколько ниже.  [6]

Если ReR3, то устройство искусственного заземления не требуется.  [8]

Если гег3, то необходимо устройство искусственного заземления.  [9]

Для снижения токов утечки и устранения их разрушающего действия устраивают искусственное заземление рассольных и щелочных коллекторов. На выходе из цеха электролиза рассольного и щелочного коллекторов устанавливают заземленные графитовые или титановые электроды, отводящие в землю токи утечки. Для дальнейшего уменьшения токов утечки включают дополнительное электрическое сопротивление между электролизерами с диафрагмой и коллекторами для рассола и щелочи. В качестве дополнительного сопротивления используют длинные резиновые шланги малого сечения, по которым рассол из рассольного коллектора подают в электролизеры, а также капельницы для слива электролитической щелочи из электролизеров в сборный коллектор. Значение токов утечки по рассольному шлангу диаметром 12 мм при разности напряжений на электролизере и коллекторе рассола от 100 до 400 В и температуре рассола 95 С колеблется от 0 70 до 2 80 А на 1 м длины шланга и уменьшается пропорционально длине шланга. В капельнице происходит разрыв струи электролитической щелочи и дробление ее на мелкие капли, поэтому возрастает электрическое сопротивление прохождению токов утечки и, в соответствии с законом Ома, снижается ток утечки. Токи утечки увеличивают электрохимическую коррозию напорных баков и подогревателей рассола, установленных в отделении электролиза.  [10]


Если естественные заземлители обеспечивают требуемое сопротивление заземления, то устройство дополнительного искусственного заземления не требуется.  [11]

Если естественные заземлители обеспечивают требуемое сопротивление заземления, то устройство дополнительного искусственного заземления не требуется.  [12]

Чтобы снизить величину токов утечки и устранить их разрушающее действие, устраивают искусственное заземление рассольных и щелочных коллекторов. На выходе из цеха электролиза рассольного и щелочного коллекторов устанавливают заземленные графитовые или титановые электроды, отводящие в землю токи утечки. Для дальнейшего снижения величин токов утечки включают дополнительное электрическое сопротивление между электролизерами с диафрагмой и коллекторами для рассола и щелочи. В качестве дополнительного сопротивления используют длинные резиновые шланги малого сечения, по которым рассол из рассольного коллектора подают в электролизеры, а также капельницы для слива электролитической щелочи из электролизеров в сборный коллектор.  [13]

При измерении сопротивления изоляции сети относительно земли предполагается, что сеть не имеет искусственного заземления; если же сеть заземлена ( например, при заземленной нейтрали трансформатора), изменение возможно при снятом заземлении.  [14]


При измерении сопротивления изоляции сети относительно земли предполагается, что сеть не имеет искусственного заземления; если же сеть заземлена ( например, при заземленной нейтрали трансформатора), измерение возможно при снятом заземлении.  [15]

Страницы:      1    2    3

www.ngpedia.ru

Современные системы заземления

Заземление является неотъемлемой частью всех энергетических систем. Представляет собой основную меру предотвращения поражения электротоком. Электрическая сеть с использованием защитного заземления обеспечивает безопасность:

  • человека при обслуживании электроустановок;
  • работы электроприборов.

Процесс сооружения контура заземления

Для обеспечения стабильной работы электросетей необходимо знать, какая система заземления должна быть внедрена в каждом конкретном случае.

Системы заземления, виды, особенности и требования к ним описаны в Правилах устройства электроустановок.

По способу действия разделяют на два типа:

  • Естественное. Стационарные металлоконструкции, заглубленные в землю постоянно (железобетонные фундаменты строений и др.). Регулировать величину сопротивления таких ЗУ невозможно, поэтому их применение в качестве единственного заземления электроустановок недопустимо.
  • Искусственное. Намеренное соединение электрооборудования с заземляющим устройством.

Устройство ЗУ

Все ЗУ состоят из: заземлителя (одной металлоконструкции либо сложной системы), контура, заземляющего проводника (ЗП), который соединяет электроустановку с контуром.

Проверка величины сопротивления контура

Заземлителем называется токопроводящая часть – множество соединенных между собой проводников, которые имеют прямой контакт с землей. Выполняется из стали либо из меди.

Нормы для отдельно взятых электроустановок регламентируется действующим ПУЭ. Качество системы заземления определяется величиной сопротивления (чем ниже значение, тем эффективнее система).

Повышают величину сопротивления растеканию тока путем увеличения площади электродов, уменьшением сопротивления грунта (забивание дополнительных электродов, увеличение глубины заложения ЗУ) и др.

Классификация искусственного заземления

  1. ЭУ до 1 кВ:
  • с изолированной нейтралью;
  • с глухозаземленной нейтралью.
  1. ЭУ выше 1 кВ:
  • с глухозаземленной (эффективно заземленной) нейтралью,
  • с изолированной (заземленной) на дугогасящий реактор нейтралью.

Применение каждой системы зависит от особенностей электросети, количества и характера электроустановок и др. Выбор типа сети для электроустановок устанавливает местная энергоснабжающая организация (в техусловиях обязательно указывается тип системы заземления).

Системы заземления в сетях до 1 кВ

  • TN-сеть с глухозаземленной нейтралью – заземляющий контур соединен непосредственно с нулем на ПС. ЭУ соединены с нейтралью на трансформаторе нулем.

TN-система с глухозаземленной нейтралью

Условие работоспособности данного вида заземления – величина тока между токопроводящей частью и фазой при КЗ должна быть больше, чем номинальный ток срабатывания коммутационного аппарата за допустимое время.

Системы TN разработаны для защиты оборудования при случайном прикосновении к поверхности неисправной изоляции.

Преимущества:

  • При повреждении целостности изоляционных покрытий (при возникновении больших токов) срабатывает защита.
  • При повреждении оборудования образуются низкие величины напряжения на токопроводящих частях, что уменьшает вероятность поражения электротоком.

Различают подвиды TN-системы:

  • TN-С. Подвид системы с глухозаземленной нейтралью, в которой защитный и рабочий ноль совмещен в PEN-проводнике по всей длине линии электропередачи (защитное зануление).
  • TN-S. В таком исполнении защитный и рабочий ноль электросети разделен по всей ее длине. Является наиболее безопасной, но и дорогостоящей системой. Редко применяется для электроустановок, удаленных от источника питания сети (в виду большого удорожания строительства).
  • TN-С-S – подвид системы с глухозаземленной нейтралью. Является гибридом TN-С и TN-S систем, т.е. совмещение PE- и N-проводников происходит лишь на части ЛЭП. Обычно совмещение происходит до вводно-учетного устройства электроустановок. Является самым популярным видом, т.к. обеспечивает высокую надежность работы энергосистемы по разумной цене.

Применение УЗО в системе TN-С-S

Разновидность выбирают в зависимости от конкретных условий.

Какую систему выбрать?

В бытовых сетях целесообразно применение системы с глухозаземленной нейтралью (TN).

Применение TN-С-заземления запрещено, поэтому при модернизации старых электропроводок выбирают TN-С-S и TN-S исполнения. Т.к. сооружение TN-S требует значительных капиталовложений, TN-С-S остается самой применяемой из сопоставления цены и качества.

IT-система (изолированная нейтраль). Ноль имеет заземление через приборы с большим сопротивлением. В настоящее время применяется редко.

TT-система (заземленная нейтраль). Является лучшим решением для заземления мобильных электроустановок (бытовки, строительные вагончики и др.). В схеме обязательно наличие УЗО и контура заземления с сопротивлением 4 Ом для сетей 0,4 кВ.

Система ТТ – лучший вариант для заземления мобильных электроустановок

Рабочий ноль в данной системе имеет заземление, а токопроводящие части заземлены независимым контуром заземления (не связанным с нулем).

При модернизации старых систем заземления существует вероятность некоторых трудностей. Потенциал может находиться на поверхности электроприборов при отгорании нулевого проводника и образовавшегося перекоса фаз. При ошибочном подключении фазного провода вместо нулевого, также может находиться потенциал на поверхности приборов.

В частном доме заменить TN-С проводку на TN-С-S не составит труда. Необходимо соорудить эффективный контур заземления и правильно подключить его к проводке (к ШВУ). В многоквартирных домах переделывать схему таким образом запрещено.

Модернизация сети в частном доме

Если в бытовой электросети не предусмотрен контур заземления, то соединение защитного и рабочего нуля запрещено. В схемы для предотвращения  поражения электротоком человека следует включать электроустройства защитного отключения или дифференциальные автоматы.

При модернизации сети следует сооружать TN-С-S-систему, а домашнюю проводку прокладывать медным трехжильным кабелем типа ВВГнг (не распространяющим горение).

Для защиты электросети необходимо применять устройства защитного отключения нескольких уровней: общедомового на 100 или 300 мА для предотвращения пожаров, групповые и отдельные УЗО на 30 мА, и УЗО на 10 мА для защиты от поражения электротоком в детских комнатах и помещениях с повышенной влажностью.

Устройство защитного отключения

Принцип работы системы заземления

Работает за счет:

  • стабилизации напряжения до условно безопасной величины;
  • установки устройства защитного отключения;
  • для электросетей с глухозаземленной нейтралью срабатывание защиты при попадании фазы на заземленный элемент.

Наиболее работоспособным является применение системы заземления в совокупности с устройством защитного отключения. При такой схеме аварийный участок электросети отключается за кратчайшее время. Также в цепи не наблюдается возникновение опасных потенциалов.

Системы заземления при неисправности сети

Наиболее часто встречающаяся неисправность – возникновение фазного напряжения на корпусе электрооборудования из-за нарушения целостности защитных кожухов. При наличии импульсных источников вторичного электропитания при отсутствии защитного заземления на корпусах приборов может находиться напряжение. Защиту от поражения электротоком в таких случаях можно произвести различным присоединением приборов к электропроводке.

Типы присоединения электроприборов к сети:

  • Есть заземление, отсутствует устройство защитного отключения. При протекании больших токов срабатывает расцепитель. Не является мерой, полностью обеспечивающей защиту организма от поражения электрическим током. При больших значениях номинального тока коммутационных аппаратов (25 А, например) на предохранителях при обычном сопротивлении (4 Ом), потенциал может составлять 0,1кВ, что является смертельно опасным.
  • В сети нет заземления, но присутствует УЗО (ДА). При протекании потенциала на поверхности прибора, УЗО сработает лишь в том случае, если в цепи появится ток утечки (прикосновение к неисправному устройству). Пострадавший получает удар током от 10 до 30 мА на время срабатывания УЗО.
  • Есть заземление и устройство защитного отключения. Является наиболее безопасной схемой, т.к. при возникновении потенциала электроток идет по заземляющему проводнику в землю. При этом происходит немедленное срабатывание УЗО (на отходящей линии, группового или на вводе в дом). При этом, если какой-нибудь элемент выйдет из строя, электросеть будет частично исправна.

Наиболее часто встречающиеся ошибки в реализации систем заземления:

  • Использование непредназначенных для заземления PE-проводников. Применение в качестве заземляющего проводника металлических труб недопустимо, т.к. в инженерных системах часто используют вставки из пластиковых трубопроводов. Кроме этого, соединение труб может быть неисправно из-за коррозии или на участке инженерной сети могут проводиться ремонтные работы, что приводит к неэффективности СУП и вероятности поражения электрическим током при прикосновении к токопроводящим поверхностям.
  • Объединение PE- и N-проводников на недопустимых для этого участках (за точкой разделения). Это приводит к беспричинным отключениям УЗО, а также присутствию токов на PE-проводнике.
  • Разделение PEN-проводника в бытовой электросети, т.к. PE-проводник все равно остается связанным с рабочей нулевой жилой – сохраняется фазный потенциал, который также может присутствовать на корпусе проводника. При перестановке местами фазных жил, при разрыве (отгорании) нулевого провода появляется опасность поражения электрическим током при прикосновении к токопроводящим поверхностям электроприборов.
  • Заземление низковольтных (телефонных кабелей, телевизионных и интернет сетей) отдельно от общего. При наличии двух и более заземляющих устройств может возникнуть разность потенциалов из-за разных токов на цепях. Это увеличивает вероятность поражения электротоком и выхода из строя слаботочных сетей. Система уравнивания потенциалов предотвращает подобные аварийные ситуации.

Системы уравнивания потенциалов

При возникновении аварийной ситуации, когда ЗУ находится под напряжением, его сопротивления недостаточно для обеспечения безопасности людей. СУП предназначены для защиты от ударов электротоком, когда он наведен на заземляющее устройство.

Система соединяет воедино все точки электросети, а также доступные для контакта металлоконструкции здания, инженерные коммуникации (трубы водо,- и теплоснабжения и др.), системы молниезащиты.

Организация СУП в TN-C-системе запрещена. В жилищах старого типа для организации СУП применяется соединение электрощитовых с элементами водопровода.

Присоединение с заземлителями выполняют отдельными защитными PE-проводниками. Допускается организация СУП в составе системы внутреннего электроснабжения.

Запрещено использовать шлейфы для соединения PE-проводников СУП. После ГЗШ совместное использование PE,- и N-проводника недопустимо.

Выделяют две системы уравнивания потенциалов: основную и дополнительную.

Главная заземляющая шина (ГЗШ) – элемент заземляющего устройства электроустановки

Состав основной системы уравнивания потенциалов:

  • Главная заземляющая шина. Установка предполагается в вводно-учетных и распределительных щитах. От нее отходят PE-проводники групповых отходящих фидеров и проводники уравнивания потенциалов ко всем металлоконструкциям жилища.
  • Контур заземления. От него проложена стальная полоса заземления к главной заземляющей шине.
  • «Сетка» заземляющих проводников.
  • ЗП. Элемент системы, которым присоединяют отдельные части в единую систему.

Включать в схему PE-проводника автоматы с расцепителями запрещено, т.к. в этом случае нарушается основное требование системы защиты – целостность линии.

Для соединения отдельных элементов СУП используют радиальную схему, т.е. для каждой части здания (ВРУ) должен предусматриваться отдельный проводник.

Дополнительная СУП применяется для обеспечения безопасности во влажных помещениях.

Состав:

  • соединительные элементы;
  • коробка уравнивания потенциалов.

Порядок монтажных работ:

  • согласовать расположение коробки;
  • соединить шинку ВРУ с шинкой КУП, материал проводника – медный;
  • присоединение к системе всех металлических элементов, которые находятся в комнате (труб горячего и холодного водоснабжения, отопления, стоков, ванны), а также бытовых розеток и выключателей;
  • затем происходит соединение защитных проводников с шиной PE КУП;
  • завершающим этапом является проверка целостности проводников и замеры электрического сопротивления.

Соединение труб с СУП можно производить металлическими хомутами.

Видео. Правильное заземление

Существует несколько систем заземления, каждая из которых должна применяться согласно требованиям и возможности реализации. После выбора системы заземления необходимо правильное внедрение ее в сеть потребителя. Только качественно обустроенные электросети гарантируют безопасную их эксплуатацию и стабильную работу электроустановок.

Оцените статью:

elquanta.ru

Искусственное заземление — Большая Энциклопедия Нефти и Газа, статья, страница 3

Искусственное заземление

Cтраница 3

На пусковой аппаратуре: рубильниках, пускателях и клеммных коробках должны иметься кожухи. Монтажные механизмы, металличеокие части лифта, электродвигатели, кожухи электроаппаратуры должны быть заземлены и не находиться под напряжением. Результаты замера сопротивления в заземляющем устройстве должны регистрироваться в журнале. Проверять сопротивление в заземляющих устройствах следует с помощью приборов тока МС-07 или МС-08. Места установки временных искусственных заземлений должны быть ограждены. Заземлению подлежат все металлические части лифта, которые могут окааатыся под напряжением. В качестве за-землителей следует использовать различные металлические конструкции и трубопроводы, надежно соединенные с землей. В качестве естественных заземлителей могут быть использованы: проложенные под землей водопроводные и другие металлические трубопроводы негорючих и невзрывоопасных продуктов, металлические конструкций зданий и сооружений, имеющие соединение с землей, свинцовые оболочки кабелей.  [31]

Кроме того, экран вследствие протяженности линии имеет весьма существенную связь с землей, при присоединении экрана к корпусу преобразователя или измерительной цепи емкость экран — земля Сэ. Поэтому вопрос о присоединении экрана к корпусу преобразователя или измерительной цепи решается исходя из конкретных условий так, чтобы влияние шунтирующих емкостей было минимальным. Однако чаще экран присоединяется к корпусу измерительной цепи. В ряде случаев по условиям эксперимента или по соображениям техники безопасности один из корпусов или оба должны быть заземлены, тогда сопротивления связи определяются сопротивлениями заземляющих проводников и очень малы. Однако даже при отсутствии искусственного заземления корпус преобразователя почти всегда связан с землей через проводящие детали объекта, на котором он монтируется, а корпус измерительной цепи, включающей усилитель, — через емкостные связи и источники питания. Эквивалентная схема цепи ( рис. 3 — 17, б) показана на рис. 3 — 17, в. Наличие сопротивлений связи с землей приводит к появлению на входе измерительной цепи составляющей помехи общего вида, называемой также продольной помехой. Механизм действия продольной помехи поясняется рис. 3 — 17, б и в. Из-за блуждающих токов к токов заземленных силовых установок потенциалы точек а и б оказываются различными, причем эта разница может достигать 10 — 15 В.  [32]

На строительстве ГЭС часто возни-тсает необходимость в устройстве выносного заземления с использованием проводимости воды рек, озера, моря или других водоемов. В условиях скального или плохо проводящего грунта использование системы естественных заземлителей, соприкасающихся с речной водой, очень часто бывает наиболее экономичным и правильным решением, поскольку устройство искусственного заземления при скальном или другом плохопроводящем грунте является затруднительным, дорогостоящим и малоэффективным. Однако в практике гидротехнического строительства встречается необходимость устройства заземления в горных скальных грунтах, где использование воды горных рек или озер, не обла-дающих свойством электропроводимости, невозможно. В отдельных горных реках Советского Союза вода по своим свойствам эквивалентна свойствам дистиллированной воды. В этом случае для заземления ГПП, располагае — мой в непосредственной близости от ГЭС, устраивается искусственное заземление в скальном грунте, где в качестве заземлителей принимаются оцинкованные трубы диаметром 2, длиной до 3 м с 20 отверстиями диаметром 5 мм, просверленными вдоль трубы в разных местах.  [33]

Страницы:      1    2    3

www.ngpedia.ru

Источник: 10i5.ru

Из чего делают естественное заземление?

Чаще всего для того, чтобы заземлить электроустановку, используют заземлители естественного типа, например металлические части (арматуру), входящие в устройство железобетонных элементов, допустим, фундаменты опоры линий электропередач и подстанций, а также фундаментов зданий. Кроме того, в качестве естественного заземлителя могут использоваться разного рода металлические подземные коммуникации, например трубопроводы, броня или оболочка кабелей. В некоторых случаях допустимо для заземления использовать и наземные коммуникации, например рельсовые пути.

Чем использование естественных заземлителей лучше по сравнению с искусственными?

Естественные заземлители допустимо использовать в случае, если они способны обеспечить выполнение абсолютно всех требований, которые предъявляют к заземляющим конструкциям.

Искусственные же заземлители нужно применять, когда нужно в значительной степени уменьшить токи, которые через естественные заземлители будут уходить в землю.

Это значит, что в большинстве случаев вы можете использовать только естественные заземлители, не прибегая к искусственным. С помощью данного конструктивного шага можно в значительной степени уменьшить количество материалов, необходимых для сооружения заземления, кроме того будут снижены финансовые и трудовые затраты, а также эксплуатация заземляющего устройства будет намного проще, нежели при применении искусственного заземления.

В каком случае в качестве заземляющего устройства можно применять железобетонный фундамент строения?

Данный технологический шаг разрешается использовать лишь в том случае, если грунт, на котором установлено строение, имеет влажность 3% или больше. Бетон при меньшем показателе влажности способен оказывать достаточно сильное электрическое сопротивление, следовательно, он не будет представлять собой заземляющую конструкцию.

Железобетонный фундамент можно использовать в качестве заземлителя еще и в том случае, если на него будет оказывать воздействие какая-нибудь не слишком агрессивная среда, например грунтовые воды с небольшим показателем жесткости. Кроме того, допустимо применение фундамента в качестве заземлителя при отсутствии гидроизоляции или в случае, если поверхность фундамента будет дополнительно защищена с помощью битумного покрытия, как этого требует СНиП.

Когда категорически запрещено использовать железобетонные фундаменты в качестве заземляющего устройства?

Не следует подводить заземляющий провод к железобетонному фундаменту строения в случае, если он находится в достаточно агрессивной среде, так как это вызовет дополнительную коррозию.

Также не следует использовать железобетонный фундамент в качестве естественного заземлителя, когда железобетонные конструкции имеют в своей структуре напрягаемую арматуру.

Если учесть все указанные выше разрешения и ограничения, то может получиться так, что в вашем строении можно вообще отказаться от изготовления искусственного заземлителя. Это позволит в значительной степени уменьшить длину заземляющих проводников, которые будут находиться в самом строении, что в итоге приведет к достаточно ощутимой экономии средств и материалов.

Как необходимо соединять элементы заземляющего устройства?

Абсолютно все детали как металлических, так и железобетонных конструкций должны быть соединены таким образом, чтобы в них была сделана непрерывная электрическая цепь, которая проходит непосредственно по металлу.

Если колонны изготовлены из железобетона, то нужно дополнительно предусмотреть специальные закладные детали в них, которые должны находиться на каждом из этажей здания.

Данные элементы конструкции нужны для того, чтобы к ним можно было присоединить заземляемое электрическое и технологическое оборудование.

Если в зданиях имеются сварные, болтовые или же заклепочные соединения, то их будет вполне достаточно для того, чтобы соорудить непрерывную электрическую цепь по металлу. Если некоторые из элементов металлоконструкций не оснащены подобными соединениями, то к ним нужно дополнительно приварить гибкие перемычки, сечение которых должно составлять 100 мм2 или даже больше.

Какие железобетонные конструкции не стоит использовать в качестве заземлителей?

Лучше всего не подводить заземляющий провод к сборным фундаментам, выполненным из железобетона. По возможности стоит соединить арматуру соседних блоков между собой, лишь после этого допустимо изготовление естественного заземления. В противном случае, если этого сделать не удастся, лучше всего изготовить искусственное заземление.

Как следует соединять железобетонные конструкции между собой?

Если фундамент дома выполнен из свай, то их арматуру лучше всего соединить с арматурой ростверка или блоков фундамента с использованием электродуговой сварки.

Однако пространственные каркасы колонн и стаканов фундаментов, которые обычно выполняют из металла, а также арматурные сетки их подошв нужно сваривать путем точечной сварки.

Из чего изготавливают закладные детали?

Закладные детали лучше всего сооружать в виде отрезков, выполненных из угловой стали размерами 63 х 63 х 5 мм, а длиной около 60 мм. Их следует приварить к арматуре таким образом, чтобы они выходили на поверхность бетона.

Для изготовления металлических перемычек используют стержни диаметром 42 мм. Их приваривают непосредственно к закладным деталям.

Если здание будет оборудовано молниеприемной сеткой, она должна быть объединена в единую конструкцию с колоннами, которые используются в роли токоотводящих проводников, а также с фундаментами, выполняющими функцию заземлителя. При этом к данной сетке нужно присоединить все конструкции, изготовленные из металла и выступающие над кровлей, например антенны, вентиляционные шахты, трубы и прочие металлические изделия.

Металлические перемычки необходимо размещать в конструкции строения в случае, если в роли естественного заземлителя будут выступать трубы водопровода. Данные перемычки необходимо устанавливать на водомерах и задвижках.

В случае если при проведении ремонтных работ нужно снять перемычку, то предварительно необходимо установить еще одну. Кроме того, заземляющие проводники нужно соединять с трубами водопровода за водомером.

Категорически запрещается использовать в качестве заземляющего проводника канализационный трубопровод, так как в месте своих стыков канализационные трубы не обладают действительно качественным электрическим контактом.

На подстанциях в качестве естественных заземлителей могут выступать стойки из железобетона. Однако в этом случае для их изготовления должен использоваться специальный электротехнический бетон.

Какие естественные заземлители используются на линиях электропередач?

В данном случае в качестве заземлителя можно использовать подножники, изготовленные из железобетона и свай. Так поступать наиболее разумно в случае, если они устанавливаются на грунт, среднее сопротивление которого составляет 300 Ом/м, то есть в глиняных и супесчаных грунтах.

Кроме того, был проведен целый ряд экспериментов, которые показали, что даже в песчаных и скальных фунтах бетон основания линии электропередач получает постоянное увлажнение.

Из-за этого уже через несколько месяцев после его установки он превращается в естественный заземлитель, причем сопротивление данной конструкции в течение года будет не слишком значительно колебаться, так что такими значениями можно и пренебречь.

Какие еще есть естественные заземлители?

Помимо тех заземлителей, о которых было сказано выше, существует еще целый ряд возможных естественных заземлителей, например в их роли могут выступать металлические трубопроводы, через которые протекает какая-нибудь негорючая жидкость, обсадные трубы артезианских колодцев.

В случае если вы решите использовать исключительно естественный заземлитель для безопасности своего дома, то протекающие по заземляющему проводу электрические токи не должны быть больше допустимых для каждого составного элемента заземляющего устройства.

Источник: www.eti.su


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.