Расчет радиаторов отопления


Грамотно устроенная отопительная система обеспечит жилье необходимой температурой и во всех комнатах в любую погоду будет комфортно. Но, чтобы передать тепло воздушному пространству жилых помещений, нужно знать необходимое количество батарей, ведь верно?

Выяснить это поможет расчет радиаторов отопления, основанный на вычислениях тепловой мощности, требуемой от устанавливаемых нагревательных приборов.

Вы никогда не делали таких вычислений и боитесь ошибиться? Мы поможем разобраться с формулами – в статье рассмотрен подробный алгоритм расчета, разобраны значения отдельных коэффициентов, используемых в процессе вычислений.

Чтобы вам было проще разобраться в тонкостях расчета, мы подобрали тематические фотоматериалы и полезные видеоролики, поясняющие принцип вычисления мощности отопительных приборов.

Упрощенный расчет компенсации теплопотерь

Любые вычисления базируются на определенных принципах. В основу расчетов требуемой тепловой мощности батарей закладывается понимание того, что хорошо работающие нагревательные приборы должны полностью компенсировать потери тепла, возникающие при их работе из-за особенностей отапливаемых помещений.


Для жилых комнат, находящихся в хорошо утепленном доме, расположенном, в свою очередь, в умеренном климатическом поясе, в некоторых случаях подойдет упрощенный расчет компенсации тепловых утечек.

Для таких помещений вычисления основываются на нормативной мощности 41 Вт, требующейся для обогрева 1 куб.м. жилого пространства.

Формула для определения тепловой мощности радиаторов, необходимой для поддержания в помещении оптимальных условий проживания такова:

Q = 41 х V,

где V – объем отапливаемой комнаты в кубических метрах.

Полученный четырехзначный результат можно выразить в киловаттах, сократив его из расчета 1 кВт = 1000 Вт.

Подробная формула вычисления тепловой мощности

При подробных расчетах количества и размеров батарей отопления принято отталкиваться от относительной мощности 100 Вт, нужной для нормального обогрева 1 м² некоего нормативного помещения.

Формула для определения требуемой от отопительных приборов тепловой мощности такова:

Q = ( 100 x S ) x R x K x U x T x H x W x G x X x Y x Z

Множитель S в вычислениях не что иное, как площадь отапливаемого помещения, выраженная в квадратных метрах.


Остальные буквы – это различные поправочные коэффициенты, без которых расчет будет ограниченным.

Но даже добавочные расчетные параметры не всегда могут отразить всю специфику того или другого помещения. Рекомендуется при сомнениях в подсчетах отдавать предпочтение показателям с большими значениями.

Легче потом снизить температуру радиаторов с помощью терморегулирующих приборов, чем замерзать при недостатке их тепловой мощности.

Далее подробно разбирается каждый из участвующих в формуле расчета тепловой мощности батарей коэффициентов.

В конце статьи дается информация по характеристикам разборных радиаторов из разных материалов, и рассматривается порядок вычислений необходимого количества секций и самих батарей на базе основного расчета.

Ориентация комнат по сторонам света

И в самые морозные дни энергия солнца все же влияет на тепловое равновесие внутри жилища.

От направленности комнат в ту или иную сторону зависит коэффициент «R» формулы расчета тепловой мощности.

  1. Комната с окном на юг – R = 1,0. В течение светового дня она будет получать максимальное добавочное внешнее тепло по сравнению с другими помещениями. Такая ориентация принимается за базовую, и добавочный параметр в данном случае минимальный.
  2. Окно выходит на запад – R = 1,0 или R = 1,05 (для районов с коротким зимним днем). Эта комната тоже успеет получить свою порцию солнечного света. Солнце хоть и заглянет туда ближе к вечеру, но все же расположение такого помещение более выгодное, чем восточное и северное.

  3. Комната ориентирована на восток – R = 1,1. Восходящее зимнее светило вряд ли успеет как следует извне подогреть такое помещение. Для мощности батарей потребуются дополнительные Ватты. Соответственно добавляем к расчету ощутимую поправку в 10%.
  4. За окном находится только север – R = 1,1 или R = 1,15 (не ошибется житель северных широт, который возьмет дополнительно 15%). Зимой такое помещение прямых солнечных лучей не видит совсем. Поэтому рекомендуется вычисления требуемой от радиаторов тепловой отдачи также скорректировать на 10% в большую сторону.

Если в районе проживания преобладают ветры определенного направления, желательно для комнат с наветренными сторонами произвести увеличение R еще до 20% в зависимости от силы дуновения (х1,1÷1,2), а для помещений со стенами, параллельными холодным потокам, приподнять значение R на 10% (х1,1).

Учет влияния внешних стен

Кроме стены со встроенным в него окном или окнами, другие стены комнаты также могут иметь контакт с уличным холодом.

Внешние стены помещения определяют коэффициент «K» расчетной формулы тепловой мощности радиаторов:

  • Наличие у помещения одной уличной стены является типовым случаем. Здесь с коэффициентом все просто – K = 1,0.
  • Две внешних стены запросят для обогрева комнаты на 20% больше тепла – K = 1,2.
  • Каждая следующая наружная стена добавляет вычислениям по 10 % требуемой теплоотдачи. Для трех уличных стен – K = 1,3.
  • Наличие у помещения четырех внешних стен также добавляет 10% – K = 1,4.

В зависимости от особенностей помещения, для которого выполняется расчет, предстоит взять соответствующий коэффициент.

Зависимость радиаторов от теплоизоляции

Снизить бюджет на обогрев внутреннего пространства позволяет грамотно и надежно изолированное от зимней стужи жилье, причем существенно.

Степени утепления уличных стен подчиняется коэффициент «U», уменьшающий или увеличивающий расчетную тепловую мощность нагревательных приборов:

  • U = 1,0 – для стандартных внешних стен.
  • U = 0,85 – если утепление уличных стен производилось по специальному расчету.
  • U = 1,27 – если внешние стены недостаточно холодоустойчивы.

Стандартными считаются стены из соответствующих климату материалов и толщины. А также уменьшенной толщины, но с оштукатуренной наружной поверхностью или с поверхностной наружной теплоизоляцией.

Если разрешает площадь помещения, то можно произвести утепление стен изнутри. А оградить стены от холода снаружи способ найдется всегда.

Климат – важный фактор арифметики

Разные климатические зоны имеют различные показатели минимально низких уличных температур.

При расчете мощности теплоотдачи радиаторов для учета температурных отличий предусмотрен коэффициент «T».

Рассмотрим значения этого коэффициента для различных климатических условий:


  • T = 1,0 до -20 °С.
  • T = 0,9 для зим с морозцем до -15 °С
  • T = 0,7 – до -10 °С.
  • T = 1,1 для морозов до -25 °С,
  • T = 1,3 – до -35 °С,
  • T = 1,5 – ниже -35 °С.

Как видим из перечня, приведенного выше, нормальной считается зимняя погода до -20 °С. Для районов с таким наименьшим холодом берут значение, равное 1.

Для более теплых регионов этот расчетный коэффициент понизит общий результат вычислений. А вот для областей сурового климата требуемое от отопительных приборов количество теплоэнергии возрастет.

Особенности обсчета высоких помещений

Понятно, что из двух комнат с одинаковой площадью больше тепла потребуется той, у которой потолок выше. Учесть в вычислениях тепловой мощности поправку на объем отапливаемого пространства помогает коэффициент «H».

В начале статьи было упомянуто про некое нормативное помещение. Таковым считается комната с потолком на уровне 2,7 метра и ниже. Для нее берут значение коэффициента, равное 1.

Рассмотрим зависимость коэффициента Н от высоты потолков:

  • H = 1,0 – для потолков в 2,7 метра высотой.
  • H = 1,05 – для помещения высотой до 3 метров.
  • H = 1,1 – для комнаты с потолком до 3,5 метра.
  • H = 1,15 – до 4 метров.
  • H = 1,2 – потребность в тепле для более высокого помещения.

Как видим, для комнат с высокими потолками в расчет следует добавлять по 5% на каждые полметра высоты, начиная с 3,5 м.

По закону природы теплый нагретый воздух устремляется вверх. Чтобы перемешать весь его объем отопительным приборам придется потрудиться как следует.

Расчетная роль потолка и пола

К уменьшению тепловой мощности батарей ведут не только хорошо изолированные внешние стены. Соприкасающийся с теплым помещением потолок также позволяет минимизировать потери при обогреве комнаты.

Коэффициент «W» в формуле расчета как раз для того, чтобы предусмотреть это:

  • W = 1,0 – если наверху расположен, например, неотапливаемый неутепленный чердак.
  • W = 0,9 – для неотапливаемого, но утепленного чердака или другого утепленного помещения сверху.
  • W = 0,8 – если этажом выше комната отапливаемая.

Показатель W можно поправлять в сторону увеличения для помещений первого этажа, если они располагаются на грунте, над неотапливаемым подвалом или цокольным пространством. Тогда цифры будут такие: пол утеплен +20% (х1,2); пол не утеплен +40% (х1,4).


Качество рам – залог тепла

Окна – когда-то слабое место в теплоизоляции жилого пространства. Современные рамы со стеклопакетами позволили существенно улучшить защиту комнат от уличного холода.

Степень качества окон в формуле подсчета тепловой мощности описывает коэффициент «G».

За основу расчета взята стандартная рама с однокамерным стеклопакетом, у которой коэффициент равен 1.

Рассмотрим другие варианты применения коэффициента:

  • G = 1,0 – рама с однокамерным стеклопакетом.
  • G = 0,85 – если рама оснащена двух- или трехкамерным стеклопакетом.
  • G = 1,27 – если у окна старая деревянная рама.

Так, если в доме старые рамы, то потери тепла будут значительными. Поэтому потребуются более мощные батареи. В идеале такие рамы желательно заменить, ведь это дополнительные расходы на отопление.

Размер окна имеет значение

Следуя логике, можно утверждать, что чем больше количество окон в комнате и чем обширней их обзор, тем чувствительней утечки тепла через них. Коэффициент «X» из формулы расчета тепловой мощности, требующегося от батарей, как раз отражает это.

Нормой является итог деления площади оконных проемов на площадь комнаты равный от 0,2 до 0,3.

Приведем основные значения коэффициента Х для различных ситуаций:

  • X = 1,0 – при соотношении от 0,2 до 0,3.
  • X = 0,9 – для отношения площадей от 0,1 до 0,2.
  • X = 0,8 – при соотношении до 0,1.
  • X = 1,1 – если отношение площадей от 0,3 до 0,4.
  • X = 1,2 – когда оно от 0,4 до 0,5.

Если же метраж оконных проемов (например, в помещениях с панорамными окнами) выходит за рамки предложенных соотношений, разумно добавлять к значению X еще по 10% при росте отношения площадей на 0,1.

Находящаяся в комнате дверь, которой зимой регулярно пользуются для выхода на открытый балкон или лоджию, вносит свои поправки в баланс тепла. Для такого помещения будет правильным увеличить X еще на 30% (х1,3).

Потери тепловой энергии легко компенсируются компактной установкой под балконным входом канального водяного или электрического конвектора.

Влияние закрытости батареи

Конечно же, лучше отдаст тепло тот радиатор, который меньше огражден различными искусственными и естественными препятствиями. На этот случай формула расчета его тепловой мощности расширена за счет коэффициента «Y», учитывающего условия работы батареи.

Самое распространенное место расположения отопительных приборов – под подоконником. При таком их положении значение коэффициента равно 1.

Рассмотрим типичные ситуации размещения радиаторов:

  • Y = 1,0 – сразу под подоконником.
  • Y = 0,9 – если батарея оказывается вдруг полностью открытой со всех сторон.
  • Y = 1,07 – когда радиатор заслонен горизонтальным выступом стены
  • Y = 1,12 – если расположенная под подоконником батарея прикрыта фронтальным кожухом.
  • Y = 1,2 – когда отопительный прибор загражден со всех сторон.

Сдвинутые длинные плотные шторы также становятся причиной похолодания в комнате.

Эффективность подключения радиаторов

От способа присоединения радиатора к внутрикомнатной отопительной разводке напрямую зависит эффективность его работы. Часто хозяева жилья жертвуют этим показателем в угоду красоте помещения. Формула расчета требуемой тепловой мощности учитывает все это через коэффициент «Z».

Приведем значения этого показателя для различных ситуаций:

  • Z = 1,0 – включение радиатора в общую цепь отопительной системы приемом «по диагонали», что является самым оправданным.
  • Z = 1,03 – другой, самый распространенный из-за малой протяженности подводки, вариант присоединения «с боковой стороны».
  • Z = 1,13 – третий метод «снизу с двух сторон». Благодаря пластиковым трубам, это он быстро прижился в новом строительстве, несмотря на гораздо меньшую эффективность.
  • Z = 1,28 – еще один, очень низкоэффективный способ «снизу с одной стороны». Он заслуживает рассмотрения только потому, что некоторые конструкции радиаторов снабжаются готовыми узлами с подключением к одной точке труб и подачи, и обратки.

Увеличить коэффициент полезного действия отопительных приборов помогут вмонтированные в них воздухоотводчики, которые своевременно спасут систему от «завоздушивания».

Принцип работы любого водяного отопительного прибора опирается на физические свойства горячей жидкости подниматься вверх, а после охлаждения перемещаться вниз.

Поэтому настоятельно не рекомендуется использовать присоединения систем отопления к радиаторам, при которых труба подачи оказывается внизу, а обратки – вверху.

Практический пример расчета тепловой мощности

Исходные данные:

  1. Угловая комната без балкона на втором этаже двухэтажного шлакоблочного оштукатуренного дома в безветренном районе Западной Сибири.
  2. Длина комнаты 5,30 м Х ширина 4,30 м = площадь 22,79 кв.м.
  3. Ширина окна 1,30 м Х высота 1,70 м = площадь 2,21 кв.м.
  4. Высота помещения = 2,95 м.

Последовательность расчета:

Ниже приводится описание расчета количества секций радиаторов и требуемого числа батарей. Он основывается на полученных результатах тепловых мощностей с учетом габаритов предполагаемых мест установки отопительных приборов.

Независимо от итогов, рекомендуется в угловых комнатах оснащать радиаторами не только подоконные ниши. Батареи следует устанавливать у «слепых» внешних стен или возле углов, которые подвергаются наибольшему промерзанию под воздействием уличного холода.

Удельная тепловая мощность секций батарей

Еще до выполнения общего расчета требуемой теплоотдачи отопительных приборов, необходимо решить, разборные батареи из какого материала будут устанавливаться в помещениях.

Выбор должен основываться на характеристиках системы отопления (внутреннее давление, температура теплоносителя). При этом не стоит забывать о сильно разнящейся стоимости покупаемых изделий.

О том, как правильно рассчитать нужное количество различных батарей для отопления, и пойдет речь дальше.

При теплоносителе в 70 °С стандартные 500-миллиметровые секции радиаторов из разнородных материалов обладают неодинаковой удельной тепловой мощностью «q».

  1. Чугун – q = 160 Ватт (удельная мощность одной чугунной секции). Радиаторы из этого металла подойдут для любой системы отопления.
  2. Сталь – q = 85 Ватт. Стальные трубчатые радиаторы могут работать в самых жестких условиях эксплуатации. Их секции красивы в своем металлическом блеске, но имеют наименьшую теплоотдачу.
  3. Алюминий – q = 200 Ватт. Легкие, эстетичные алюминиевые радиаторы надо устанавливать лишь в автономные отопительные системы, в которых давление меньше 7 атмосфер. Но по отдаче тепла их секциям нет равных.
  4. Биметалл – q = 180 Ватт. Внутренности биметаллических радиаторов сделаны из стали, а теплоотводящая поверхность – из алюминия. Эти батареи выдержат всякие режимы давлений и температур. Удельная тепловая мощность секций из биметалла тоже на высоте.

Приведенные значения q довольно условны и применяются для предварительного расчета. Более точные цифры содержатся в паспортах приобретаемых отопительных приборов.

Расчет количества секций радиаторов

Разборные радиаторы из любого материала хороши тем, что для достижения их расчетной тепловой мощности можно добавлять или убавлять отдельные секции.

Для определения нужного количества «N» секций батарей из выбранного материала придерживаются формулы:

N = Q / q,

Где:

  • Q = рассчитанная ранее требуемая тепловая мощность устройств для обогрева комнаты,
  • q = мощность тепловая удельная отдельной секции предполагаемых для установки батарей.

Вычислив общее необходимое число секций радиаторов в помещении, надо понять, сколько всего батарей нужно установить. Этот расчет основывается на сравнении габаритов предполагаемых мест установки отопительных приборов и размеров батарей с учетом подводки.

Для предварительных подсчетов можно вооружиться данными о ширине секций разных радиаторов:

  • чугунных = 93 мм,
  • алюминиевых = 80 мм,
  • биметаллических = 82 мм.

При изготовлении разборных радиаторов из стальных труб, производители не держатся за определенные стандарты. При желании поставить такие батареи, следует подходить к вопросу индивидуально.

Также можете воспользоваться нашим бесплатным онлайн калькулятором для расчета количества секций:

Повышение эффективности теплоотдачи

При обогреве радиатором внутреннего воздуха помещения происходит также интенсивный нагрев внешней стены в области за батареей. Это ведет к дополнительным неоправданным потерям тепла.

Предлагается для повышения эффективности теплоотдачи радиатора отгораживать отопительный прибор от наружной стены теплоотражающим экраном.

Рынок предлагает множество современных изоляционных материалов с отражающей тепло фольгированной поверхностью. Фольга защищает согретый батареей теплый воздух от контакта с холодной стеной и направляет его внутрь комнаты.

Для правильной работы границы установленного отражателя должны превышать габариты радиатора и с каждой стороны на 2-3 см выступать. Промежуток между отопительным прибором и поверхностью тепловой защиты следует оставлять величиной 3-5 см.

Для изготовления теплоотражающего экрана можно посоветовать изоспан, пенофол, алюфом. Из приобретенного рулона вырезается прямоугольник необходимых размеров и закрепляется на стене в месте установки радиатора.

Рекомендуется отделять лист изоляции от внешней стены небольшой воздушной прослойкой, например, с помощью тонкой пластиковой решетки.

Если отражатель стыкуется из нескольких частей изоляционного материала, места соединений со стороны фольги необходимо проклеивать металлизированной клейкой лентой.

Выводы и полезное видео по теме

Небольшие фильмы представят практическое воплощение некоторых инженерных советов в быту. В следующем ролике можно увидеть практический пример расчета радиаторов отопления:

Изменение количества секций радиаторов рассмотрено в этом видео:

Следующий ролик поведает о том, как монтировать отражатель под батарею:

Приобретенные навыки расчёта тепловой мощности разных видов радиаторов отопления помогут домашнему мастеру в грамотном устройстве отопительной системы. А домашние хозяйки смогут проконтролировать правильность процесса установки батарей сторонними специалистами.

Вы занимались самостоятельным расчетом мощности батарей отопления для своего дома? Или столкнулись с проблемами, возникшими в результате монтажа маломощных отопительных приборов? Расскажите о своем опыте нашим читателям – оставляйте, пожалуйста, комментарии ниже.

Источник: sovet-ingenera.com

Автоматический расчет

Расчет радиаторов отопленияПровести калькуляцию для вычисления необходимого количества радиаторов и суммарной мощности по каждому отопительному прибору можно самостоятельно, ведь для этого не нужны какие-то особые знания и навыки работы в коммуникационном строительстве. Для этого достаточно просто вбить определенные данные в онлайн-калькулятор, который можно найти в свободном доступе на многих сетевых ресурсах, посвященных обустройству домовой и придомовой инфраструктуры.

Автоматический расчет отопления по объему помещения и другим параметрам производится на основе подробного анализа семнадцати основных позиций, которые оказывают прямое воздействие на микроклимат в жилом помещении. В этот перечень входят следующие показатели:

  1. 1. Расчет радиаторов отопленияОбщая площадь квартиры или отдельной ее комнаты, если установка или замена отопительных приборов и примыкающим к ним элементам разводки будет осуществляться только в этой зоне.
  2. 2. Высота потолков в квартире, которая условно делится на 5 основных категорий: низкую — до 2,7 м, ниже средней — от 2,8 до 3 м, среднюю — от 3,1 до 3,5 м, выше средней — от 3,6 до 4 м, большую — свыше 4,1 м.
  3. 3. Общее количество наружных стен, под которым подразумевается, является ли комната угловой или нет.
  4. 4. Направление, в сторону которого смотрят окна. Всего специалисты выделяют две категории вместо четырех привычных: первая — северная, северо-восточная и восточная сторона, вторая — южная, юго-западная и западная.
  5. 5. Расположение дома по отношению к зимней розе ветров, что особенно важно для высотных зданий, построенных в местности с более низкими сооружениями. В этой категории принято выделять три основных параметра: наветренную, подветренную и расположенную параллельно направлению ветра сторону.
  6. 6. Максимально низкие температуры внешней среды в зимнее время года, характерные для конкретного региона проживания. Всего выделяется 7 температурных групп: не более -10 градусов, от -10 до -14, от -15 до -19 градусов, от -20 до -24, от -25 до -29, от -30 до -34, а также -35 и ниже.
  7. 7. Утепление наружных стен. Как правило, в новых домах оно полноценное, в то время как в типовых панельных многоэтажках этот уровень является критичным, поэтому его относят к категории «Утепление отсутствует». Если же хозяева проводили процедуру утепления собственными силами, привлекая специализированные строительные бригады альпинистов, или на повестке дня стоит вопрос о расчете количества батарей отопления в частном доме, то тогда в калькуляторе рекомендуется выбирать среднюю или полноценную степень качества наружной обшивки.
  8. 8. Характеристики объекта, расположенного под квартирой. В этом случае выделяется три категории: грунтовый пол или неотапливаемый объект, утепленный пол по грунту или над нежилым помещением без отопления и помещение с полноценным отоплением.
  9. 9. Данные о верхнем объекте: неотапливаемый чердак или нежилое помещение без утепления и обогрева, чердак с утеплением или любое другое помещение (чердачная котельная, фитнес-зал, бассейн и пр.), жилое отапливаемое помещение.
  10. 10. Варианты остекления окон и характеристики их рам. В настоящее время ведется учет по четырем основным группам: старые оконные рамы с обычным (двойным) остеклением, двойной стеклопакет с трехкамерным профилем, тройной стеклопакет с трех- или пятикамерным профилем, полное отсутствие остекления.
  11. 11. Общее количество окон в помещении, где будет устанавливаться радиатор отопления, или их полное отсутствие, что также бывает.
  12. 12. Высота оконного блока (вводится вручную в метрах).
  13. 13. Ширина блока.
  14. 14. Двери, ведущие на балкон или на улицу, и их количество.
  15. 15. Расчет радиаторов отопленияОптимальная схема установки радиаторов отопления. На выбор предлагается 6 базовых вариантов: диагональный (верхняя подача / нижняя обратка), односторонний (верх / низ), нижний последовательный, диагональный (нижняя подача / верхняя обратка), односторонний с другим вариантом подачи (низ / верх), седельный, который считается самым неэффективным и применяется в том случае, если особенности планировки не предполагают другого типа врезки в основную магистраль.
  16. 16. Расположение отопительного прибора: открытое, с верхним размещением подоконника, столешницы, полок и других элементов, с верхним расположением стеновой ниши, с перекрывающим декоративным экраном, с полной «зашивкой» батареи в декоративный кожух ли нишу.
  17. 17. Тип устанавливаемых радиаторов: цельная (неразборная) конструкция — ведется общий расчет теплоотдачи радиатора батарей отопления, необходимой для поддержания оптимальной температуры в помещении зимой, и разборная система — применение таких батарей предполагает проведение расчета необходимого количества секций для полноценного отопления комнаты.

Рассчитать количество радиаторов отопления на калькуляторе — дело простое, но, чтобы перестраховаться, необходимо проводить и ручные вычисления, учитывая все характеристики и особенности помещения.

Источник: oventilyacii.ru

Расчет радиаторов отопления по площади

Самый простой способ. Посчитать требуемое на обогрев количество тепла, исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:

  • для средней климатической полосы на отопление 1м2 жилого помещения требуется 60-100Вт;
  • для областей выше 60о требуется 150-200Вт.

Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находятся в средней климатической полосе, для отопления площади 16м2, потребуется 1600Вт тепла (16*100=1600). Так как нормы средние, а погода постоянством не балует, считаем, что требуется 100Вт. Хотя, если вы проживаете на юге средней климатической полосы и зимы у вас мягкие, считайте по 60Вт.

Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключен к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?»

Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определенное количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.

Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1600Вт. Пусть мощность одной секции 170Вт. Получается 1600/170=9,411шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.

Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и еще целый ряд факторов не учитывается. Так что расчет количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.

Как посчитать секции радиатора по объему помещения

При таком расчете учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объем помещения, а затем по нормам узнаем, сколько нужно тепла на его обогрев:

  • в панельном доме на обогрев кубометра воздуха требуется 41Вт;
  • в кирпичном доме на м3 — 34Вт.

Рассчитаем все для того же помещения площадью 16м2 и сравним результаты. Пусть высота потолков 2,7м. Объем: 16*2,7=43,2м3.

Дальше посчитаем для вариантов в панельном и кирпичном доме:

  • В панельном доме. Требуемое на отопление тепло 43,2м3*41В=1771,2Вт. Если брать все те же секции мощностью 170Вт, получаем: 1771Вт/170Вт=10,418шт (11шт).
  • В кирпичном доме. Тепла нужно 43,2м3*34Вт=1468,8Вт. Считаем радиаторы: 1468,8Вт/170Вт=8,64шт (9шт).

Как видно, разница получается довольно большая: 11шт и 9шт. Причем при расчете по площади получили среднее значение (если округлять в ту же сторону) — 10шт.

Корректировка результатов

Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т.п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.

Окна

На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:

  • соотношение площади окна к площади пола:
    • 10% — 0,8
    • 20% — 0,9
    • 30% — 1,0
    • 40% — 1,1
    • 50% — 1,2
  • остекление:
    • трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
    • обычный двухкамерный стеклопакет — 1,0
    • обычные двойные рамы — 1,27.

Стены и кровля

Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.

Степень теплоизоляции:

  • кирпичные стены толщиной в два кирпича считаются нормой — 1,0
  • недостаточная (отсутствует) — 1,27
  • хорошая — 0,8

Наличие наружных стен:

  • внутреннее помещение — без потерь, коэффициент 1,0
  • одна — 1,1
  • две — 1,2
  • три — 1,3

На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).

Если расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.

Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.

Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.

Климатические факторы

Можно внести корректировки в зависимости от средних температур зимой:

  • -10оС и выше — 0,7
  • -15оС — 0,9
  • -20оС — 1,1
  • -25оС — 1,3
  • -30оС — 1,5

Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений. Но это еще не все критерии, которые оказывают влияние на мощность теплового излучения. Есть еще технические тонкости, о которых расскажем ниже.

Расчет разных типов радиаторов

Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50 см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчетом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность. Если указана не мощность, а расход теплоносителя, то перевести в мощность просто: расход теплоносителя в 1 л/мин примерно равен мощности в 1 кВт (1000 Вт).

Осевое расстояние радиатора определяется по высоте между центрами отверстий для подачи/отведения теплоносителя.

Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчет секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.

Но если просто пока прикидываете возможные варианты, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчета количества секций биметаллических радиаторов от расчета алюминиевых, стальных или чугунных ничем не отличается. Разной может быть только тепловая мощность одной секции.

Чтобы считать было проще, есть усредненные данные, по которым можно ориентироваться. Для одной секции радиатора с осевым расстоянием 50см приняты такие значения мощностей:

  • алюминиевые — 190Вт
  • биметаллические — 185Вт
  • чугунные — 145Вт.

Если вы пока только прикидываете, какой из материалов выбрать, можете воспользоваться этими данными. Для наглядности приведем самый простой расчет секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.

При определении количества отопительных приборов из биметалла стандартного размера (межосевое расстояние 50см) принимается, что одна секция может обогреть 1,8м2 площади. Тогда на помещение 16м2 нужно: 16м2/1,8м2=8,88шт. Округляем — нужны 9 секций.

Аналогично считаем для чугунные или стальные баратери. Нужны только нормы:

  • биметаллический радиатор — 1,8м2
  • алюминиевый — 1,9-2,0м2
  • чугунный — 1,4-1,5м2.

Это данные для секций с межосевым расстоянием 50см. Сегодня же в продаже есть модели с самой разной высоты: от 60см до 20см и даже еще ниже. Модели 20см и ниже называют бордюрными. Естественно, их мощность отличается от указанного стандарта, и, если вы планируете использовать «нестандарт», придется вносить коррективы. Или ищите паспортные данные, или считайте сами. Исходим из того, что теплоотдача теплового прибора напрямую зависит от его площади. С уменьшением высоты уменьшается площадь прибора, а, значит, и мощность уменьшается пропорционально. То есть, нужно найти соотношение высот выбранного радиатора со стандартом, а потом при помощи этого коэффициента откорректировать результат.

Для наглядности сделаем расчет алюминиевых радиаторов по площади. Помещение то же: 16м2. Считаем количество секций стандартного размера: 16м2/2м2=8шт. Но использовать хотим маломерные секции высотой 40см. Находим отношение радиаторов выбранного размера к стандартным: 50см/40см=1,25. И теперь корректируем количество: 8шт*1,25=10шт.

Корректировка в зависимости от режима отопительной системы

Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90оС, в обратке — 70оС (обозначается 90/70) в помещении при этом должно быть 20оС. Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средних мощностей 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что требуется расчет откорректировать.

Для учета режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.

Чтобы было понятнее произведем расчет чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50см). Помещение то же: 16м2. Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5м2. Потому нам потребуется 16м2/1,5м2=10,6шт. Округляем — 11шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдем температурный напор для каждой из систем:

  • высокотемпературная 90/70/20- (90+70)/2-20=60оС;
  • низкотемпературный 55/45/20 — (55+45)/2-20=30оС.

То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16м2 требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.

При таком расчете можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20оС а, например, 25оС просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент. Сделаем расчет все для тех же чугунных радиаторов: параметры получатся 90/70/25. Считаем температурный напор для этого случая (90+70)/2-25=55оС. Теперь находим соотношение 60оС/55оС=1,1. Чтобы обеспечить температуру в 25оС нужно 11шт*1,1=12,1шт.

Зависимость мощности радиаторов от подключения и места расположения

Кроме всех описанных выше параметров теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.

Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.

Определение количества радиаторов для однотрубных систем

Есть еще один очень важный момент: все вышеизложенное справедливо для двухтрубной системы отопления, когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. Однотрубная система считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.

Поясним на примере. На схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остается по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15кВт-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8шт, будет на 20% больше — 9 или 10шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую. Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую.

Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают  радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.

Итоги

Приблизительный расчет количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.

Возможно, вам интересно будет прочитать про расчет мощности котла или определение диаметра труб для системы отопления.

 

 

Источник: teplowood.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.