Коэффициент гидравлического сопротивления трубы
Это безмерная величина, показывающая, каковы потери удельной энергии.
Ламинарное перемещение рабочего потока
При ламинарном (равномерном) перемещении рабочей среды по трубопроводу круглого сечения потери давления по длине вычисляется по формуле Дарси-Вейсбаха:
Где:
— потери давления по длине;
— коэффициент гидравлического сопротивления;
v – скорость движения рабочей среды;
g – ускорение силы тяжести;
d – диаметр трубопроводной магистрали.
Практически определено, что на коэффициент гидравлического сопротивления непосредственное влияние оказывает число Рейнольдса (Re) – безмерная величина, которая характеризует поток жидкости и выражается отношением динамического давления к касательному напряжению.
Если Re меньше, чем 2300, то для расчёта применяется формула:

Для трубопроводов в форме круглого цилиндра:
Для трубопроводных коммуникаций с другим (не круглым) сечением:
Где А=57 – для квадратных труб.
Турбулентное течение рабочего потока
При турбулентном (неравномерном, беспорядочном) перемещении рабочего потока коэффициент сопротивления вычисляют опытным путём, как функцию от Re. Если необходимо определить коэффициент гидравлического сопротивления для магистрали круглого сечения с гладкими поверхностями при
, то для расчёта применяется формула Блаузиуса:
В случае турбулентного перемещения рабочей среды на величину коэффициента трения влияет число Рейнольдса (характер течения) и насколько гладкая внутренняя поверхность трубопроводной коммуникации.
Коэффициент местного сопротивления
Это безмерная величина, которая устанавливается экспериментальным путём с помощью формулы:

Где:
– коэффициент местного сопротивления;
– потеря напора;
– отношение скорости потока к ускорению силы тяжести – скоростной поток.
При неизменной скорости перемещения рабочей среды по всему сечению применяется формула:
, где
– энергия торможения.
Источник: agpipe.ru
Трубы, соединяющие между собой различные аппараты химических установок. С помощью них происходит передача веществ между отдельными аппаратами. Как правило, несколько отдельных труб с помощью соединений создают единую трубопроводную систему.
Трубопровод – это система труб, объединенных вместе с помощью соединительных элементов, применяемая для транспортировки химических веществ и иных материалов. В химических установках для перемещения веществ, как правило, используются закрытые трубопроводы. Если речь идет о замкнутых и изолированных деталях установки, то они также относится к трубопроводной системе или сети.
В состав замкнутой трубопроводной системы могут входить:
- Трубы.
- Соединительные элементы труб.
- Герметизирующие уплотнения, соединяющие два разъемных участка трубопровода.
Все вышеперечисленные элементы изготавливаются отдельно, после чего соединяются в единую трубопроводную систему. Помимо этого трубопроводы могут быть оснащены обогревом и необходимой изоляцией, изготовленной из различных материалов.
Выборе размера труб и материалов для из изготовления осуществляется на основе технологических и конструктивных требований, предъявляемых в каждом конкретном случае. Но для стандартизации размеров труб была проведена их классификация и унификация. Основным критерием стало допустимое давление при котором возможна эксплуатация трубы.
Условный проход DN
Условный проход DN (номинальный диаметр) – это параметр, который используется в системах трубопровода как характеризующий признак, с помощью которого происходит подгонка деталей трубопровода, таких как трубы, арматура, фитинги и другие.
Номинальный диаметр является безразмерной величиной, однако численно приблизительно равен внутреннему диаметру трубы. Пример обозначения условного прохода: DN 125.
Так же условный проход не обозначается на чертежах и не заменяет собой реальные диаметры труб. Он примерно соответствует диаметру в свету у определенных частей трубопровода (рис. 1.1). Если говорить о числовых значениях условных переходах, то они выбраны таким образом, что пропускная способность трубопровода увеличивается в диапазоне от 60 до 100% при переходе от одного условного прохода к последующему.
Общепринятые номинальные диаметры:
3, 4, 5, 6, 8, 10, 15, 20, 25, 32, 40, 50, 65, 80, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000.
Размеры этих условных проходов установлены с расчетом на то, чтобы не возникало проблем с припасовкой деталей друг к другу. Определения номинальный диаметр на основе значения внутреннего диаметра трубопровода, выбирается то значение условного прохода, которое ближе всего находится к диаметру трубы в свету.
Номинальное давление PN
Номинальное давление PN – величина, соответствующая максимальному давлению перекачиваемой среды при 20 °C, при котором возможна длительная эксплуатация трубопровода, имеющего заданные размеры.
Номинальное давление является безразмерной величиной.
Как и номинальный диаметр, номинальное давление было градуировано на основе практики эксплуатации накопленного опыта (табл. 1.1).
Номинальное давление для конкретного трубопровода выбирается на основе реально создаваемого в нем давления, путем выбора ближайшего большего значения. При этом фитинги и арматура в этом трубопроводе также должны соответствовать такой же ступени давления. Толщина стенок трубы рассчитывается исходя из номинального давления и должна обеспечивать работоспособность трубы при значении давления равном номинальному (табл. 1.1).
Допустимое избыточное рабочее давление pe,zul
Номинальное давление используется только для рабочей температуры 20°C. С повышением температуры нагрузочные способности трубы снижаются. Вместе с этим соответственно снижается и допустимое избыточное давление. Значение pe,zul показывает максимальное избыточное давление, которое может быть в трубопроводной системе при повышении значения рабочей температуры (рис. 1.2).
Материалы для трубопроводов
При выборе материалов, которые будут использоваться для изготовления трубопроводов, берутся в расчет такие показатели, как характеристики среды, которая будет транспортироваться по трубопроводу и рабочее давление, предполагаемое в данной системе. Стоит так же учитывать возможность корродирующего воздействия со стороны перекачиваемой среды на материал стенок трубы.
Практически все трубопроводные системы и химические установки производятся из стали. Для общего применения в случае отсутствия высоких механических нагрузок и корродирующего действия для изготовления трубопроводом используется серый чугун или нелегированные конструкционные стали.
В случае более высокого рабочего давления и отсутствия нагрузок с коррозионно активным действием применяется трубопровод из улучшенной стали или с использованием стального литья.
Если корродирующее воздействие среды велико или к чистоте продукта предъявлены высокие требования, то трубопровод изготавливается из нержавеющей стали.
Если трубопровод должен быть устойчив к воздействию морской воды, то для его изготовления используются медно-никелевые сплавы. Также могут применяться алюминиевые сплавы и такие металлы как тантал или цирконий.
Все большее распространение в качестве материала трубопровода получают различные виды пластмасс, что обуславливается их высокой стойкостью к коррозии, малому весу и легкости в обработке. Такой материал подходит для трубопровода со сточными водами.
Фасонные части трубопровода
Трубопроводы, изготовленные из пластичных материалов пригодных для сварки, собираются на месте монтажа. К таким материалам можно отнести сталь, алюминий, термопласты, медь и т.д.. Для соединения прямых участков труб используются специально изготовленные фасонные элементы, например, колена, отводы, затворы и уменьшения диаметров (рис. 1.3). Эти фитинги могут быть частью любого трубопровода.
Соединения труб
Для монтирования отдельных частей трубопровода и фитингов используются специальные соединения. Также используются для присоединения к трубопроводу необходимой арматуры и аппаратов.
Соединения выбираются (рис. 1.4) в зависимости от:
- материалов, которые используются для изготовления труб и фасонных элементов. Основной критерий выбора – возможность сварки.
- условий работы: низкого или высокого давления, а также низкой или высокой температуры.
- производственных требований, которые предъявляются к трубопроводной системе.
- наличия разъемных или неразъемных соединений в трубопроводной системе.
Линейное расширение труб и его комплектация
Геометрическая форма предметов может быть изменена как путем силового воздействия на них, так и при изменении их температуры. Данные физические явления приводят к тому, что трубопровод, который монтируется в ненагруженном состоянии и без температурного воздействия, в процессе эксплуатации под давлением или воздействием температур претерпевает некоторые линейные расширения или сжатия, которые негативно сказываются на его эксплуатационных качествах.
В случае, когда нет возможности компенсировать расширение, происходит деформация трубопроводной системы. При этом могут возникнуть повреждения фланцевых уплотнений и тех мест соединения труб между собой.
Тепловое линейное расширение
При компоновке трубопроводов важно учитывать возможное изменение длины в результате повышения температуры или так называемого теплового линейного расширения, обозначаемого ΔL. Данное значение зависит от длины трубы, которая обозначается Lo и разности температур Δϑ =ϑ2-ϑ1 (рис. 1.5).
В вышеприведенной формуле а – это коэффициент теплового линейного расширения данного материала. Этот показатель равен величине линейного расширения трубы длиной 1 м при повышении температуры на 1°C.
Элементы компенсации расширения труб
Благодаря специальным отводам, которые ввариваются в трубопровод, можно компенсировать естественное линейное расширение труб. Для этого используются компенсирующие U-образные, Z-образные и угловые отводы, а также лирные компенсаторы (рис. 1.6).
Они воспринимают линейное расширение труб за счет собственной деформации. Однако такой способ возможен только с некоторыми ограничениями. В трубопроводах с высоким давлением для компенсации расширения используются колени под разными углами. Из-за давления, которое действует в таких отводах, возможно усиление коррозии.
Волнистые трубные компенсаторы
Данное устройство состоит из тонкостенной металлической гофрированной трубы, которая называется сильфоном и растягивается в направлении трубопровода (рис. 1.7).
Данные устройства устанавливаются в трубопровод. Предварительный натяг используется в качестве специального компенсатора расширения.
Если говорить про осевые компенсаторы, то они способны компенсировать только те линейные расширения, которые происходят вдоль оси трубы. Чтобы избежать бокового смещения и внутреннего загрязнения используется внутреннее направляющее кольцо. Для того чтобы защитить трубопровод от внешних повреждений, как правило, используется специальная облицовка. Компенсаторы, которые не содержат внутреннее направляющее кольцо, поглощают боковые сдвиги, а также вибрацию, которая может исходить от насосов.
Источник: ence-pumps.ru
В металлургическом производстве широко применяются трубопроводы для транспортировки жидкостей, газов, различных пульп и смесей. Существующие водопроводные, газопроводные, мазутопроводные, кислородные и прочие сети можно разделить на два типа: магистральные трубопроводы, подающие ту или иную среду от источника до потребителя на большие расстояния, и разветвленные сети труб, обеспечивающие распределение этой среды непосредственно потребителям.
К разряду трубопроводов относятся и разнообразные системы боровов и дымоходов, служащие для эвакуации продуктов горения из рабочего пространства металлургических печей в дымовую трубу. Форма поперечного сечения таких боровов может быть различной, однако выделять их из класса труб не следует, так как формулы, полученные для круглых труб, справедливы для каналов любого сечения, если использовать понятие гидравлического диаметра.
Все трубопроводы, не имеющие ответвлений, называются простыми, даже если они состоят из участков разного диаметра. Сети труб с разветвленными и параллельными участками получили название сложных трубопроводов.
В общем случае при расчетах трубопроводов приходится иметь дело с решением трех задач. В первой из них для заданного расположения трубопроводов, длины и диаметра труб требуется определить перепад давлений , необходимый для пропускания заданного расхода среды Q. Вторая задача — обратная первой. В ней требуется определить расход Q, если известен перепад давлений
. В третьей ставится задача об определении диаметра
, если все остальные параметры трубопровода известны.
Простые трубопроводы. Методика расчета гидравлического сопротивления базируется на установленных ранее фактах: энергия движущейся среды расходуется на компенсацию потерь энергии на трение, местные сопротивления и на преодоление действия геометрического давления. В простом трубопроводе все источники потерь расположены последовательно, поэтому общее гидравлическое сопротивление такого трубопровода может быть представлено их алгебраической суммой, т. е.
(8.41)
При решении первой задачи все параметры трубопровода известны; задан и расход среды. В связи с этим известными являются и скорости, по которым рассчитываются числа Рейнольдса, коэффициенты трения, коэффициенты сопротивлений, если они зависят от скорости, и по формуле (8.41) находится сумма всех сопротивлений, определяющая требуемый перепад давлений.
Вторая задача, как правило, не имеет однозначного решения, так как коэффициенты , а иногда и
являются функциями числа Рейнольдса, а оно, в свою очередь, определяется расходом среды. Поэтому обычно используют метод последовательных приближений.
Третья задача в общем случае также однозначно не решается, так как в одном уравнении типа (8.41) неизвестными являются все диаметры участков трубопровода. Если же участок один и имеет длину L, то возможно графическое решение, сущность которого заключается в следующем. Задаются рядом значений диаметров трубопровода ,
, …,
; для каждого
решают вторую задачу и строят зависимость
. Поскольку расход среды
задан, то, используя построенный график, можно найти искомый диаметр
. При
участках длиной
и диаметром di третью задачу можно решить, если задать дополнительно п — 1 соотношение. Обычно на практике в качестве таких соотношений служат условия, выражающие требования минимальной стоимости трубопровода. При этом получается типичная задача оптимизации: спроектировать трубопровод, состоящий из п участков длиной
таким образом, чтобы при заданном расходе
потери энергии не превышали
, а затраты на его сооружение и эксплуатацию были наименьшими. Методы решений таких задач выходят за рамки данного курса.
Сложные трубопроводы. В условиях производства приходится сталкиваться с большим разнообразием типов сложных трубопроводов. Однако почти все из них можно свести к сочетанию в тех или иных пропорциях трех типов сетей: параллельного соединения, кольцевого трубопровода и простой разветвленной сети.
Параллельное соединение (рис. 8.13) — это такая система, когда трубопровод в одной точке (например, A) разветвляется на п участков длиной и диаметром
каждый, которые затем в другой точке (В) снова сливаются в один канал. В общем случае диаметры трубопровода до разветвления и после слияния могут быть различными.
Рис. 8.13. Схема параллельного соединения трубопроводов
Характерной особенностью параллельного соединения трубопроводов является то, что все ветви его начинаются в одном и том же сечении A, при давлении , и заканчиваются в сечении B, при давлении
. Поэтому потери энергии на каждой параллельной ветви одинаковы. В силу этого, а также в предположении горизонтального расположения трубопровода, что позволяет пренебречь
, можно записать для первой ветви:
(8.42)
Обозначая выражение в фигурных скобках через В1, получим для первой ветви и других:
(8.43)
Поскольку левые части всех этих соотношений одинаковы, то все неизвестные расходы можно выразить через расход первой ветви, тогда
(8.44)
Учитывая, что сумма расходов каждой ветви равна общему расходу, т.е. , получим
или
(8.45)
Определив расход , нетрудно найти и расходы по другим ветвям, используя формулы (8.44). Потери энергии
при этом рассчитываются по уравнению (8.42). Поскольку при вычислениях
расходы
, еще неизвестны, то неизбежен метод итераций (последовательных приближений).
Коэффициенты имеют определенный физический смысл. Действительно, любой канал можно заменить отверстием с площадью
, которое при протекании того же количества газа оказывает эквивалентное гидравлическое сопротивление. Площадь такого отверстия
или с учетом связи (8.43)
. Таким образом, коэффициент
определяет площадь отверстия, которое названо эквивалентным. Используя представление об эквивалентном отверстии, можно сформулировать правило, согласно которому в системе параллельных каналов расходы, распределяются прямо пропорционально площадям эквивалентных отверстий.
Кольцевые трубопроводы наиболее типичны для шахтных печей с фурменным вводом дутья (например, доменных). Основной расчетной задачей является определение давления в условиях, когда заданы значения расхода в точках отбора (узловые расходы)
,
, …,
, длины отдельных участков и диаметры всех труб.
Наиболее ясными становятся особенности метода расчета кольцевого трубопровода, если рассмотреть простейший случай наличия двух узловых расходов: (в точке 1) и
(в точке 2) (рис. 8.14).
Определение давления в начальном сечении трубопровода затруднено тем, что неизвестны потери энергии, т. е. неизвестен путь, который проходит каждая часть общего потока, и в каком отношении эти части находятся. В связи с этим, первым шагом методики расчета гидравлического сопротивления кольцевого трубопровода является определение точки схода, т.е. той точки, в которой сходятся части общего потока , первоначально разветвляющиеся в точке A.
Рис. 8.14. Схема кольцевого трубопровода
Предположим, (см. рис. 8.14), что такой точкой является точка 2. В этом случае на участке A -1 расход составит , на участке A -2 — Q2 —
и на участке 1 — 2 —
. Потери энергии от магистральной узловой точки A до точки схода одинаковы по обоим направлениям "кольца", т. е.
или в развернутой форме
(8.46)
В этом уравнении действием геометрического давления пренебрегли, так как трубопроводы такого рода обычно располагаются горизонтально. Поскольку второе слагаемое правой части положительно, то указанное соотношение эквивалентно неравенству
и тем более
(8.47)
Как уже указывалось ранее, расходы и параметры трубопроводов заданы, поэтому коэффициент
и
легко определяются. Следовательно, оценка справедливости неравенства не представляет труда. Если это неравенство верно, то точкой схода является точка 2; в противном случае точкой схода является точка 1.
После того, как решен вопрос о точке схода, искомое начальное давление определяется путем вычисления потерь энергии на более коротком пути. В условиях нашего примера . Следует иметь в виду, что для расчета этой величины необходимо знать расход на участке 1 — 2 q. Величина
находится из выражения (8.46) или аналогичного ему.
В условиях металлургического производства число фурм шахтных печей (узловых расходов) колеблется от 4 до 24. Естественно, расчет в этом случае существенно усложняется. Однако принципиально методика не изменяется. И здесь первым этапом расчета является установление точки схода.
При наличии 8 фурм для определения точки схода можно использовать такой подход. Выбирают ориентировочно в качестве точки схода фурму, расположенную диаметрально противоположно магистральной узловой точке А (рис. 8.15). Предположив, что такой является фурма 4 и, учитывая, что расстояние между фурмами и параметры участков
и
, одинаковые, кроме точек, ближайших к точке A, можно записать:
Рис. 8.15. Схема подвода дутья к шахтной печи
(8.48)
Отбрасывание , как и ранее, приводит к неравенству (правая часть должна быть больше левой). Обычно желательно, чтобы распределение дутья по фурмам было равномерным, т.е.
Поэтому, пренебрегая местным сопротивлениями, получаем
В этом неравенстве вычисляется при расходе
и
и т. д.
Пусть данное неравенство выполняется. Означает ли это, что фурма действительно является точкой схода? По-видимому, нет, ибо равенство не обязано быть верным — оно предположительно, и доказывает лишь то, что фурма 3 не является точкой схода. А как обстоит дело с фурмой 5? Для этого следует проверить, верно ли неравенство:
Если это неравенство выполняется совместно с предыдущим, то фурма 4 действительно является точкой схода; в противном случае такой будет фурма 5. Когда и это является неочевидным, как в данном примере, то следует проверить фурму 6 и т. д.
Расчет искомого давления ведется по любому пути от точки 0 до точки схода. При этом
находится по выражению типа (8.48). На практике более важной и чаще встречающейся является обратная задача: определить распределение дутья по фурмам
, если общий расход
, давление в магистральной точке 0 и параметры трубопровода
и
заданы. Заметим, что в этом случае требуется совместно решать задачи расчета трубопровода и движения сыпучих материалов и газов в печи, так как требуется знать сопротивление истечению дутья из фурмы в слой для каждой фурмы.
Простая разветвленная сеть весьма часто встречается в металлургических цехах как элемент конструкционной схемы нагревательных печей. Это могут быть, например, газо- и воздухопроводы, служащие для подвода газа и воздуха к системе горелок печи, или, напротив, система боровов и дымовых каналов, обеспечивающая отвод продуктов сгорания от нескольких нагревательных печей к одной дымовой трубе.
Основными задачами здесь можно считать определение концевых расходов при заданном давлении в начальном сечении или определение давления при заданных концевых расходах
. Очень часто приходится решать и третью задачу отыскания диаметров участков сети
, когда все прочие параметры заданы.
Рассмотрим в качестве примера первую задачу, причем для простоты примем, что ответвлений всего два (рис. 8.16). Для определенности будем считать, что речь идет о подводе газа к горелкам печи.
Рис. 8.16. Схема простой разветвлённой сети
Поскольку газ подается в одну и ту же печь, то естественно, что сопротивления на ветвях и
будут одинаковыми. Тогда можно записать два соотношения:
(8.49)
(8.50)
или, используя коэффициенты В,
(8.51)
(8.52)
Вычитая из первого уравнения второе, найдем
или
(8.53)
т.е. расходы и в этом случае распределяются прямо пропорционально площадям эквивалентных отверстий. Подставив теперь уравнение (8.53) в (8.51), получим
(8.54)
Заметим, что здесь, как при определении расходов, требуется итерация по и
.
Легко показать, что при ответвлениях схема расчета остается прежней. Необходимо только вместо уравнения (8.53) воспользоваться соотношениями (8.44), а (8.54) заменить уравнением
. (8.55)
Простой анализ вышеприведенных формул показывает, что при одинаковых диаметрах ответвлений расходы
распределяются неравномерно: чем дальше узловая точка находится от магистральной точки A, тем меньше расход
. Поэтому при необходимости обеспечения равенства концевых расходов следует добиваться одинаковых площадей эквивалентных отверстий путем соответствующего подбора диаметров
, степени открытия задвижек.
Из изложенного следует, что при определении давления в случае, когда концевые расходы заданы, целесообразно рассчитывать ветвь самой удаленной точки (от магистральной точки A). Требование обеспечения равенства площадей эквивалентных отверстий при одинаковых концевых расходах остается в силе и здесь.
Глава 9. ИСТЕЧЕНИЕ ГАЗОВ ИЗ ОТВЕРСТИЙ И СОПЕЛ
Истечение газов происходит при работе горелок, форсунок, при выбивании газов через отверстия в стенках печей и во многих других случаях.
Истечение газов существенно отличается от истечения жидкости. При истечении жидкости протекает простой процесс реализации запаса потенциальной энергии в кинетическую энергию потока; температура и плотность жидкости не изменяются. При истечении газов происходит одновременная реализация запаса потенциальной энергии и части внутренней энергии в кинетическую энергию, в результате чего температура и плотность газа могут претерпевать существенные изменения.
Однако если истечение газов происходит под действием очень малой разности давлений (p £ 1,1 pокр), то, как показывает опыт, плотность газов изменяется весьма незначительно, так что этим изменением плотности можно пренебречь, положив r = r0. Такой газ условно называют несжимаемым.
Источник: studopedia.ru
Постановка задачи
Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.
Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:
- минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
- круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
- форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
- процесс изготовления труб круглой формы относительно простой и доступный.
Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.
Основными параметрами, характеризующими трубопровод являются:
- условный (номинальный) диаметр – DN;
- давление номинальное – PN;
- рабочее допустимое (избыточное) давление;
- материал трубопровода, линейное расширение, тепловое линейное расширение;
- физико-химические свойства рабочей среды;
- комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
- изоляционные материалы трубопровода.
Условный диаметр (проход) трубопровода (DN) – это условная безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).
Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.
Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.
Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.
Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.
Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.
Основные положения гидравлического расчета
Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.
Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний, по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:
Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:
- ламинарный поток (Re<2300), при котором носитель-жидкость движется тонкими слоями, практически не смешивающимися друг с другом;
- переходный режим (2300<Re<4000), который характеризуется нестабильной структурой потока, когда отдельные слои жидкости перемешиваются;
- турбулентный поток (Re>4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.
Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.
Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.
Подбор оптимального диаметра трубопровода
Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.
Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:
При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).
Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:
Расчет падения напора и гидравлического сопротивления
Полные потери напора жидкости включают в себя потери на преодоление потоком всех препятствий: наличие насосов, дюкеров, вентилей, колен, отводов, перепадов уровня при течении потока по трубопроводу, расположенному под углом и т.д. Учитываются потери на местные сопротивления, обусловленные свойствами используемых материалов.
Другим важным фактором, влияющим на потери напора, является трение движущегося потока о стенки трубопровода, которое характеризуется коэффициентом гидравлического сопротивления.
Значение коэффициента гидравлического сопротивления λзависит от режима движения потока и шероховатости материала стенок трубопровода. Под шероховатостью понимают дефекты и неровности внутренней поверхности трубы. Она может быть абсолютной и относительной. Шероховатость различна по форме и неравномерна по площади поверхности трубы. Поэтому в расчетах используется понятие усредненной шероховатости с поправочным коэффициентом (k1). Данная характеристика для конкретного трубопровода зависит от материала, продолжительности его эксплуатации, наличия различных коррозионных дефектов и других причин. Рассмотренные выше величины являются справочными.
Количественная связь между коэффициентом трения, числом Рейнольдса и шероховатостью определяется диаграммой Муди.
Для вычисления коэффициента трения турбулентного движения потока также используется уравнение Коулбрука-Уайта, с использованием которого возможно наглядное построение графических зависимостей, по которым определяется коэффициент трения:
В расчётах используются и другие уравнения приблизительного расчета потерь напора на трение. Одним из наиболее удобных и часто используемых в этом случае считается формула Дарси-Вейсбаха. Потери напора на трение рассматриваются как функция скорости жидкости от сопротивления трубы движению жидкости, выражаемой через значение шероховатости поверхности стенок трубы:
Потери давления по причине трения для воды рассчитывают по формуле Хазена — Вильямса:
Расчет потерь давления
Рабочее давление в трубопроводе – это на большее избыточное давление, при котором обеспечивается заданный режим технологического процесса. Минимальное и максимальное значения давления, а также физико-химические свойства рабочей среды, являются определяющими параметрами при расчёте расстояния между насосами, перекачивающими носитель, и производственной мощности.
Расчет потерь на падение давления в трубопроводе осуществляют по уравнению:
Примеры задач гидравлического расчета трубопровода с решениями
Задача 1
В аппарат с давлением 2,2 бар по горизонтальному трубопроводу с эффективным диаметром 24 мм из открытого хранилища насосом перекачивается вода. Расстояние до аппарата составляет 32 м. Расход жидкости задан – 80 м3/час. Суммарный напор составляет 20 м. Принятый коэффициент трения равен 0,028.
Рассчитайте потери напора жидкости на местные сопротивления в данном трубопроводе.
Исходные данные:
Расход Q = 80 м3/час = 80·1/3600 = 0,022 м3/с;
эффективный диаметр d = 24 мм;
длина трубы l = 32 м;
коэффициент трения λ = 0,028;
давление в аппарате Р = 2,2 бар = 2,2·105 Па;
общий напор Н = 20 м.
Решение задачи:
Скорость потока движения воды в трубопроводе рассчитывается по видоизмененному уравнению:
w=(4·Q) / (π·d2) = ((4·0,022) / (3,14·[0,024]2)) = 48,66 м/с
Потери напора жидкости в трубопроводе на трение определяются по уравнению:
HТ = (λ·l) / (d·[w2/(2·g)]) = (0,028·32) / (0,024·[48,66]2) / (2·9,81) = 0,31 м
Общие потери напора носителя рассчитываются по уравнению и составляют:
hп = H — [(p2-p1)/(ρ·g)] — Hг = 20 — [(2,2-1)·105)/(1000·9,81)] — 0 = 7,76 м
Потери напора на местные сопротивления определяется как разность:
7,76 — 0,31=7,45 м
Ответ: потери напора воды на местные сопротивления составляют 7,45 м.
Задача 2
По горизонтальному трубопроводу центробежным насосом транспортируется вода. Поток в трубе движется со скоростью 2,0 м/с. Общий напор составляет 8 м.
Найти минимальную длину прямого трубопровода, в центре которого установлен один вентиль. Забор воды осуществляется из открытого хранилища. Из трубы вода самотеком изливается в другую емкость. Рабочий диаметр трубопровода равен 0,1 м. Относительная шероховатость принимается равной 4·10-5.
Исходные данные:
Скорость потока жидкости W = 2,0 м/с;
диаметр трубы d = 100 мм;
общий напор Н = 8 м;
относительная шероховатость 4·10-5.
Решение задачи:
Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.
Значение скоростного напора определяется по соотношению:
w2/(2·g) = 2,02/(2·9,81) = 0,204 м
Потери напора воды на местные сопротивления составят:
∑ζМС·[w2/(2·g)] = (4,1+1)·0,204 = 1,04 м
Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):
hп = H — (p2-p1)/(ρ·g) — = 8 — ((1-1)·105)/(1000·9,81) — 0 = 8 м
Полученное значение потери напора носителя на трение составят:
8-1,04 = 6,96 м
Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10-3 Па·с, плотность воды – 1000 кг/м3):
Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10-3) = 200000
Согласно рассчитанному значению Re, причем 2320 <Re< 10/e, по справочной таблице рассчитаем коэффициент трения (для режима гладкого течения):
λ = 0,316/Re0,25 = 0,316/2000000,25 = 0,015
Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:
l = (Hоб·d) / (λ·[w2/(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м
Ответ:требуемая длина трубопровода составит 213,235 м.
Задача 3
В производстве транспортируют воду при рабочей температуре 40°С с производственным расходом Q = 18 м3/час. Длина прямого трубопровода l = 26 м, материал — сталь. Абсолютная шероховатость (ε) принимается для стали по справочным источникам и составляет 50 мкм. Какой будет диаметр стальной трубы, если перепад давления на данном участке не превысит Δp = 0,01 мПа (ΔH = 1,2 м по воде)? Коэффициент трения принимается равным 0,026.
Исходные данные:
Расход Q = 18 м3/час = 0,005 м3/с;
длина трубопровода l=26 м;
для воды ρ = 1000 кг/м3, μ = 653,3·10-6 Па·с (при Т = 40°С);
шероховатость стальной трубыε = 50 мкм;
коэффициент трения λ = 0,026;
Δp=0,01 МПа;
ΔH=1,2 м.
Решение задачи:
Используя форму уравнения неразрывности W=Q/F и уравнение площади потока F=(π·d²)/4 преобразуем выражение Дарси – Вейсбаха:
∆H = λ·l/d·W²/(2·g) = λ·l/d·Q²/(2·g·F²) = λ·[(l·Q²)/(2·d·g·[(π·d²)/4]²)] = =(8·l·Q²)/(g·π²)·λ/d5 = (8·26·0.005²)/(9,81·3,14²)· λ/d5 = 5,376·10-5·λ/d5
Выразим диаметр:
d5 = (5,376·10-5·λ)/∆H = (5,376·10-5·0,026)/1,2 = 1,16·10-6
d = 5√1,16·10-6 = 0,065 м.
Ответ: оптимальный диаметр трубопровода составляет 0,065 м.
Задача 4
Проектируются два трубопровода для транспортировки невязкой жидкости с предполагаемой производительностью Q1 = 18 м3/час и Q2 = 34 м3/час. Трубы для обоих трубопроводов должны быть одного диаметра.
Определите эффективный диаметр труб d, подходящих под условия данной задачи.
Исходные данные:
Q1 = 18 м3/час;
Q2 = 34 м3/час.
Решение задачи:
Определим возможный интервал оптимальных диаметров для проектируемых трубопроводов, воспользовавшись преобразованным видом уравнения расхода:
d = √(4·Q)/(π·W)
Значения оптимальной скорости потока найдем из справочных табличных данных. Для невязкой жидкости скорости потока составят 1,5 – 3,0 м/с.
Для первого трубопровода с расходом Q1 = 18 м3/час возможные диаметры составят:
d1min = √(4·18)/(3600·3,14·1,5) = 0,065 м
d1max = √(4·18)/(3600·3,14·3.0) = 0,046 м
Для трубопровода с расходом 18 м3/час подходят трубы с диаметром поперечного сечения от 0,046 до 0,065 м.
Аналогично определим возможные значения оптимального диаметра для второго трубопровода с расходом Q2 = 34 м3/час:
d2min = √(4·34)/(3600·3,14·1,5) = 0,090 м
d2max = √(4·34)/(3600·3,14·3) = 0,063 м
Для трубопровода с расходом 34 м3/час возможные оптимальные диаметром могут быть от 0,063 до 0,090 м.
Пересечение двух диапазонов оптимальных диаметров находится в интервале от 0,063 м до 0,065 м.
Ответ: для двух трубопроводов подходят трубы диаметром 0,063–0,065 м.
Задача 5
В трубопроводе диаметром 0,15 м при температуре Т = 40°C движется поток воды производительностью 100 м3/час. Определите режим течения потока воды в трубе.
Дано:
диаметр трубы d = 0,25 м;
расход Q = 100 м3/час;
μ = 653,3·10-6 Па·с (по таблице при Т = 40°С);
ρ = 992,2 кг/м3 (по таблице при Т = 40°С).
Решение задачи:
Режим течения потока носителя определяется по значению числа Рейнольдса (Re). Для расчета Re определим скорость движения потока жидкости в трубе (W), используя уравнение расхода:
W = Q·4/(π·d²) = [100/3600] · [4/(3,14·0,25²)] = 0,57 м/c
Значение числа Рейнольдса определим по формуле:
Re = (ρ·W·d)/μ = (992,2·0,57·0,25) / (653,3·10-6) = 216422
Критическое значение критерия Reкр по справочным данным равно 4000. Полученное значение Re больше указанного критического, что говорит о турбулентном характере течения жидкости при заданных условиях.
Ответ: режим потока воды – турбулентный.
Источник: pkfdetal.ru