Принцип работы теплового насоса


В условиях ухудшения экологической обстановки в мире и (что более актуально для рядового потребителя) стремительного роста тарифов на газ и электричество все больше европейцев старается внедрить в свою повседневную жизнь системы, использующие альтернативные источники энергии. Один из вариантов подобных систем – так называемый тепловой насос, посредством которого можно отапливать свое жилище в зимний период и нагревать воду для бытовых нужд, расходуя на это минимум электроэнергии.

В домах наших соотечественников в последние годы тоже все чаще можно встретить это чудо инженерной мысли. Конечно, для россиян проблема высоких цен на традиционные энергоносители пока стоит не так остро, как в Европе, но, во-первых, это лишь до поры до времени, а во-вторых, не хочется отставать от цивилизованного мира…

Итак, тепловой насос… Что это такое? На чем основан принцип его действия? Откуда, куда и как он перекачивает тепло? Давайте разбираться.

Принцип работы теплового насоса data-src=/images/otoplenie/teplovoj-nasos-dlya-otopleniya-doma/teplovoj-nasos-dlya-otopleniya-doma.jpg alt=»Все о тепловых насосах — принцип работы, виды, недостатки и достоинства» width=800 height=480 />

Принцип работы теплового насоса


Принцип действия тепловых насосов основан на способности вещества (хладагента) поглощать или отдавать тепло при изменении агрегатного состояния. По своей сути такие насосы мало чем отличаются от холодильных установок. (Это странное, на первый взгляд, утверждение нисколько вас не удивит, если вы хоть раз дотрагивались до горячей задней стенки обычного бытового холодильника.)

Схематично тепловой насос может быть представлен в виде системы, состоящей из трех контуров. В первом находится теплоноситель, переносящий энергию от источника низкопотенциального тепла. Во втором контуре циркулирует хладагент (фреон), который периодически то испаряется, отбирая тепло у первого контура, то вновь конденсируется, отдавая его третьему контуру. И, наконец, по третьему контуру «бегает» теплоприемник, в нашем случае – вода, переносящая тепло по системе отопления.

Принцип работы теплового насоса data-src=/images/otoplenie/teplovoj-nasos-dlya-otopleniya-doma/rabota-teplovogo-nasosa.jpg class=aligncenter alt=»Схема работы теплового насоса» width=800 height=403 />

Рабочий цикл теплонасоса в общих словах может быть описан следующим образом. Жидкий хладагент поступает в испаритель, где переходит в газообразное состояние. Необходимая для протекания этого процесса энергия отбирается у теплоносителя, циркулирующего в первом контуре. Далее подогретый на несколько градусов газообразный хладагент всасывается в компрессор, главное назначение которого – сжатие газа (на совершение этой работы, разумеется, расходуется электроэнергия).


Давление газа возрастает в несколько раз, при этом он существенно разогревается: если на входе в компрессор температура хладагента составляет 6-10°C, то на выходе уже около 60°C. На следующей стадии разогретый газ направляется в конденсатор, где отдает полученное тепло системе отопления, сам же при этом конденсируется, т.е. переходит в жидкое состояние. Затем избыточное давление сбрасывается с помощью дроссельного клапана, и цикл начинается заново.

Как видите, устройство теплового насоса не отличается принципиально от устройства холодильной машины. Просто основным назначением холодильных установок является генерирование холода, поэтому там отбор теплоты производится испарителем, а конденсатор лишь сбрасывает эту теплоту в окружающее пространство. В тепловом же насосе картина обратная: конденсатор представляет собой теплообменный аппарат, отдающий теплоту потребителю, а испаритель – это теплообменник, утилизирующий низкопотенциальную теплоту вторичных энергоресурсов.

Другими словами тепловой насос – это «холодильник наоборот». При этом «наоборот» не только устройство, но и результат. Если в случае холодильника тепло, отнимаемое у хранящихся внутри продуктов, выбрасывается впустую, то энергия, вырабатываемая тепловым насосом, приносит реальную пользу – тратится на целенаправленный обогрев дома.

Разновидности тепловых насосов и систем


Тепловая энергия, расходуемая на отопление здания и систему горячего водоснабжения, является результатом преобразования энергии окружающей среды, осуществляемого с помощью теплового насоса. Насос концентрирует эту низкопотенциальную (низкотемпературную) энергию и передает ее системе отопления.

Осталось разобраться, что в данном случае подразумевается под энергией окружающей среды. Большинство тепловых насосов бытового назначения позволяют использовать тепло Солнца и внутреннее тепло Земли, накапливаемые верхними слоями земной коры и водой в течение всего года.

По типу конструкции первого контура теплообменника все тепловые насосы делятся на грунтовые, водяные и воздушные.

Грунтовые тепловые насосы

Грунтовые тепловые насосы получают тепло, необходимое для подогрева хладагента в испарителе, от грунта. Температура последнего на глубине нескольких метров практически не подвержена сезонным колебаниям. По замкнутой системе труб, размещенных в грунте, циркулирует «рассол». Слово «рассол» мы не случайно взяли в кавычки: соли, как этого можно было бы ожидать исходя из названия, он не содержит. На самом деле это антифриз на основе этиленгликоля или пропиленгликоля, реже водного этанола. Трубы теплообменника могут быть уложены в грунте как горизонтальным (горизонтальный коллектор), так и вертикальным (геотермальный зонд) способом.


Трубы горизонтального коллектора укладываются в землю на глубине ниже уровня промерзания грунта в данном регионе (обычно 1.5-2 м). Теплообменная система этого вида занимает достаточно большую площадь. Например, для обеспечения теплом сравнительно небольшого дома площадью 100 м2 потребуется выделить 2-3 сотки земли. Следует принять во внимание, что на территории, занятой коллектором, можно садить лишь те деревья и кустарники, корни которых не уходят в почву слишком глубоко, а располагать здесь какие-либо постройки и вовсе нельзя.

Принцип работы теплового насоса data-src=/images/otoplenie/teplovoj-nasos-dlya-otopleniya-doma/teplovoj-nasos-rossol-voda-grunt.jpg class=aligncenter alt=»Тепловой насос с горизонтальным коллектором» width=800 height=698 />

Геотермальный зонд – это теплообменник, трубы которого располагаются вертикально и погружены в грунт на глубину до 100-200 м. Количество устанавливаемых зондов зависит от требуемой мощности установки. Для обогрева дома, уже рассматриваемого нами выше в качестве примера, достаточно будет двух зондов длиной около 80 м, расположенных на расстоянии 5 м друг от друга.

Принцип работы теплового насоса data-src=/images/otoplenie/teplovoj-nasos-dlya-otopleniya-doma/teplovoj-nasos-rossol-voda-geotermalnuj-zond.jpg class=aligncenter alt=»Тепловой насос с геотермальным зондом» width=800 height=872 />


Как видите, для размещения этой системы не требуется больших площадей, вы можете пробурить скважины в любой части вашего участка – там, где вам это удобно. Главный недостаток грунтовых тепловых насосов с геотермальными зондами – высокая стоимость работ по бурению скважин. Однако, невзирая на это, большинство пользователей отдает предпочтение именно этим системам, ведь геотермальные зонды обладают большей эффективностью, чем горизонтальные коллекторы, и имеют при этом меньше ограничений.

Принцип работы теплового насоса data-src=/images/otoplenie/teplovoj-nasos-dlya-otopleniya-doma/skvazhina-dlya-geotermalnogo-zonda.jpg class=aligncenter alt=»Бурение скважины для геотермального зонда» width=800 height=600 />
Бурение скважины для геотермального зонда.

Водяные тепловые насосы

Водяной тепловой насос «черпает» энергию грунтовых вод, которые прокачивает через свой испаритель. Подобная система отличается повышенной эффективностью и неплохой стабильностью: первая характеристика является результатом высокой теплоотдачи воды, вторая обусловлена постоянством температуры грунтовых вод.

Принцип работы теплового насоса data-src=/images/otoplenie/teplovoj-nasos-dlya-otopleniya-doma/teplovoj-nasos-voda-voda.jpg class=aligncenter alt=»Тепловой насос вода-вода» width=800 height=703 />


Разумеется, чтобы использовать установку такого типа, требуется, чтобы эти самые грунтовые воды имелись на вашей территории, причем в достаточно большом количестве. Очень желательно, чтобы водоносный слой располагался не глубже 30-40 м. Одновременное выполнение этих двух условий – явление нечастое. Еще одним условием, невыполнение которого может стать препятствием для установки водяного теплонасоса в вашем доме или коттедже, является низкое содержание в грунтовых водах солей железа и прочих примесей.

Использование воды низкого качества приведет к тому, что оборудование быстро выйдет из строя, поскольку теплообменник попросту забьется. Наличие такого количества ограничений является причиной того, что подобные тепловые насосы, несмотря на всю их привлекательность, устанавливают нечасто (около 5% от всех реализованных проектов).

Воздушные тепловые насосы

С точки зрения простоты монтажа воздушные тепловые насосы обладают огромным преимуществом перед своими «собратьями». Для использования окружающего воздуха в качестве источника тепла вам не придется бурить скважины или проводить какие-то другие крупномасштабные грунтовые работы. В результате, если заложить в смету стоимость работ по установке оборудования, воздушный насос обойдется вам значительно дешевле, чем водяной или грунтовый.

Принцип работы теплового насоса data-src=/images/otoplenie/teplovoj-nasos-dlya-otopleniya-doma/teplovoj-nasos-vozduh-voda.jpg class=aligncenter alt=»Тепловой насос воздух вода» width=800 height=704 />


Несмотря на столь весомое достоинство, идеальным этот вид климатического оборудования не назовешь, поскольку есть у него и существенный недостаток. Такой насос эффективно работает лишь при температуре окружающего воздуха выше –15°C…–20°C. Падение температуры ниже этой границы, что в зимний период не является редкостью в большинстве регионов нашей страны, ведет к существенному уменьшению коэффициента эффективности воздушного теплонасоса.

Коэффициент эффективности тепловых насосов

Чуть выше мы использовали новый термин – «коэффициент эффективности». Было бы неправильно не пояснить, что это такое, тем более что это важная характеристика тепловых насосов, позволяющая сравнивать насосы разных типов между собой.

Коэффициент эффективности (называемый также коэффициентом трансформации) – это отношение выработанной насосом тепловой энергии к потребленной им электрической. По сути это КПД теплового насоса. В случае водяных теплонасосов этот коэффициент равен 5 вне зависимости от времени года. Это означает, что при потреблении 1 кВт*ч электроэнергии установка вырабатывает 5 кВт*ч тепловой энергии.

У грунтовых насосов величина коэффициента эффективности чуть ниже – от 4 до 4.5. И, наконец, самым маленьким коэффициентом характеризуются воздушные тепловые насосы, при этом их эффективность сильно зависит от температуры окружающего воздуха: при 0°C величина коэффициента равна ~3.5, а при –20°C он уже не превышает 1.5 (при такой низкой эффективности насос попросту не окупится, и имеет смысл подумать о приобретении более дешевого климатического оборудования, например электрического котла).


Некоторые менеджеры, рекламируя реализуемые ими тепловые насосы, уверяют потенциальных клиентов в том, что данное оборудование имеет КПД 400-500%. Разумеется, ни о каком нарушении законов термодинамики речи не идет. Просто в данном случае расчеты намеренно делаются неправильно: не учитываются источники энергии, отличные от потребляемого электричества, – воздух, вода или грунт, нагретые Солнцем и геотермальными процессами. Когда при расчете КПД учитывают только электроэнергию и забывают про источник низкопотенциального тепла, как раз и получается величина больше 100%.

Применение тепловых насосов в условиях российского климата

Познакомившись с приведенными выше описаниями различных типов тепловых насосов, вы без труда сами сможете ответить на вопрос, какой насос больше всего подходит для эксплуатации в условиях российского климата.

Воздушные тепловые насосы пригодны для применения лишь в ограниченном числе регионов нашей страны – там, где температура воздуха зимой почти не опускается ниже нулевой отметки. Разумеется, жителям Сибири, Дальнего Востока, севера европейской части России о воздушных тепловых насосах не стоит и размышлять.

Для применения водяных тепловых насосов есть много ограничений. О некоторых из них мы уже рассказывали, осталось упомянуть еще об одном. Более половины территории нашей страны находится в зоне вечной мерзлоты. Если даже какому-нибудь жителю Восточной Сибири или севера Дальнего Востока «повезло», и на его участке есть грунтовые воды, залегающие не слишком глубоко, то все равно эти грунтовые воды находятся в виде льда, а значит, не пригодны для использования в системе отопления.


Таким образом, большинству наших соотечественников приходится рассчитывать на единственный, беспроигрышный, вариант – грунтовый тепловой насос. При этом в условиях российского климата больше подойдет насос не с горизонтальным коллектором, а с геотермальным зондом, позволяющим достигнуть глубины, где температура грунта более стабильна.

Применение теплового насоса для охлаждения

Огромным достоинством тепловых насосов является то, что они способны не только отапливать дом, но и при необходимости охлаждать его. Наше короткое российское лето порою бывает очень жарким, и, когда ваше жилище буквально раскаляется, предложение превратить обогреватель в кондиционер будет очень кстати.

Техническое решение этого вопроса может быть интегрировано в тепловой насос изначально, на стадии изготовления, и практически у всех производителей имеются линейки насосов, умеющих кондиционировать помещение (режим Natural Cooling). Если ваш тепловой насос не обладает такими способностями, не все еще потеряно – работать на охлаждение может и обычный насос. Необходимое для этого дополнительное оборудование в виде гидравлической развязки будет смонтировано вне насоса. Оба варианта не требуют больших капиталовложений.


Нести генерируемый тепловым насосом холод непосредственно в помещение можно разными способами. Эта функция может быть возложена на холодные панели на стенах или потолке, охлаждающий теплый пол, радиаторы отопления с хорошим обдувом или же фанкойл – устройство, в чей корпус встроен обдуваемый вентилятором пластинчатый теплообменник.

Принцип работы теплового насоса data-src=/images/otoplenie/teplovoj-nasos-dlya-otopleniya-doma/fainkoil.jpg class=aligncenter alt=Фанкойл width=800 height=559 />

Применение теплового насоса для горячего водоснабжения

Любой тепловой насос способен не только обогревать ваше жилище, но и круглогодично снабжать вас горячей водой. Однако следует учитывать, что эта система является низкотемпературной, а значит, температура воды в бойлере не превысит 45-55°C. Из этого следует, что объем бойлера должен быть больше, чем при использовании стандартной системы отопления, в противном случае вам и вашим домочадцам придется жить в условиях жесткой экономии горячей воды.

Данный факт следует учитывать при выделении площади для котельной, т. е. еще на стадии проектирования дома. Также при выборе бойлера нужно принимать во внимание, что это должно быть специальное оборудование, рассчитанное на работу с теплонасосными установками. Главное отличие такого бойлера от обычного – увеличенная площадь теплообменника, необходимая для максимально эффективной передачи тепла от теплового насоса.

Тепловые насосы со встроенным ТЭНом

Нередко производители встраивают в свои тепловые насосы дополнительные электрические нагреватели. Встроенный ТЭН позволяет в случае необходимости перейти на альтернативный с точки зрения теплового насоса источник энергии – электричество. Для чего это нужно? В каких случаях возникает потребность задействовать ТЭН?

Подбор теплового насоса для отопления дома осуществляется с учетом различных параметров, в том числе и климатических особенностей региона. При этом считается нецелесообразным устанавливать насос с избыточной мощностью. Дело в том, что экстремально холодные дни случаются не так уж и часто, по крайней мере, в центрально-европейской части России. Практика показывает, что более экономичным вариантом будет «добрать» в эти морозные периоды необходимую мощность электричеством, чем изначально устанавливать более мощный насос. Наличие ТЭНа исключает необходимость делать систему более мощной, чем это требуется большую часть отопительного сезона.

Для владельцев водяных и грунтовых тепловых насосов встроенный ТЭН – скорее излишество, чем необходимость. Совсем иначе выглядит ситуация с воздушными теплонасосами. При температуре воздуха –20°C и ниже такой насос, если и не отключится, будет малоэффективен. И пусть холодных дней и ночей в году не очень много, совсем не хочется в один прекрасный момент остаться в стремительно вымерзающем доме. Наличие дублирующего теплогенератора в данном случае никак не назовешь роскошью.

Принцип работы теплового насоса data-src=/images/otoplenie/teplovoj-nasos-dlya-otopleniya-doma/vozdushnui-teplonasos.jpg class=aligncenter alt=»Воздушный теплонасос» width=800 height=598 />
Воздушный тепловой насос.

Советы и рекомендации

Тепловой насос – оборудование технически сложное и достаточно дорогое, поэтому подходить к его выбору следует с большой ответственностью. Чтобы не быть голословными, приведем несколько вполне конкретным рекомендаций.

1. Никогда не приступайте к выбору теплового насоса без предварительного проведения расчетов и создания проекта. Отсутствие проекта может стать причиной фатальных ошибок, исправить которые можно будет лишь с помощью огромных дополнительных финансовых вложений.

2. Доверить проектирование, монтаж и сервисное обслуживание теплового насоса и системы отопления следует только профессионалам. Как убедиться в том, что в данной компании работают профессионалы? В первую очередь, по наличию всей необходимой документации, портфолио реализованных объектов, сертификатов от поставщиков оборудования. Очень желательно, чтобы весь комплекс необходимых услуг предоставляла одна компания, которая в данном случае будет нести полную ответственность за реализацию проекта.

3. Советуем вам отдать предпочтение тепловому насосу европейского производства. Пусть вас не смущает тот факт, что он дороже китайского или российского оборудования. При включении в смету стоимости работ по монтажу, запуску и отладке всей системы отопления разница в цене насосов будет практически незаметна. Но зато, имея в своем распоряжении «европейца», вы будете уверены в его надежности, поскольку высокая цена насоса – это лишь результат использования при его создании современных технологий и высококачественных материалов.

Источник: srbu.ru

Что такое Тепловой Насос?

Тепловой насос — устройство (другими словами «тепловой котел»), которое отбирает рассеянное тепло из окружающей среды (грунт, вода или воздух) и переносит его в отопительный контур вашего дома.

Благодаря солнечным лучам, которые непрерывно поступают в атмосферу и на поверхность земли происходит постоянная отдача тепла. Именно таким образом поверхность земли круглый год получает тепловую энергию.

Воздух частично поглощает тепло от энергии солнечных лучей. Остатки солнечной тепловой энергии почти полностью поглощается землей.

Кроме того, геотермальное тепло из недр земли постоянно обеспечивает температуру грунта +8°С (начиная с глубины 1,5-2 метра и ниже). Даже холодной зимой температура на глубине водоемов остается в диапазоне +4-6°С.

Именно это низкопотенциальное тепло грунта, воды и воздуха переносит тепловой насос из окружающей среды в отопительный контур частного дома, предварительно повысив температурный уровень теплоносителя до необходимых +35-80°С.

ВИДЕО: Как работает тепловой насос Грунт-Вода?

 

Что делает Тепловой Насос?

Тепловые насосы — тепловые машины, которые предназначены для производства тепла с использованием обратного термодинамического цикла. Тепловые насосы переносят тепловую энергию от источника с низкой температурой в систему отопления с более высокой температурой. В процессе работы теплового насоса происходят затраты энергии, не превышающие объем произведенной энергии.

В основе работы теплового насоса лежит обратный термодинамический цикл (обратный цикл Карно), состоящий из двух изотерм и двух адиабат, но в отличии от прямого термодинамического цикла (прямого цикла Карно) процесс протекает в обратном направлении: против часовой стрелки.

В обратном цикле Карно окружающая среда выступает в роли холодного источника тепла. При работе теплового насоса тепло внешней среды благодаря совершению работы передается потребителю, но с уже более высокой температурой.

Передать тепло от холодного тела (грунт, вода, воздух) возможно только при затрате работы (в случае с тепловым насосом — затраты электрической энергии на работу компрессора, циркуляционных насосов и пр.) или другого компенсационного процесса.

Еще тепловой насос можно назвать «холодильником наоборот», так как тепловой насос это та же холодильная машина, только в отличии холодильника тепловой насос забирает тепло снаружи и переносит его в помещение, то есть обогревает помещение (холодильник же охлаждает путем отбора тепла из холодильной камеры и выбрасывает его через конденсатор наружу).

Как работает Тепловой Насос?

Теперь поговори о том как работает тепловой насос. Для того, что понять принцип работы теплового насоса нам нужно разобраться в нескольких вещах.

1. Тепловой насос способен извлекать тепло даже при отрицательной температуре.

Большинство будущих домовладельцев не могут понять принцип работы теплового насоса Воздух-Вода (в принципе любого воздушного теплового насоса), так как не понимают каким образом может извлекаться тепло из воздуха при отрицательной температуре зимой. Вернемся к основам термодинамики и вспомни определение теплоты.

Теплота — форма движения материи, представляющая собой беспорядочное движение образующих тело частиц (атомов, молекул, электронов и др.).

Даже при температуре 0˚С (ноль градусов по Цельсию), когда замерзает вода, в воздухе все еще есть теплота.  Ее значительно меньше чем, например при температуре +36˚С, но тем не менее и при нулевой и при отрицательной температуре происходит движение атомов, а значит и происходит выделение теплоты.

Движение молекул и атомов полностью прекращается при температуре -273˚С (минус двести семьдесят три градуса по Цельсию), что соответствует абсолютному нулю температуры (ноль градусов по шкале Кельвина). То есть и зимой при минусовой температуре в воздухе есть низкопотенциальное тепло, которое можно извлекать и переносить в дом.

2. Рабочая жидкость в тепловых насосах — хладагент (фреон).

Что такое холодильный агент? Хладагент — рабочее вещество в тепловом насосе, которое отбирает теплоту от охлаждаемого объекта при испарении и передает тепло рабочей среде (например, воде или воздуху) при конденсации.

Особенность хладагентов в том, что они способны закипать и при отрицательных и при относительно низких температурах. Кроме того хладагенты могут переходить из жидкого состояния в газообразное и наоборот. Именно во время перехода из жидкого состояния в газообразное (испарения) происходит поглощение теплоты, а во время перехода из газообразного в жидкое (конденсации) происходит передача теплоты (отделение тепла).

3. Работа теплового насоса возможна благодаря его четырем ключевым компонентам.

Для того, чтобы понять принцип работы теплового насоса его устройство можно разделить на 4 основные элементы:

  1. Компрессор, который сжимает хладагент для повышения его давления и температуры.
  2. Расширительный клапан — терморегулирующий вентиль, который резко понижает давление хладагента.
  3. Испаритель — теплообменник, в котором хладагент с низкой температурой поглощает тепло от окружающей среды.
  4. Конденсатор — теплообменник, в котором уже горячий хладагент после сжатия передает тепло в рабочую среду отопительного контура.

Именно эти четыре компонента позволяют холодильным машинам производить холод, а тепловым насосам — тепло. Для того, чтобы разобраться как работает каждый компонент теплового насоса и для чего он нужен предлагаем просмотреть видео о принципе работы грунтового теплового насоса.

ВИДЕО: Принцип работы теплового насоса Грунт-Вода

Принцип работы теплового насоса

Теперь попытаемся подробно описать каждый этап работы теплового насоса. Как уже говорилось ранее — в основе работы тепловых насосов лежит термодинамический цикл. Это значит, что работа теплового насоса состоит из нескольких этапов цикла, которые повторяются снова и снова в определенной последовательности.

Рабочий цикл теплового насоса можно разделить на четыре следующие этапы:

1. Поглощение тепла из окружающей среды (кипение хладагента).

В испаритель (теплообменник) поступает хладагент, который находиться в жидком состоянии и имеет низкое давление. Как мы уже знаем при низкой температуре хладагент способен закипать и испаряться. Процесс испарения необходим для того, чтобы вещество поглотило тепло.

Согласно второму закону термодинамики тепло передается от тела с высокой температурой к телу с более низкой температурой. Именно на этом этапе работы теплового насоса хладагент с низкой температурой проходя по теплообменнику отбирает тепло от теплоносителя (рассола), который ранее поднялся из скважин, где отобрал низкопотенциальное тепло грунта (в случаи с грунтовыми тепловым насосами Грунт-Вода).

Дело в том, что температура грунта под землей в любое время года составляет +7-8°С. При использовании геотермального теплового насоса типа Грунт-Вода устанавливаются вертикальные зонды, по которым циркулирует рассол (теплоноситель). Задача теплоносителя — нагреться до максимально возмножной температуры во время циркуляции по глубинным зондам.

Когда теплоноситель отобрал тепло из грунта, он поступает в теплообменник теплового насоса (испаритель) где «встречается» с хладагентом, который имеет более низкую температуру. И согласно второму закону термодинамики происходит теплообмен: тепло от более нагретого рассола передается менее нагретому хладагенту.

Принцип работы теплового насоса. Как работает Тепловой Насос.

Здесь очень важный момент: поглощение тепла возможно во время испарения вещества и наоборот, отдача теплоты происходит при конденсации. Во время нагрева хладагента от теплоносителя он меняет свое фазовое состояние: хладагент переходит из жидкого состояния в газообразное (происходит процесс закипания хладагента, он испаряется).

Пройдя через испаритель хладагент находиться в газообразной фазе. Это уже не жидкость, но газ, который отобрал тепло у теплоносителя (рассола).

2. Сжатие хладагента компрессором.

На следующем этапе хладагент в газообразном состоянии попадает в компрессор. Здесь компрессор сжимает фреон, который за счет резкого увеличения давления нагревается до определенной температуры.

Аналогичным образом работает и компрессор обычного бытового холодильника. Единственное существенное отличие компрессора холодильника от компрессора теплового насоса — значительно меньшая производительность.

ВИДЕО: Как работает холодильник с компрессором

 

3. Передача тепла в систему отопления (конденсация).

После сжатия в компрессоре хладагент, который имеет высокую температуру поступает в конденсатор. В данном случае конденсатор — это тоже теплообменник, в котором во время конденсации происходит отдача теплоты от хладагента к рабочей среде отопительного контура (например воде в системе теплых полов, или радиаторов отопления).

В конденсаторе хладагент из газовой фазы снова переходит в жидкую. Этот процесс сопровождается выделением тепла, которое используется для системы отопления в доме и горячего водоснабжения (ГВС).

4. Понижение давления хладагента (расширение).

Теперь жидкий хладагент нужно подготовить к повторению рабочего цикла. Для этого хладагент проходит через узкое отверстие термо-регулирующего вентиля (расширительного клапана). После «продавливания» через узкое отверстие дросселя хладагент расширяется, вследствие чего падает его температура и давление.

Этот процесс сравним с распылением аэрозоля из балончика. После распыления балончик на короткое время становиться холоднее. То есть произошло резкое падение давления аэрозоля вследствие продавливания наружу, температура соответственно тоже падает.

Теперь хладагент снова находиться под таким давлением, при котором он способен закипеть и испаряться, что необходимо нам для поглощения тепла от теплоносителя.

Задача ТРВ (термо-регулирующий вентиль) — снизить давление фреона путем расширения его на выходе из узкого отверстия. Теперь фреон снова готов закипать и поглощать тепло.

Цикл снова повторяется до тех пор, пока система отопления и ГВС не получит от теплового насоса необходимый объем тепла.

 

Источник: elementum.com.ua

Конструктивные элементы и принцип работы

У рассматриваемых тепловых насосов для отопления дома принцип действия напоминает принцип работы холодильного оборудования, только наоборот. Если холодильная установка выводит часть тепла из своей внутренней камеры наружу, тем самым понижая в ней температуру, то работа теплового насоса состоит в том, чтобы охлаждать окружающую среду и нагревать теплоноситель, который перемещается по трубам отопительной системы. По тому же принципу функционируют тепловые насосы «воздух – вода» и «земля – вода», которые также используют энергию из низкопотенциальных источников для обогрева жилых и производственных помещений.

Конструктивная схема теплового насоса вода-вода, который является наиболее продуктивным среди устройств, использующих источники энергии с низким потенциалом, предполагает наличие таких элементов, как:

  • наружный контур, по которому перемещается вода, откачиваемая из водного источника;
  • внутренний контур, по трубопроводной магистрали которого перемещается хладагент;
  • испаритель, в котором холодильный агент превращается в газ;
  • конденсатор, в котором газообразный хладагент снова становится жидкостью;
  • компрессор, предназначенный для того, чтобы увеличивать давление газообразного холодильного агента перед его подачей в конденсатор.

Таким образом, в устройстве теплового насоса вода-вода нет ничего сложного. Если вблизи от дома имеется естественный или искусственный водоем, то для отопления строения лучше всего применять как раз тепловой насос типа вода-вода, принцип работы и конструктивные особенности которого состоят в следующем.

  1. Контур, представляющий собой первичный теплообменник, по которому циркулирует антифриз, размещается на дне водоема. При этом глубина, на которой выполняют монтаж первичного теплообменника, должна быть ниже уровня промерзания водоема. Антифриз, проходя по первичному контуру, нагревается до температуры 6–8°, а затем подается к теплообменнику, отдавая тепло его стенкам. Задача антифриза, циркулирующего по первичному контуру, заключается в передаче теплоэнергии воды холодильному агенту (фреону).
  2. В том случае если схема работы теплового насоса предусматривает забор и передачу тепловой энергии воды, откачиваемой из подземной скважины, контур с антифризом не используется. Вода из скважины по специальной трубе пропускается через камеру теплообменника, где и отдает свою тепловую энергию холодильному агенту.
  3. Теплообменник для тепловых насосов – важнейший элемент их конструкции. Это устройство, состоящее из двух модулей – испарителя и конденсатора. В испарителе фреон, подающийся по капиллярной трубке, начинает расширяться и превращается в газ. При контакте газообразного фреона со стенками теплообменника хладагенту передается низкопотенциальная тепловая энергия. Зарядившийся такой энергией фреон подается в компрессор.
  4. В компрессоре осуществляется сжатие газообразного фреона, в результате чего температура хладагента повышается. После сжатия в камере компрессора фреон поступает в другой модуль теплообменного аппарата – конденсатор.
  5. В конденсаторе газообразный фреон снова превращается в жидкость, а накопленная им тепловая энергия передается стенкам емкости, в которой находится теплоноситель. Поступая в камеру второго модуля теплообменника, фреон, находящийся в газообразном состоянии, конденсируется на стенках накопительной емкости, сообщает им тепловую энергию, которая затем передается воде, находящейся в такой камере. Если при выходе из испарителя фреон обладает температурой 6–8 градусов Цельсия, то на входе в конденсатор теплового насоса вода-вода благодаря вышеописанному принципу работы такого устройства ее значение достигает 40–70 градусов Цельсия.

Таким образом, принцип работы теплового насоса базируется на том, что хладагент при переходе в газообразное состояние забирает тепловую энергию у воды, а при переходе в жидкое состояние в конденсаторе отдает накопленную энергию жидкой среде – теплоносителю отопительной системы.

Точно по такому же принципу работают тепловые насосы «воздух – вода» и «земля – вода», разница состоит лишь в типе источника, который применяется для получения тепловой энергии низкого потенциала. Другими словами, тепловой насос принцип работы имеет один, не варьирующийся в зависимости от типа или модели устройства.

То, насколько эффективно нагревается тепловым насосом теплоноситель системы отопления, во многом определяется колебаниями температуры воды – источника низкопотенциальной энергии. Высокую эффективность такие устройства демонстрируют при работе с водой из скважин, где температура жидкой среды в течение года находится в диапазоне 7–12 градусов Цельсия.

Принцип работы теплового насоса вода-вода, обеспечивающий высокую эффективность данного оборудования, позволяет использовать такие устройства для оснащения систем отопления жилых и промышленных строений не только в регионах с теплыми зимами, но и в северных районах.

Рекомендации по выбору модели

Чтобы тепловой насос, схема работы которого описана выше, демонстрировал высокую эффективность, следует знать, как правильно выбрать такое оборудование. Очень желательно, чтобы выбор теплового насоса вода-вода (а также «воздух – вода» и «земля – вода») осуществлялся с участием квалифицированного и опытного специалиста.

При выборе теплонасоса для водяного отопления учитываются следующие параметры такого оборудования:

  • производительность, от которой зависит площадь здания, отопление которого насос может обеспечить;
  • торговая марка, под которой произведено оборудование (учитывать данный параметр необходимо потому, что серьезные компании, продукция которых уже оценена многими потребителями, уделяют серьезное внимание как надежности, так и функциональности производимых моделей);
  • стоимость как самого выбираемого оборудования, так и его монтажа.

При выборе тепловых насосов вода-вода, воздух-вода, земля-вода рекомендуется обращать внимание на наличие у такого оборудования дополнительных опций. Сюда, в частности, относятся возможности:

  • управления работой оборудования в автоматическом режиме (работающие в таком режиме за счет специального контроллера тепловые насосы позволяют создать в обслуживаемом ими строении комфортные условия для проживания; изменение параметров работы и другие действия по управлению теплонасосами, которые оснащены контроллером, могут выполняться посредством мобильного устройства или пульта ДУ);
  • использования оборудования для нагрева воды в системе ГВС (обращать внимание на данную опцию следует потому, что в некоторых (особенно старых) моделях тепловых насосов, коллектор которых устанавливается в открытых водоемах, она отсутствует).

Расчет мощности оборудования: правила выполнения

Прежде чем приступать к выбору определенной модели теплового насоса, надо разработать проект системы отопления, которую такое оборудование будет обслуживать, а также выполнить расчет его мощности. Такие вычисления необходимы для того, чтобы определить фактическую потребность в тепловой энергии здания с определенными параметрами. При этом обязательно учитывают тепловые потери в таком здании, а также наличие в нем контура ГВС.

Для теплового насоса вода-вода расчет мощности выполняется по следующей методике.

  • Сначала определяют общую площадь здания, для отопления которого будет использоваться приобретаемый тепловой насос.
  • Определив площадь здания, можно рассчитать мощность теплонасоса, способного обеспечить отопление. Выполняя такой расчет, придерживаются правила: на 10 кв. м площади здания необходимо 0,7 киловатт мощности теплового насоса.
  • Если тепловой насос будет использоваться и для обеспечения функционирования системы ГВС, то к полученному значению его мощности добавляют 15–20 %.

Выполняемый по вышеописанной методике расчет мощности теплонасоса актуален для зданий, в помещениях которых высота потолков не превышает 2,7 метра. Более точные вычисления, учитывающие все особенности зданий, которые предстоит отапливать посредством теплового насоса, выполняются сотрудниками профильных организаций.

Для теплового насоса «воздух – вода» расчет мощности выполняется по похожей методике, но с учетом некоторых нюансов.

Как изготовить тепловой насос самостоятельно

Хорошо разобравшись в том, как работает тепловой насос типа вода-вода, можно изготовить такое устройство своими руками. Фактически самодельный тепловой насос является набором готовых технических устройств, правильно подобранных и соединенных в определенной последовательности. Чтобы тепловой насос, изготовленный своими руками, демонстрировал высокую эффективность и не вызывал проблем при эксплуатации, необходимо выполнить предварительный расчет его основных параметров. Для этого можно воспользоваться соответствующими программами и онлайн-калькуляторами на сайтах производителей подобного оборудования или обратиться к профильным специалистам.

Итак, чтобы изготовить тепловой насос своими руками, надо подобрать элементы его оснащения по предварительно рассчитанным параметрам и выполнить их правильный монтаж.

Компрессор

Компрессор для теплового насоса, изготавливаемого собственноручно, можно взять из старого холодильника или сплит-системы, обращая при этом внимание на мощность такого устройства. Преимуществом использования компрессоров от сплит-систем является низкий уровень шума, создаваемого при их работе.

Конденсатор

В качестве конденсатора для самодельного теплового насоса можно использовать змеевик, демонтированный из старого холодильника. Некоторые делают его самостоятельно, используя сантехническую или специальную холодильную трубку. В качестве емкости, в которую надо поместить змеевик конденсатора, можно взять бак из нержавейки объемом приблизительно 120 литров. Чтобы поместить в такой бак змеевик, ее предварительно разрезают на две половины, а затем, когда монтаж змеевика выполнен, сваривают.

Очень важно перед выбором или самостоятельным изготовлением змеевика рассчитать его площадь. Для этого нужна следующая формула:

П3 = MТ/0,8PТ

Параметрами, используемыми в данной формуле, являются:

  • МТ – мощность создаваемого тепловым насосом тепла (кВт);
  • PТ – разница между температурами на входе в тепловой насос и на выходе из него.

Чтобы в конденсаторе теплового насоса из холодильника не создавались воздушные пузырьки, вход в змеевик следует располагать в верхней части емкости, а выход из него – в нижней.

Испаритель

В качестве емкости для испарителя можно использовать простую пластмассовую бочку вместимостью 127 л с широкой горловиной. Для создания змеевика, площадь которого определяется по такой же схеме, как и для конденсатора, также используется медная трубка. В изготовленных в домашних условиях тепловых насосах, как правило, применяют испарители погружного типа, в которые сжиженный фреон поступает снизу, а превращается в газ в верхней части змеевика.

Очень аккуратно с помощью пайки при самостоятельном изготовлении теплового насоса следует выполнять монтаж терморегулятора, так как данный элемент нельзя нагревать до температуры, превышающей 100 градусов Цельсия.

Для подвода воды к элементам самостоятельно сделанного теплового насоса, а также ее отвода используются обычные канализационные трубы.

Тепловые насосы вода-вода, если сравнивать их с устройствами типа «воздух – вода» и «земля – вода», более простые по своей конструкции, но при этом более эффективные, поэтому оборудование именно данного типа чаще всего изготавливают самостоятельно.

Сборка самодельного теплонасоса и его запуск в работу

Для сборки и запуска в работу самодельного теплового насоса потребуются следующие расходные материалы и оборудование:

  1. сварочный аппарат;
  2. вакуумный насос (для проверки всей системы на вакуум);
  3. баллон с фреоном, заправка которого осуществляется через специальный клапан (установку клапана в системе следует предусмотреть заранее);
  4. температурные датчики, которые устанавливаются на капиллярные трубы на выходе из всей системы и на выходе из испарителя;
  5. пусковое реле, предохранитель, дин-рейка и электрощиток.

Все сварочные и резьбовые соединения при сборке следует выполнять максимально качественно, чтобы обеспечить абсолютную герметичность системы, по которой будет перемещаться фреон.

В том случае, если в роли источника низкопотенциальной энергии выступает вода в открытом водоеме, дополнительно необходимо изготовить коллектор, наличие которого предполагает принцип работы тепловых насосов данного типа. Если же предполагается использование воды из подземного источника, надо пробурить две скважины, в одну из которых вода будет сбрасываться после того, как пройдет всю систему.

Источник: met-all.org


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.