Производительность насоса формула


Производительность (Q) обычно выражается в кубических метрах в час (м3/час). Так как жидкости абсолютно несжимаемы, существует прямая зависимость между производительностью, или расходом, размером трубы и скоростью жидкости. Это отношение имеет вид:
Производительность насоса формула
Где    ID – внутренний диаметр трубопровода, дюйм
V  –  скорость жидкости, м/сек
Q  –  производительность, (м3/час)
Производительность насоса формула

Рис. 1. Высота всасывания – показаны геометрические напоры в насосной системе, где насос находится выше резервуара всасывания (статический напор)

Мощность и КПД
Работа, выполняемая  насосом, является функцией общего напора и веса жидкости,  перекачиваемой за заданный период  времени. Как правило, в формулах используются параметр производительности насоса (м3/час) и плотность жидкости вместо веса.

Мощность, потребляемая насосом (bhp) – это действительная мощность на валу насоса сообщаемая ему электродвигателем. Мощность на выходе насоса  или гидравлическая (whp) –  мощность, сообщаемая насосом жидкой среде. Эти два определения выражены следующими формулами.


Производительность насоса формула

Мощность на входе насоса (потребляемая мощность) больше  мощности на выходе насоса или гидравлической мощности за счет механических и гидравлических потерь, возникающих в насосе.
Поэтому эффективность насоса (КПД) определяется как отношение этих двух значений.
Производительность насоса формула

Быстроходность и тип насоса
Быстроходность  – это  расчетный коэффициент, применяемый для классификации рабочих колес насоса по их типу и размерам. Он определяется как частота вращения геометрически подобного рабочего колеса, подающего 0,075 м3/с жидкости при напоре 1 м. (В американских единицах измерения 1 галлон в минуту при 1 футе напора)

Однако, это определение используется только при инженерном проектировании, и быстроходность  должна пониматься как коэффициент  для расчета определенных характеристик насоса. Для определения коэффициента быстроходности, используется следующая формула:
Производительность насоса формула
Где    N – Скорость насоса ( в оборотах в минуту)
Q – Производительность (м3/мин) в точке максимального КПД.
H – Напор в точке максимального КПД.

Быстроходность определяет геометрию или  класс рабочего колеса, как показано на рис.3


Форма колеса и быстроходность
Рис. 3 Форма колеса и быстроходность

По мере возрастания быстроходности соотношение между наружным диаметром рабочего колеса D2 и входным диаметром D1 сокращается. Это соотношение равно 1.0 для рабочего колеса осевого потока.

Рабочие колеса с радиальными лопатками (низким Ns) создают напор за счет центробежной силы.

Насосы с более высоким Ns создают напор частично с помощью той же центробежной силы, а частично с помощью осевых сил. Чем выше коэффициент быстроходности, тем большая доля осевых сил в создании напора. Насосы осевого потока или пропеллерные с коэффициентом быстроходности 10.000 (в американских единицах) и выше создают напор исключительно за счет осевых сил.

Колеса радиального потока обычно применяются, когда необходим высокий напор и малая производительность, тогда как  колеса  осевого  потока  применяются для работ по перекачиванию больших объемов жидкости при низких напорах.

Кавитационный запас (NPSH), давление на входе и кавитация
Гидравлический Институт определяет параметр NPSH, как разницу абсолютного напора жидкости на входе в рабочее колесо и давления насыщенных паров. Другими словами, это превышение внутренней энергии жидкости на входе в рабочее колесо на ее давлением насыщенных паров. Данное соотношение позволяет определить, закипит ли жидкость в насосе в точке минимального давления.


Давление, которое жидкость оказывает на окружающие ее поверхности, зависит от температуры. Это давление называется давлением насыщенных паров, и оно является уникальной характеристикой любой жидкости, которая возрастает с увеличением температуры. Когда давление насыщенного пара жидкости достигает давления окружающей среды, жидкость начинает испаряться или кипеть. Температура, при которой происходит это испарение, будет понижаться по мере того, как понижается давление окружающей среды.

При испарении жидкость значительно увеличивается в объеме. Один кубический метр воды при комнатной температуре превращается в 1700 кубических метра пара (испарений) при той же самой температуре.

Из вышеизложенного видно, что если мы хотим эффективно перекачивать жидкость, нужно сохранять ее в жидком состоянии. Таким образом, NPSH определяется как величина действительной высоты всасывания насоса, при которой не возникнет испарения перекачиваемой жидкости в точке минимально возможного давления жидкости в насосе.

Требуемое значение NPSH (NPSHR) – Зависит от конструкции насоса. Когда жидкость проходит через всасывающий патрубок насоса и попадает на направляющий аппарат рабочего колеса, скорость жидкости увеличивается, а давление падает. Также возникают потери давления из-за турбулентности и неровности потока жидкости, т.к. жидкость бьет по колесу.


Центробежная сила лопаток рабочего колеса также увеличивает скорость и уменьшает давление жидкости. NPSHR – необходимый подпор на всасывающем патрубке насоса, чтобы компенсировать все потери давления в насосе и удержать жидкость выше уровня давления насыщенных паров, и ограничить потери напора, возникающие в результате кавитации на уровне 3%. Трехпроцентный запас на падение напора – общепринятый критерий NPSHR , принятый для облегчения расчета. Большинство насосов с низкой всасывающей способностью могут работать с низким или минимальным запасом по NPSHR, что серьезно не сказывается на сроке их эксплуатации. NPSHR зависит от скорости и производительности насосов. Обычно производители насосов предоставляют информацию о характеристике NPSHR.

Допустимый NPSH (NPSHA) – является характеристикой системы, в которой работает насос. Это разница между атмосферным давлением, высоты всасывания насоса и давления насыщенных паров. На рисунке изображены 4 типа систем, для каждой приведены формулы расчета NPSHA системы. Очень важно также учесть плотность жидкости и привести все величины к одной единице измерения.

Вычисление высоты столба жидкости над всасывающим патрубком насоса для типичных условий всасывания


Рис. 4 Вычисление столба жидкости над всасывающим патрубком насоса для типичных условий всасывания

Pв  –  атмосферное давление, в метрах;
Vр  –  Давление насыщенных паров жидкости при максимальной рабочей температуре жидкости;
P – Давление на поверхности жидкости в закрытой емкости, в метрах;
Ls  – Максимальная высота всасывания, в метрах;
Lн  – Максимальная высота подпора, в метрах;
Hf –  Потери на трение во всасывающем трубопроводе при требуемой производительности насоса, в метрах.
В реальной системе NPSHA определяется с помощью показаний манометра, установленного на стороне всасывания насоса. Применяется следующая формула:
Производительность насоса формула

Где Gr –  Показания манометра на всасывании насоса, выраженные в метрах, взятые с плюсом (+) , если давление выше атмосферного и с минусом (-), если ниже, с поправкой на осевую линию насоса;
hv = Динамический напор во всасывающем трубопроводе, выраженный в метрах.

Кавитация – это термин, применяющийся для описания явления, возникающего в насосе при недостаточном NPSHA. Давление жидкости при этом ниже значения давления насыщенных паров, и мельчайшие пузырьки пара жидкости, двигаются вдоль лопаток рабочего колеса, в области высокого давления пузырьки быстро разрушаются.


Разрушение или «взрыв» настолько быстрое, что на слух это может казаться рокотом, как будто в насос насыпали гравий. В насосах с высокой всасывающей способностью взрывы пузырьков настолько сильные, что лопатки рабочего колеса разрушаются всего в течение нескольких минут. Это воздействие может увеличиваться и при некоторых условиях (очень высокая всасывающая способность) может привести к серьезной эрозии рабочего колеса.

Возникшую в насосе кавитацию очень легко распознать по характерному шуму. Кроме повреждений рабочего колеса кавитация может привести к снижению производительности насоса из-за происходящего в насосе испарения жидкости. При кавитации может снизиться напор насоса и /или стать неустойчивым, также непостоянным может стать и энергопотребление насоса. Вибрации и механические повреждения такие как, например, повреждение подшипников, также могут стать результатом работы насоса с высокой или очень высокой всасывающей способностью при кавитации.

Чтобы предотвратить нежелательный эффект кавитации для стандартных насосов с низкой всасывающей способностью, необходимо обеспечить, чтобы NPSHA системы был выше, чем NPSHR насоса. Насосы с высокой всасывающей способностью требуют запаса для NPSHR. Стандарт Гидравлического Института (ANSI/HI 9.6.1) предлагает увеличивать NPSHR в 1,2 – 2,5 раза для насосов с высокой и очень высокой всасывающей способностью, при работе в допустимом диапазоне рабочих характеристик. идет загрузка изображения

www.fluidbusiness.ru

Гидравлическая мощность и КПД центробежных насосов


Гидравлическая мощность насоса

PГ = ρ x g x Q x H [Вт]

ρ – плотность жидкости [кг/м3]
g – ускорение свободного падения [м/сек2]
Q – расход [м3/сек]
H – напор [м]

Для насосов, у которых всасывающий и напорный патрубки имеют одинаковый диаметр и находятся на одном уровне, напор можно рассчитать по упрощённой формуле:

H = (p2 – p1) / (ρ x g) [м]

p2 – давление на напорном патрубке [Па]
p1 – давление на всасывающем патрубке [Па]

Таким образом, гидравлическая мощность насоса пропорциональна перепаду давления и расходу:

PГ = (p2 – p1) x Q [Вт]

Если диаметр напорного патрубка меньше диаметра всасывающего патрубка, то для расчёта гидравлической мощности насоса напор необходимо увеличить на величину:


Рис. Увеличение напора за счёт разницы диаметров напорного и всасывающего патрубков

v2 – скорость жидкости в напорном патрубке [м/с]
v1 – скорость жидкости во всасывающем патрубке [м/с]
Q – расход [м3/с]
g – ускорение свободного падения [м/с2]
d2 – внутренний диаметр напорного патрубка [м]
d1 – внутренний диаметр всасывающего патрубка [м]

Если напорный и всасывающий патрубок расположены не на одной линии, то напор нужно ещё увеличить на разницу высот между двумя патрубками:

ΔH = h2 – h1

Потребляемая мощность насоса

Если вал насоса жёстко соединён с валом двигателя, то потребляемая мощность насоса равна механической мощности на валу электродвигателя.

PП = PВ

КПД насоса

КПД насоса равен отношению гидравлической мощности к потребляемой:

ηН = PГ / PП

Насос выбирается так, чтобы в рабочей точке его КПД был максимальным (см. рис.).


Рис. КПД насоса

Механическая мощность на валу электродвигателя:

PВ = ηД x PЭ

ηД – КПД электродвигателя,
PЭ – электрическая мощность, потребляемая двигателем из сети.

Электрическая мощность, потребляемая 3-х фазным электродвигателем из сети

PЭ = √3 х U х I х cos φ

U – напряжение сети [В]
I – ток, потребляемый электродвигателем [А]
cos φ – косинус угла между векторами тока и напряжения 

Выводы: как вычислить КПД насоса

  • С помощью специального прибора с токовыми клещами измеряем электрическую мощность PЭ, потребляемую электродвигателем из сети. Если электродвигатель работает от преобразователя частоты, то ПЧ сам измеряет мощность и сохраняет это значение в одном из своих параметров
  • С шильдика электродвигателя списываем его КПД и вычисляем мощность на валу PВ. На шильдике, конечно, указана и номинальная мощность электродвигателя, но в данном случае нас интересует мощность электродвигателя в рабочей точке насоса

  • Если между двигателем и насосом существует жёсткая механическая связь (а не ременная передача, редуктор или муфта с проскальзыванием), то считаем потребляемую насосом мощность РП равной мощности на валу электродвигателя РВ
  • Измеряем перепад давления на напорном и всасывающем патрубках и вычисляем напор (если необходимо, то корректируем его с учётом разницы диаметров и высот напорного и всасывающего патрубков)
  • Измеряем расход и рассчитываем гидравлическую мощность насоса РГ
  • Вычисляем КПД насоса.

Если КПД насоса оказался ниже, чем вы ожидали, то стоит задуматься о профилактике, ремонте или замене насоса.


Регулирование скорости вращения рабочего колеса центробежного насоса

Центробежные насосы: кавитация, NPSH, высота всасывания

www.maxplant.ru

Вступление

В прошлой статье серии «Водоснабжение дома своими руками», мы выбирали скважинный насос исходя из общих технических характеристик насосов имеющихся в продаже. Охватить все продающиеся насосы невозможно, но представление, какие бывают насосы, мы получили.

В этой статье, пойдем другим путем. Произведем расчет технических характеристик скважинного насоса исходя их своих потребностей в воде, а также имеющейся скважины.

Еще раз о скважине

Скважина, несомненно, лучший вариант индивидуального водоснабжения дома (читать о выборе источника). В одной из статей сайта я писал, как самостоятельно сделать скважину (тут). Здесь дополню данные о размерах скважин, они имеют непосредственное отношение к расчету скважинного насоса.

Так как скважину бурят бурами основа которых труба, то и размеры стандартных скважин разумно обозначать, как и размеры труб, в дюймах. Можно выделить три стандартных (по практике бурения) размера скважин индивидуального водоснабжения:

  • Скважина в три дюйма (75 мм);
  • Скважина в четыре дюйма (100 мм);
  • Скважина более 4-х дюймов, чаще 110 мм.
  • На сегодня бурят скважины до 150 мм. 

В расчете скважинного насоса диаметр скважины нужно привязать к диаметру насоса, ведь по определению, насос нужно опускать в скважину.

Зачем нужен расчет скважинного насоса

Мы прекрасно понимаем, что монтаж насоса в скважину делается не на один сезон. Поэтому, выбрать скважинный насос нужно так, чтобы он, во-первых, смог обеспечить потребности в воде с некоторым запасом, а во-вторых, нужно подобрать так, чтобы насос смог работать в этой скважине, которая тоже имеет свои характеристики.

Расчёт скважинного насоса по шагам

Расчет 1. Диаметр насоса

Скважинный насос это элемент общей системы водоснабжения. Все элементы системы взаимосвязаны и их характеристики должны быть привязаны друг к другу. Согласитесь, нельзя пробурить скважину на воду диаметром 75 мм и купить для неё насос с диаметром корпуса 4 дюйма.

Результат 1. По размеру скважины получаем первый расчетный параметр насоса: его диаметр. Здесь важно помнить, что между корпусом насоса и стенками скважины нужен зазор 10-30 мм.

Расчет 2. Производительность скважинного насоса

Производительностью скважинного насоса называют его способность перекачивать определенное количество литров воды в час или литры в секунду или кубические метры воды в час. Производительность насоса считаем из  своих потребностей.

Расчет производительности насоса делается на максимальное нереальное потребление воды. То есть, принимается, что все сантехнические приборы дома будут открыты в течение часа. Полученную сумму кубометров в час умножим на поправочный коэффициент.

Для расчета рекомендую воспользоваться двумя расчетными таблицами. Первая таблица позволит посчитать нереальный (расчетный) расход воды для каждого прибора, который есть в доме и на участке. Считаем в литрах/час.

tabliza 1 rashoda vody

tabliza 2 rashoda vody

Во второй таблице в серых графах ищем рассчитанный нереальный расход и смотрим в строке реальный расход воды нужный для выбора насоса.

В таблице указаны данные в литрах в секунду. Эту единицу измерения нужно перевести в кубические метры в час. Для это полученное значение (л/сек) нужно умножить на 3,6 и получить (куб. метр/час).   

   

Пример расчета производительности №1. Приблизительный.

Можно не использовать таблицы и пойти другим путем. Взять за единицу потребления воды каждым членом семьи с запасом на полив летом. 1 человек потребляет в час 0,95-1,0 кубометра воды в час.

По этому варианту расчета для полноценного обеспечения водой семьи из трех человек, нужен насос производительностью не менее 3 кубометров в час. 

Пример расчета производительности №2 (по таблицам)

  • Выписываем все приборы с расходом воды;
  • Вписываем их расход по таблице №1;
  • По таблице №2, находим рассчитанный расход воды и смотрим в этой строке реальный расход воды, который и будет соответствовать производительности необходимого насоса. 

Расчет3. Учет дебета скважины

Дебет скважины указан в паспорте скважины. По значению дебета определяем глубину установки насоса, она не должна быть выше динамического уровня скважины.  

Расчет 4. Напор насоса

Напор насоса это способность насоса поднять воду с определенной глубины и догнать воду до точки распределения.

Академическое определение напора. Напор это прирост энергии потока воды за время её прохождения чрез рабочие полости насоса, выраженный в метрах столба жидкости.

Формула расчета напора (Q) применимая к скважинным насосом не сложная:

Qитог=Hвысот+Pпотерь+Hнапор

  • Qитог: рассчитываемый необходимый напор насоса.
  • Hвысот: перепад высоты от точки подъема воды (установки насоса) до верхней точки водоснабжения.
  • Pпотерь: Коэффициент потерь, учитывает сопротивление которая преодолевает вода при прохождении по трубам. Зависит от материала труб и берется из таблицы3 и 4. 

poteri napora stal

poteri napora plastik

Пример расчета напора насоса

Дано:

  • Динамический уровень скважины 50 метров;
  • Насос ставим на глубину 48 метров, чтобы его укрывала вода в самом нижнем уровне;
  • Дебет скважины 3 куб. метра;
  • Расстояние от скважины до дома 65 метров, труба пластик 32 мм;
  • Труба по дому 15 метров, труба пластик 25 мм;
  • На трассе: 3 тройника, 2 обратных клапана, 1 запорный кран, два угла 90°.   

Прежде всего, считаем потери:

В таблице потерь для пластиковых труб ищем строку с расходом 3 литра/час. Значения в таблице указаны для прямого трубопровода, длиной 100 метров. У нас это расстояние 65 и 15 метров.

Коэффициенты потерь: для трубы 32 мм: К=1,54, для трубы 25 мм:К=2,54. Потери для арматуры: тройник и обратный клапан:4, вентиль и угол 90°:1.

Считаем потери:

Pпотерь= (1,54×65÷100)+(2,54×25÷100)+((3+2)×4)+((1+1)×1)=23,636 (24 метра).

Считаем необходимый напор скважинного насоса:

Q=(48+7)высота+24(потери)+15(напор излив)=94 метра.

Итог: Нам нужен скважинный насос с производительностью 3 куб метра воды в час и напором по паспорту не менее 94 метров.   

Расчет 5. Электрическая мощность насоса

Электрическая мощность насоса нужна для расчета кабеля электропитания и расчета защитных электрических устройств. Рассчитывать её не нужно. Достаточно подобрать нужный скважинный насос по напору и производительности и посмотреть в его технических характеристиках потребляемую мощность.         

©Elesant.ru

elesant.ru

Важные расчёты

Для того чтобы сделать правильный подбор насосного агрегата для системы частного водоснабжения, необходимо провести верные расчёты производительной мощности и напора агрегата.

Производительная мощность (производительность) позволяет насосу качать воду с требуемым для расхода в доме объемом. Стоит знать, что согласно СНИП, средний расход воды в сутки на одного проживающего в доме составляет 200 литров. При этом всегда нужно этот показатель умножать на количество человек,

Но необходимо принять во внимание при расчетах производительной мощности помпы и момент, при котором все водозаборные точки будут включены одновременно. К полученным данным стоит прибавлять и возможное потребление воды для полива огорода. Согласно СНИП этот показатель равен 3-6 литров на 1м3 участка.

Для справки: средний объем расхода воды на каждую водозаборную точку выглядит так:

  • Душ или ванна — около 10 л/мин;
  • Туалет — 5-6 л/мин;
  • Кран в кухонной мойке — 6 л/мин.

При условии одновременного использования всех перечисленных сантехнических точек потребление воды составит в среднем 20-22 л/мин.

Расчёт производительной мощности

Для того чтобы произвести расчёт производительной мощности скважинного центробежного или вибрационного насоса и осуществить правильный подбор оборудования для перекачки воды, необходимо использовать два показателя:

Количество человек, проживающих в доме;

  • Средний расход воды на человека в час, что составляет примерно 0,5 м3.
  • Плюс к расчётам стоит подключить возможный расход воды для полива.

В результате будем иметь такие показатели:

  • Для семьи из 3-4 человек производительная мощность скважинного насоса должна составлять 2-3 м3/час (при условии необходимости орошения огорода). Если же будет происходить забор воды из системы водоснабжения для полива, то производительная мощность скважинного насоса должна составлять 3-5 м3/час для семьи из того же количества человек.

Что касается напора

Этот немаловажный фактор, от которого зависит возможность скважинного насоса поднимать воду на заданную высоту от точки забора и транспортировать её без перебоев по всей длине трубопровода.

Важно: если технический показатель напора воды у конкретного центробежного или вибрационного скважинного насоса не будет соответствовать параметрам вашей системы водоснабжения, то, скорее всего, вас огорчит качество подачи воды в дом к каждой из водозаборных сантехнических точек.

Для того чтобы провести расчёт напора для центробежного или вибрационного скважинного насоса, необходимо выяснить глубину расположения насоса (глубину водозабора). Она определяется от поверхности земли (горизонтального трубопровода) до точки погружения/расположения агрегата. Кроме того, необходимо принимать во внимание и длину всего трубопровода от начальной горизонтальной точки до распределителя системы водоснабжения.

Важно: расчёт длины горизонтального трубопровода стоит производить с учётом того, что на каждые 10 метров протяженности труб будет происходить потеря 1 метра напора оборудования. К тому же всегда приходится брать в расчёт и диаметр водозаборной трубы. Чем он меньше, тем больше статическое сопротивление в системе водоснабжения, а значит, и снижается напор воды коммуникации.

Расчёт напора

Произвести расчёт напора для скважинного насоса центробежного или вибрационного типа вовсе не сложно. Для этого используют такую формулу:

H = Hgeo + (0,2 x L) + 10 [м],

в которой значения таковы:

  • Н — итоговый напор для конкретного скважинного центробежного или вибрационного насоса;
  • Hgeo м— высота трубы от места установки скважинного насоса до самой высокой вертикальной точки водозабора;
  • 0,2 — коэффициент сопротивления трубопровода по всей его протяженности;
  • L — горизонтальная длина трубы системы водоснабжения;
  • 10-15 приблизительный показатель, необходимый для получения стабильного напора в системе, который требуется добавить к результату при расчёте.

Рассмотрим подсчёт напора для погружного скважинного насоса на примере

Имеем систему водоснабжения с колодцем, глубина зеркала воды в котором 10 метров. При этом сам колодец находится в 10 метрах от дома. Самая высокая водозаборная точка располагается над уровнем земли на 4 метра. В доме живут 4 человека. Кроме того предполагается полив участка и мойка авто.

У нас получается, что вертикальный участок трубопровода от точки забора воды насосом до самой высокой точки потребления воды составляет 14 метров. То есть Hgeo = 10+4 = 14 метров.

Здесь же берем в учёт потери в размере 20% от общей длины трубопровода, которая равна 26 метров (10 метров + 16 метров). Этот показатель будет равен приблизительно 5 метрам.

Прибавляем 10 метров на поправку.

Имеем такой результат:

Н = 14+5+10 = 29 метров.

Таким образом получаем напор для скважинного насоса 29 метров.

Производительность насоса для всех перечисленных нужд должна составлять 3-4 м3/час.

Важно: для качественной транспортировки воды по системе водоснабжения внутренняя поверхность водоприёмных труб должна быть гладкой.

vodakanazer.ru

Напор и мощность насоса

Полезная мощность насоса – мощность, сообщаемая устройством подаваемой жидкой среде. Но прежде чем перейти к понятию мощности необходимо рассмотреть ещё два параметра: подача и напор.

Подача насоса представляет собой количество жидкости, подаваемой в единицу времени и обозначается символом Q.

Напором насоса называется приращение механической энергии, получаемой каждым килограммом жидкости проходящей через насосный агрегат, т.е. разность удельных энергий жидкости при выходе из насоса и входе в него. Другими словами напор устройства показывает, на какую высоту в метрах насос поднимет столб воды.

И, наконец, третьим, интересующим нас параметром является мощность насоса N. Мощность обычно измеряется в киловаттах (кВт).

Полезная мощность насоса Nп – это полное приращение энергии, получаемое всем потоком в единицу времени. Чтобы рассчитать мощность насоса используется формула:

Nп = yQH/102

где y – удельный вес жидкости;
Q – подача насоса;
Н – напор насоса.

Потребляемая мощность насоса N – мощность потребляемая устройством – мощность подводимая на вал устройства от двигателя.

В зависимости от источника информации она ещё может называться:

Мощность на валу насоса Nв – это мощность которую затрачивает центробежный агрегат на то, чтобы покрыть потери энергии

Nв =Nп / η = yQH / η

где η – коэффициент полезного действия (КПД) насоса

КПД и потери мощности насоса

Вследствие потерь внутри машины только часть механической энергии, полученной им от двигателя, преобразуется в энергию потока жидкости. Степень использования энергии двигателя измеряется значением полного КПД насоса центробежного типа.

КПД – коэффициент полезного действия насоса – является одним из его основных качественных показателей и характеризует собой величину потерь энергии.

η = Nп / N

η = ηо * ηг * ηм

ηо – объемный КПД – характеризует объемные потери

ηг – гидравлический КПД – характеризует гидравлические потери

ηм – механический КПД – характеризует механические потери

Потери в насосе = 1 – КПД

Анализируя причины возникновения потерь в насосе, можно найти пути к повышению его КПД.

Все виды потерь делятся на три категории: гидравлические, объемные и механические.

Гидравлические потери – часть энергии, получаемой потоком от колеса насоса, затрачивается на преодоление гидравлических сопротивлений при движении потока внутри насосного агрегата, ведут к снижению высоты напора.

Объемные потери – паразитные протечки (утечки) внутри насосной части – в уплотнениях лопастного колеса и в системе уравновешивания осевого давления ведут к уменьшению подачи.

Механические потери – часть энергии, получаемой насосом от двигателя, расходуется на преодоление механического трения внутри агрегата. В машине имеют место: трение колеса и других деталей ротора о жидкость, трение в сальниках и трение в подшипниках. Механические потери ведут к падению мощности всего устройства.

Таким образом, полный КПД насоса определяется гидродинамическим совершенствованием проточной части, качеством системы внутренних уплотнений и величиной потерь на механическое трение.

Расчет мощности насоса

Мощность насоса фактически – это мощность сообщаемая ему электродвигателем. Циркуляционные аппараты, установленные в бытовых системах имеют довольно небольшую мощность и как следствие низкое энергопотребление. Фактически такие машины не поднимают воду на высоту, а только способствуют её перемещению далее по трубопроводу преодолевая местные сопротивления такие как изгибы, краны и отводы.

Кроме циркуляционных агрегатов в систему трубопровода могут быть смонтированы насосы для повышения давления.

При использовании в трубопроводе циркуляционного насоса значительно увеличивается эффективность системы отопления дома. К тому же появляется возможность сократить диаметр трубопровода и подсоединить котел с повышенными параметрами теплоносителя.

Для обеспечения бесперебойной и эффективной работы системы отопления необходимо выполнить небольшой расчет.

Требуется определить необходимую мощность котла – эта величина будет базовой при расчете системы отопления.

Согласно СНиП 2.04.07 “Тепловые сети” для каждого дома существую свои нормы потребления тепла (для холодного времени года, т.е. минус 25 – 30 градусов цельсия).
Мощность циркуляционного насоса   для домов в 1-2 этажа требуется 173 – 177 Вт/квадратный метр
Мощность циркуляционного насоса  для домов в 3-4 этажа требуется 97 – 101 Вт/квадратный метр
Мощность циркуляционного насоса  если 5 этажей и более нужно 81 – 87 Вт/квадратный метр.

Рассчитайте площадь отапливаемых помещений Вашего дома и умножьте на соответствующее этажности Вашего дома значение.

Оптимальный расход воды, рассчитывается по простой формуле:
Q=P,
где Q — расход теплоносителя через котел, л/мин;
Р — мощность котла, кВт.

Например, для котла мощностью 20 кВт расход воды составляет примерно 20 л/мин.

мощность насоса

Для определения расхода теплоносителя на конкретном участке трассы, используем эту же формулу. Например, у Вас установлен радиатор мощностью 4 кВт, значит расход теплоносителя составит 4 литра в минуту.

Далее требуется определить мощность циркуляционного насоса. Чтобы определить мощность циркуляционного устройства воспользуемся правилом, на 10 метров длины трассы требуется 0,6 метра напора. Например при длине трассы 80 метров требуется агрегат с напором не менее 4,8 метра.

Для того, чтобы узнать какая мощность насоса отопления потребуется Вам – воспользуйтесь калькулятором, размещенным в статье по подбору мощность насоса для отопления насоса.

Насос для отопления с требуемыми параметрами Вы можете посмотреть в нашем каталоге.

Следует отметить, что представленный в статье расчет носит справочный характер. Для того чтобы определить мощность центробежного насоса для Вашего дома воспользуйтесь советами наших специалистов или рекомендациями инженеров-теплотехников.

Для того, чтобы обеспечить постоянное функционирование системы отопления желательно установить два насоса. Один агрегат будет функционировать постоянной, второй (установленный на байпасе) – находится в резерве. При поломке или какой-то неисправности рабочего оборудования, Вы всегда сможете отключить его и демонтировать из контура, а в работу вступить резервный механизм. В случае когда монтаж байпасной ветки трубопровода затруднен, возможен другой вариант: один агрегат установлен в системе, а другой лежит в запасе на случай выхода из строя или поломки первого.

www.nektonnasos.ru

Производительность погружного насоса

Для расчета производительности насоса для скважины необходимо знать величину расхода. Этот показатель складывается из расхода жидкости в нескольких сантехнических приборах, используемых одновременно. Для удобства вычислений данные сведены в таблицу:

Производительность насоса формула

Расчет производится с поправочным коэффициентом 0,6-0,8, так как вероятность одновременного включения всех потребителей не превышает 60-80% соответственно. В нормативах СНиП присутствуют таблицы, облегчающие расчеты в нестандартных ситуациях (например, проживание семьи из двух человек в двухэтажном особняке с санузлами на каждом этаже). В них заложены значения, основанные на реальном эксплуатационном опыте. Например, если при сложении суммарного расхода по имеющимся сантехническим приборам получается 1 л/с, то в таблице этому значению соответствует реальное потребление 0,55 л/с. Для расчетного расхода 5 л/с, 10 л/с, 15 л/с практические значения составят 1,27 л/с, 1,78 л/с, 2,17 л/с соответственно.

Таким образом, добавляется поправочный коэффициент 3,6. В любом случае дебит насоса должен превышать потребность семьи в воде.

Пример для погружного насоса в коттедже

Расчет для частного коттеджа производится с учетом имеющихся сантехнических приборов:

Производительность насоса формула

  • унитаз – 0,1;
  • умывальник – 0,09;
  • кухонная мойка – 0,15;
  • водонагреватель – 0,1;
  • душ + смеситель – 0,09.

Общий расход в доме получится равным 0,53 л ежесекундно, затем к нему добавляется уличный поливочный кран (0,3 л/с), что составит 0,83 л/с. Данному значению в таблице соответствует реальная характеристика 0,48 л/с, которая после умножения на поправочный коэффициент дает 1,73 куба ежесекундно. Если в паспорте насоса указана производительность в л/ч, то расчеты на последнем этапе изменяются – значение из таблицы достаточно умножить на 3 600 секунд.

В конкретном примере расчета насоса производительность оборудования должна превышать показатель 1,73 куба ежечасно. Сравнив характеристики моделей ведущих производителей, получаем, что для данных эксплуатационных условий подойдут:

Производительность насоса формула

Рисунок 2. Модификации насоса

  • модель 45 Pedrollo 4SR – 2 м 3 /ч;
  • насос 80 Aquatica 96 – 2 м 3 /ч;
  • модификация 25Sprut 90QJD – 2 м 3 /ч;
  • варианты 63 Водолей НВП, 32 Водолей НВП – 1,8 м 3 /ч.

На этом выбор насоса не заканчивается, так как следующий параметр не менее важен для увеличения эксплуатационного ресурса. Рис. 2.

Напор погружного насоса

Скважинный насос находится внутри перекачиваемой жидкости. Поэтому для этих условий не учитывается разница высот между оборудованием, зеркалом воды. При выборе поверхностных модификаций (обычно, насосная станция) этот параметр присутствует в вычислениях в обязательном порядке.

Расчет насоса по напору производится сложением трех величин:

Производительность насоса формула

  • изливный напор – принимается 15-20 м;
  • потери в трубопроводе – данные сведены в таблицы;
  • перепад высот между сантехническими приборами, зеркалом воды.

Таблица потерь давления учитывает трение в трубах из различного материала, фитингах, запорной арматуре, клапанах. Учитывается скорость потока, на которую в большей степени влияет внутреннее сечение труб. Поэтому для вычислений потребуется схема внутренней разводки, наружного водопровода.

Пример расчета напора погружного насоса

В заданных условиях скважинный насос используется в следующей системе водообеспечения:

  • скважина – 35 м от поверхности;
  • уровни – динамический 15 м, статический 10 м;
  • дебит – 4 м 3 ежечасно;
  • удаление от коттеджа – 30 м;
  • высшая точка сантехнического прибора – 5 м (мансарда).

Производительность насоса формула

Схема установки скважинного насоса и графический расчет напора.

Согласно нормативам СНиП, СанПиН, скважину следует удалить от здания на 50 – 20 м, от септика автономной системы водоотведения на 15 м. на первом этапе определяется перепад высот:

Н 1 = отметка сантехприбора + динамический уровень = 5 + 15 = 20 м.

Для подсчета потерь напора необходимо рассмотреть схему водопровода:

  • от скважин до дома обычно используется 32 мм труба из полипропилена;
  • внутренняя разводка выполняется 25 мм трубой из этого же материала;
  • в схеме присутствует один вентиль, два тройника (полив + бытовая линия), три обратных клапана, один отвод 90 градусов;
  • согласно предыдущему расчету, производительность равна 1,73 куба, значение округляется до табличного 1,8 м 3 /ч;
  • потери составят 30 м, напор свободного излива принимается равным 20 м, перепад высот определен выше, составляет 20 м, таким образом, напор оборудования должен превышать 70 м.

Характеристики каждого насоса для скважины, рассмотренного на предыдущем этапе, удовлетворяют заданным условиям эксплуатации. Скважина оборудуется любым из них в соответствии с имеющимся бюджетом. Вычисления не будут полными без расчета гидроаккумулятора, необходимого для обеспечения запаса воды, увеличения ресурса насосного оборудования, сглаживания гидроударов внутри системы водообеспечения.

Мембранный бак для водоснабжения

Для бытовой скважины применяются гидроаккумуляторы различной конструкции, материалов, объемов. Для вычислений потребуются следующие данные:

Производительность насоса формула

Насосы для скважины могут быть погружные и поверхностные.

  • номинальная производительность оборудования – 60% от максимальной подачи насоса;
  • разница давлений – Р 1 – Р 2 (давление включения на 10% ниже максимального, указанного в паспорте, давление отключения на 10% выше минимального);
  • ежечасное число включений – обычно заявлено производителями 100;
  • давление включения;
  • коэффициент – 0,9 единиц.

Для получения объема мембранного бака необходимо:

  • сложить давление включения, единицу, разницу давлений;
  • умножить полученное число на 1000, номинальный расход;
  • разделить результат на 4, максимальное число ежечасных включений, разницу давлений, коэффициент.

Производители выпускают накопительные баки стандартных объемов, после вычисления необходимого объема гидроаккумулятора останется выбрать ближайший размер с 15% запасом. Колодец обычно используется в зимних/летних схемах водопровода жилищ сезонного, периодического проживания. При каждом отъезде хозяев система консервируется, вода сливается из контуров через спускную магистраль. Объема скважины для этого недостаточно, дополнительный заглубленный в землю резервуар увеличивает эксплуатационные расходы. Поэтому используется бюджетный вариант в виде колодца.

Поверхностные насосы являются самовсасывающими конструкциями, используются при небольших глубинах 8-12 м. Поднять воду из артезианской скважины 100-200 м можно лишь профессиональным оборудованием, которое для бюджета семьи слишком дорого. В них используются эжекторы, скважины удовлетворяют потребности целых коттеджных поселков.

Производительность поверхностного самовсасывающего оборудования вычисляется аналогично предыдущему случаю. При расчете напора учитывается взаимное расположение элементов водопровода:

  • насос может располагаться в цоколе, подсобном помещении нижнего этажа, в техподполье, кессоне на устье скважины;
  • гидроаккумулятор монтируют на любом уровне.

Вычисления аналогичны расчетам для погружных насосов, однако добавляется вычитание из напора Н б. Это значение потерь в зависимости от высоты бака – разница высот гидроаккумулятора, зеркала водозабора. Если взять вариант расчета для двухэтажного коттеджа со следующими характеристиками:

  • удаление источника от здания 20 м;
  • подъем воды с глубины 6 м трубой насоса;
  • зеркало водозабора на глубине 4 м;
  • общая глубина скважины 10 м;
  • расположение насоса в кессоне;
  • высота санузла 5 м.

Перепад высот составит 5 м. При схеме с двумя 90 градусными отводами, парой вентилей, тремя тройниками, тремя обратными клапанами, аналогичным сечением труб (25 мм внутренняя, 32 мм наружная) от насоса потребуется производительность 3 куба ежеминутно. Потери напора составят 37 м, напор излива 20 м, высота источника 6 м. Таким образом, для автономной системы водообеспечения потребуется насос с напором больше 70 м, что является редкостью у моделей большинства производителей. В данном случае рациональным решением будет использование погружной модификации после аналогичного расчета.

Для организации водоснабжения частного дома перед установкой насосного оборудования, в первую очередь необходимо рассчитать его параметры. При этом необходимо учитывать технические характеристики источника, расстояние до потребителя и объем водозабора. Домовладельцу, самостоятельно монтирующему линию водоснабжения в дом, нет необходимости производить расчет насоса для скважины по сложным формулам – для этого предназначены размещенные в сети онлайн-калькуляторы.

Рис. 1 Онлайн калькулятор для определения объема подачи – внешний вид

Их существенным недостатком является приблизительность полученных результатов – многие важные параметры, влияющие на окончательный результат, не фигурируют во вводных данных. Почти все онлайн-калькуляторы рассчитывают только один из параметров: высоту подъема, производительность или необходимое давление в магистрали, остальные данные приходится определять другими способами. Еще одной проблемой является выбор точного и достоверного калькулятора из множества вариантов, выложенных в сети. Поэтому наиболее правильным решением вопроса, как рассчитать насос для скважины, остается вычисление его параметров по формулам с помощью таблиц потерь и использование калькуляторов в качестве вспомогательного средства для проверки правильности расчетов.

Производительность насоса формула

Рис. 2 Онлайн – калькулятор для расчета насоса для водоснабжения

Что необходимо учитывать при расчете водяного электронасоса

Необходимость точного определения параметров насосного оборудования очень важна при обеспечении постоянного водоснабжения частного дома. Если производительность рассчитана неточно, водозаборные устройства будет выкачивать недостаточное количество воды – это потребует его замены и соответственно дополнительных расходов. К еще большим финансовым потерям может привести использование насосного оборудования с большим запасом по параметрам: помимо неоправданных расходов при покупке, в процессе эксплуатации электронасос будет работать с низкой эффективностью, потребляя неоправданно большое количество электроэнергии.

Производительность насоса формула

Рис. 3 Схема подключения погружного скважинного насоса

При расчете водяного электронасоса для системы водоснабжения необходимо учитывать следующие параметры водозаборной емкости и водопроводной магистрали.

Глубина водозаборного источника

Знать глубину скважинного или колодезного дна нужно при определении дебита источника, это важно с практической точки зрения – найденное расстояние от поверхности до дна позволит оптимально подобрать помпу с необходимой глубиной погружения и высотой подъема в данном диапазоне.

Производительность насоса формула

Рис. 4 Статический и динамический уровни

Статический уровень

Расстояние от водного зеркала источника до поверхности играет роль в установлении высоты подъема и глубины погружения помпы. Статический уровень определяется при отсутствии водозабора и нахождении источника в спокойном состоянии не менее часа или для более высокой точности – суток. Показатель имеет сезонную зависимость и падает в весенний паводок, поэтому следует определять его наиболее высокий уровень в сухую летнюю погоду.

Динамический уровень

Расстояние от водного зеркала до поверхности при работающем электронасосе – динамический уровень, он существенно отличается от статического в неглубоких низкодебитных абиссинских или песочных скважинах с малым напором. В артезианских источниках, где давление воды существенно выше и уравновешивается высоким столбом, динамический уровень при бытовых объемах забора обычно равен статическому.

Знание динамического уровня особенно важно при подборе глубины погружения электронасоса – в отключенном состоянии он будет испытывать нагрузку от столба жидкости высотой от глубины погружения под зеркало динамического уровня (1 – 2 м.) до поверхности статического уровня.

Объем потребления

Расчет производительности насоса зависит от количества проживающих людей и подключенных точек и рассчитывается по калькуляторам водозабора бытовой техникой и сантехническими приборами. Следует учитывать, что потребление не должно превышать дебит источника.

Производительность насоса формула

Рис.5 Таблица расхода воды бытовой сантехникой

Диаметр скважинных труб или колодца

Данный показатель в основном влияет на выбор модели помпы. В узких неглубоких абиссинских скважинах невозможно установить глубинный погружной электронасос, жидкость поднимают центробежными поверхностными агрегатами с опусканием в источник всасывающей водозаборной трубы. Стандартные погружные скважинные центробежные электронасосы имеют диаметр около 4-х дюймов и рассчитаны на погружение в скважинные отверстия диаметром не менее 100 мм., для некоторых высокопроизводительных погружных моделей с диаметром 6 дюймов требуются наличие скважинных труб шириной не менее 150 мм. Колодезные кольца должны иметь достаточную ширину для установки в них колодезного электронасоса с поверхностным поплавковым выключателем, располагающимся на водном зеркале до 300 мм. от центральной оси помпы.

Качество воды

Жидкость, которую электронасос поднимает на поверхность, имеет разное качество в зависимости от вида источника водозабора. У бюджетных абиссинских видов глубиной не более 8 м., вследствие малого веса и конструктивных особенностей, всасывающие отверстия располагаются в толще водоносного слоя. Скважина дает чистую воду, для ее забора можно использовать центробежные или вихревые виды электронасосов. Более глубокие песчаные скважины в силу значительной массы располагаются на песчаном или глиняном дне водоносного пласта. В зависимости от структуры дна, напора, расстояния входного отверстия напорной трубы, поднимаемая жидкость в песчаных скважинах имеет различную степень чистоты. Для забора из источников чистой воды или с незначительным содержанием примесей, используют глубинные центробежные электронасосы, более замутненную жидкость можно поднимать устройствами винтового принципа действия. Вибрационные модели в силу вредного воздействия на стенки обсадных труб, малой производительности, небольшого времени непрерывного всасывания и низкой эффективности не используются для обеспечения постоянного водоснабжения частного дома. При расчете мощности насоса калькулятор должен учитывать гидравлические потери в водяных фильтрах.

Обсадные трубы артезианских скважин устанавливаются на прочное известковое дно, поднимаемая вода в этом случае самая чистая с очень высоким содержанием железа, для забора можно использовать вихревые или центробежные электронасосы.

Расстояние от дома до источника

При расчетах необходимого напора переводят вертикальные метры в горизонтальные, это соотношение зависит от диаметра и материала трубопровода, влияющих на его гидравлическое сопротивление.

Давление в водопроводе

Электронасос должен не только доставить воду потребителю, но обеспечить в системе необходимое давление. Этот показатель влияет на силу водной струи в кране, и обеспечивает работу автоматики, настроенной на определенный диапазон. В первую очередь это относится к реле давления и холостого хода, при малом давлении автоматика не будет отключать электронасос, его избыточное значение помимо бытовых неудобств может привести к быстрому выходу из строя узлов водопроводной системы.

Расчет основных параметров водопроводной системы

Производительность насоса формула

Рис. 6 Потери в водопроводной системе в зависимости от диаметра труб

При выборе и расчете электрического скважинного насоса для водопровода необходимо, с учетом приведенных выше данных, правильно подобрать его следующие параметры.

Вид электронасоса по принципу действия. Как указывалось выше, скважинный насос выбирается по принципу работы индивидуально для каждого вида водозаборной емкости.

Глубина погружения . Значение в паспортных данных помпы не должно быть ниже разницы между динамическим и статическим уровнем.

Объем подачи . Расчет производительности проводят с учетом количества проживающих в доме людей, потребляющей воду бытовой техники (стиральной и посудомоечной машин) и точек забора. Учитываются душевые и ванные, унитазы, биде, мойки и раковины.

Часто требуется ухаживать за растениями на участке, поэтому водоснабжение должно учитывать расходы на полив. Рассчитать мощность и объем подачи можно с помощью таблиц или произведя расчеты калькулятором, суммировав все показатели.

Совсем не обязательно подсчитывать все точки забора воды в доме, чтобы определить мощность насоса, можно по таблицам определить потребление по суточным нормам, средний показатель при этом лежит в пределах 200 л. на одного человека.

Производительность насоса формула

Рис. 7 Суточные нормы потребления

Высота подъема . Основной параметр помпы, который подлежит точному расчету. Указанный в паспортных данных напор должен выполнять следующие функции:

  • Подъем жидкости из водозаборной емкости на высоту до поверхности с расстояния 1 – 2 м. ниже динамического уровня.
  • Горизонтальную подачу потребителю. При расчетах принимают 1 м. вертикального столба равным 10 м. горизонтальных пластиковых труб диаметром 1 дюйм. При снижении диаметра труб подача существенно падает, трубы меньшего диаметра редко используются в водопроводной системе. Невыгодно использовать и стальные трубы, гидравлическое сопротивление которых больше пластиковых и подача уменьшена в 0,7 раза.
  • Рабочее давление. Насосу необходимо обеспечивать давление для работы системы, стандартные значения которого 1,4 – 2,8 бар. (1 бар. приблизительно равен 1 атм. или 10 м. вертикального водного столба).

Производительность насоса формула

Рис. 8 Таблица гидравлических потерь

Производительность насоса формула

H тр – искомое значение для глубинного насоса.

H гео – высота подъема и длина горизонтального участка в вертикальных метрах водного столба.

H потерь – сумма потерь в водопроводной системе, устанавливается по таблицам или расчетами. Данные потери связаны с трением жидкости о поверхность труб, а также падением скорости в коленах и тройниках.

H своб – напор на создание рабочего давления в системе. Данное значение необходимо брать в диапазоне 15 – 30 м.

Расчет производительности и высоты подъема является основной задачей при выборе насосного оборудования. Первый параметр можно установить по нормам потребления на одного человека, при расчете напора суммируют длину вертикального участка, протяженность горизонтальной линии и давление в системе, переведенные в метры водного столба. Расчет мощности в этом случае не понадобится, она будет зависеть от производительности погружного электронасоса и высоты подъема жидкости.

Для подбора центробежного насоса используют графическую зависимость напора от подачи, которая индивидуальна для каждой модели и приводится в каталогах производителей.

Методика подбора центробежного насоса зависит от возложенных на него задач. Чтобы подобрать повысительный насос — задаются подачей и с оси абсцисс проводят перпендикуляр на кривую характеристики насоса, полученная рабочая точка определит напор при заданной подаче.

Циркуляционный насос подбирают, накладывая на характеристику насоса, гидравлическую характеристику циркуляционного кольца, отображающую зависимость потерь напора от протекающего расхода. Рабочая точка будет находиться в точке пересечения характеристик насоса и циркуляционного кольца.

Если заданным параметрам соответствует несколько моделей, выбирают менее мощный насос работающий в режиме с большим КПД. Подбирая центробежный насос для сети с изменяющимся расходом воды, лучше отдать предпочтение модели с более пологой напорной характеристикой и широким диапазоном подачи.

Шумовые характеристики, часто становятся преобладающим параметром при подборе насосов для установки в жилых домах. В таких случаях рекомендуется выбрать насос с электродвигателем меньшей мощности и частотой вращения не более 1500 оборотов в минуту.

Расчёт центробежного насоса

Расчёт центробежного насоса заключается в определении двух параметров, необходимых для работы системы — подачи и напора. В зависимости от схемы установки подход к вычислению заданных параметров должен быть различным.

Расчёт повысительного насоса для системы водоснабжения выполняется по нагрузке часа максимального водопотребления, а напор определяют разницей между заданным давлением на входе в систему водоснабжения и давлением на вводе водопровода.

Давление на вводе в систему водоснабжения равно сумме избыточного давления у верхней водоразборной точки, высоты водяного столба от насоса до верхней точки и потерь напора на участке от повысительного насоса до верхней точки. Избыточное давление у верхней водоразборной точки обычно принимают 5-10 м.вод.ст.

Расчёт подпиточного насоса для системы отопления выполняют исходя из максимально допустимого времени заполнения системы и её ёмкости. Время заполнения системы отопления обычно принимают не более 2 часов. Напор подпиточного насоса определяется разницей между давлением выключения насоса (система заполнена) и давлением в месте подключения подпиточной линии.

Расчёт циркуляционного насоса для системы отопления выполняют исходя из тепловой нагрузки и расчётного температурного графика. Подача насоса пропорциональна тепловой нагрузке и обратно пропорциональна расчётной разнице температур в подающем и обратном трубопроводе. Напор циркуляционного насоса определяется только гидравлическим сопротивлением системы отопления, который должен указываться в проекте.

Кавитация

Кавитацией называют образование в толще движущейся жидкости пузырьков пара при снижении гидростатического давления и схлопывание этих пузырьков в толще где гидростатическое давление повышается.

В центробежных насосах кавитация образуется на входной кромке рабочего колеса, в месте с максимальной скоростью потока и минимальным гидростатическим давлением. Схлопывание пузырька пара происходит во время его полной конденсации, при этом в месте схлопывания возникает резкое увеличение давления до сотен атмосфер. Если в момент схлопывания пузырёк находился на поверхности рабочего колеса или лопатки, то удар приходится на эту поверхность, что вызывает эрозию метала. Поверхность метала подверженная кавитационной эрозии носит выщербленный характер.

Кавитация в насосе сопровождается резким шумом, треском, вибрацией и что особенно важно, падением напора, мощности, подачи и КПД. Материалов, имеющих абсолютную устойчивость против кавитационного разрушения не существует, поэтому работа насоса в кавитационном режиме не допускается.

Минимальное давление на входе в центробежный насос называют кавитационным запасом NPSH и указывается производителями насосов в техническом описании.

mirhat.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.