Электричество из водорода


Водородное топливо — отличная альтернатива углеводородному: при сжигании чистого водорода образуется только энергия и вода, и никаких вредных продуктов. Но быстро перейти на водородное топливо мешают сложности с его получением. В отличие от углеводородов, щедро разбросанных под землёй по всей планете, водород нельзя извлекать из недр: в чистом виде его нет нигде на планете. Получают его либо из углеводородов, либо из воды.

Получение водорода из углеводородов — это в основном конверсия метана, то есть очищенного природного газа. Получается, что для производства «чистого» топлива нужно запустить не самый экологичный технологический процесс, в качестве побочного продукта дающий крайне вредный угарный газ.

Выделение водорода из воды — более экологичный процесс, но для него нужна электроэнергия, большую часть которой во всём мире по‑прежнему получают, сжигая уголь, нефть и природный газ и выбрасывая в атмосферу множество загрязнителей.


Исследователи из Королевского мельбурнского исследовательского университета (Австралия), Массачусетского технологического института и Кембриджа нашли способ получать водород из воды без затрат электроэнергии. Реакция отщепления водорода от кислорода в молекуле воды запускается под действием солнечного света в присутствии фотокатализатора.

В качестве фотокатализатора учёные использовали сульфид молибдена — аморфную субстанцию с общей формулой MoSx, отлично впитывающую водяной пар из воздуха, а на солнце запускающую процесс разложения воды с образованием свободного водорода. Добавив к сульфиду молибдена порошок наночастиц диоксида титана, учёные получили род чернил, которые легко наносятся на любые поверхности — например, на стекло и пластик, — и образуют прочную плёнку. Покрыв такой плёнкой любую открытую солнечным лучам поверхность, можно получать водород из насыщенного влагой воздуха где угодно, утверждают авторы исследования.

Исследование в журнале ACS Nano.

www.popmech.ru

Схожие условия, например в космосе. А тема электричества в космосе знакома российским атомщикам очень хорошо уже на протяжении почти полувека. Лунная Н-1 и орбитальный «Буран» (на фото вверху), все они имели на борту электрохимические преобразователи тока, небольшие электростанции, мощностью от 1 до 20 КВт.
"Буран" закрыли, а вот ЭХГ "Фотон" получил дальнейшее развитие.


Суть работы таких установок, до неприличия проста – с одной стороны подается водород,  с другой кислород, а на выходе мы имеем дистиллированную воду и электричество.

4-3

На состоявшемся сегодня брифинге, один из руководителей предприятия-разработчика подтвердил, что работы в этом направлении активизированы. Проекты разработок энергоустановок на базе топливных элементов в интересах военного ведомства проходят качественный анализ. Однако ответить на вопрос, в каких именно целях эти установки будут использоваться, источник отказался.
Однако если углубиться в архивы, то можно прикинуть в каком направлении могут двигаться атомщики.

img11

Кстати! Для непрерывного функционирования оборудования американских военных баз, в случае перебоев с электричеством, на их территории имеются резервные энергетические установки. Раньше эту роль выполняли дизельные генераторы, однако с недавнего времени Министерство обороны США стало искать им альтернативу.


о руководствовалось доводами, что работающий дизель является слишком очевидной целью для потенциальной атаки, кроме того, он занимает много места, и для его роботы постоянно требуется держать запас топлива, которое также занимает внушительный объём. Как сообщает интернет-издание Earth Techling, наиболее подходящей кандидатурой на замену дизелям специалисты посчитали топливные элементы.

Еще про использование водорода, как топлива  вот здесь: Десять дней в воздухе, без посадок и дозаправок
Спасибо за внимание.

engineering-ru.livejournal.com

В зените лета японская автомобилестроительная компания Toyota анонсировала дату начала продаж своего первого серийного седана FCV на водородных топливных элементах: он выйдет на рынок в апреле 2015 года. Заявленные возможности нового водородного электромобиля впечатляют: зарядка за 3–5 минут, пробег 700 км с одной заправки, устойчивый запуск и работа при минус 30º.

Это стало возможным за счет того, что машина сама вырабатывает электричество из водорода и кислорода в специальных элементах, именуемых топливными энергетическими ячейками. В них происходит реакция соединения водорода и кислорода с образованием одного-единственного продукта – воды. Кроме этого, выделяется тепло, которое так нужно пассажирам в осенне-зимний период. Полученное электричество частично поступает в электродвигатели напрямую, частично – запасается в батареях. Вот такая электростанция на колесах.


Итак, от обычного электромобиля FCV отличается тем, что сам производит электроэнергию, а от привычного уже гибрида с двигателем внутреннего сгорания – отсутствием этого двигателя, неизбежных выхлопов СО2 и других малоприятных газов. Зато водородные заправки, по сути, – это вариант уже апробированных заправок сжатым природным газом, возможность легко переключиться на новый продукт.

Электричество из водородаФутуристический дизайн нового авто вполне соответствует его внутренней начинке

Вот здесь и заключается главная интрига: водород – это не исходный продукт, как природный метан, добываемый из земных недр или получаемый в ходе биологических процессов. Это газ химически активный и присутствующий вокруг нас в виде разнообразных соединений, то есть, по сути, промежуточный носитель энергии. Если водородные машины станут популярны, кто еще сможет заработать на этом тренде, кроме их производителей?

Двигатели звезд

Водород – самый простой атом в природе. Чего уж проще – один протон в центре и один электрон на орбите вокруг него. Это и самый распространенный элемент в нашей Вселенной, на его долю приходится около 89% всей материи. Это он «горит» в звездах, превращаясь в гелий.

На нашей планете мы встречаем его в виде различных соединений, например в виде воды, H2O: два атома водорода и один кислорода. Еще одно очень распространенное вещество, природный газ метан, содержит один атом углерода и целых четыре – водорода. Вот вам и два основных способа получения водорода в промышленных масштабах: разбить атом воды или оторвать углерод от молекулы метана.


Самый простой технически способ – это разложение воды электрическим током, известный как электролиз. Постоянный ток течет через воду, и на одном электроде выделяется водород, на другом – кислород. Продукт получается высокой чистоты. Побочный продукт, кислород, также является важным сырьем не только для техники, но и для экологии – в процессах очистки загрязненных вод. Есть еще один – так называемая «тяжелая вода», которая нужна для атомной энергетики, а в перспективе – для термоядерной.

Второй путь – так называемая паровая конверсия метана (ПКМ). Процесс двухступенчатый: сначала при температуре 750–850º градусов на каталитической основе происходит разложение метана в присутствии водяного пара, а затем создается углекислый газ СО2 и водород. Газы разделяются, и водород поставляется потребителям, а вот парниковый СО2 сбрасывается в атмосферу. Есть еще один нюанс – процесс надо подогревать тем же самым природным газом. И все же именно ПКМ является самым распространенным в мире процессом получения промышленного водорода.

Есть и другие промышленные способы. Например, можно использовать раскаленный кокс (разновидность каменного угля), на который выпускается перегретый водяной пар. Или можно просто нагреть воду до более чем 2500º, и тогда молекулы воды начнут распадаться на атомы (правда, в этом случае достаточно сложно предотвратить их последующую рекомбинацию). То есть получать водород мы, люди, умеем. Вопрос в цене процесса и наличии исходных материалов.


Энергетическая демократия в действии

Можно сказать абсолютно определенно: если бы не забота развитых стран о глобальной экологии, в частности стремление сократить выбросы парниковых газов, и прежде всего СО2, в водородном топливе для машин не было бы никакой нужды. На коротких расстояниях вполне эффективны и практичны электромобили на уже имеющихся батареях, для более традиционных машин уже созданы вполне эффективные ДВС. Перевод автотранспорта на природный газ еще в большей степени чистит выхлоп.

Но есть и другой резон в развитии новых автомобилестроительных технологий. Он связан с желанием использовать грандиозный мировой парк автомашин в качестве главного потребителя «зеленой» электроэнергии. Солнечная энергетика, гидро- и ветроэнергетика, в перспективе – получение электроэнергии из геотермальных источников и за счет волн и морских течений объективно снижает зависимость локального потребителя от диктата крупных топливно-энергетических корпораций, таких как «Газпром», E.on, Exxon и т.д. Локальный производитель электроэнергии, он же потребитель, становится участником свободного рынка энергии, происходит демократизация ее производства. 


Однако такие поставщики имеют один недостаток – их мощности нестабильны. И в случае пасмурной безветренной погоды требуется усиленная работа традиционных электростанций, угольных, газовых, атомных. В ветреный же полдень появляется другая проблема – избыток энергии, которую хотелось бы запасти на вечер. Армады машин, которым нужно электричество, – это и есть глобальная батарея для «зеленой» энергетики.

republic.ru

водород в энергетике примерыВодород представляет для энергетики большой интерес и теоретически имеет большие перспективы. Сторонники водородной энергетики считают, что с помощью него можно решить все энергетические проблемы и полностью изменить нынешний мир. Водородная энергетика является альтернативной энергетикой. Водород может получаться из возобновляемых ресурсов и является полностью экологически чистым топливом. Продуктом его сгорания является вода без каких-либо дополнительных вредных примесей. Водород это самый распространенный элемент во Вселенной — на его долю приходится 88,6% всех атомов. Не меньше его и на Земле, водород является основной химической составляющей самого распространенного вещества на Земле — воды.


есть, практически, запасы водорода неисчерпаемы. Из всех известных видов топлива у водорода самая большая теплотворная способность. Теплотворная способность или удельная теплота сгорания топлива — это физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг или объемом 1 кубический метр. В этом отношении водороду нет равных. Удельная теплота сгорания  водорода равняется 141 МДж/кг. Из распространенных видов топлива на втором месте стоит метан — 50,1 МДж/кг, что почти в три раза меньше. Удельная теплота сгорания бензина — 44 МДж/кг, каменного угля — 22 МДж/кг. Водороду также нет равных в транспортировке. Транспортировка водорода по трубам при протяженности линии свыше 500-600 км,  дешевле передачи электроэнергии по проводам (ЛЭП) в 10 раз.

Из истории водорода в энергетике

Попытки использовать водород предпринимались давно. В 1820 году в Кембриджском Философском обществе обсуждался доклад об использовании водорода для движущихся машин. В 1927 году фирма «Цеппелин» выпустила двигатель, работавший на водородном топливе. Большой интерес к использованию водорода в энергетике пробудил известный физик Лоуренс У. Джонс, выступивший в 1970 году с техническим докладом в Мичиганском университете. Он предложил широко использовать водород в качестве экологически чистой замены углеводородному топливу. В 1972 году в США, в  межуниверситетском конкурсе на лучшую конструкцию городского автомобиля, первое место занял автомобиль на водороде.


Советском Союзе также велись исследования в этом направлении. В 1968 году в Институте  теоретической и прикладной механики Сибирского отделения Академии наук СССР  проводились испытания двигателей ГАЗ-652 на водородном топливе.  В Харькове в 1980 году даже появилось такси, работавшее на смеси водорода с бензином. Особенностью двигателя, разработанного харьковскими учеными, было применение гидрида, позволяющее вмещать большее количество водорода в меньшем объеме, и делающее применение водорода совершенно безопасным. Для получения электроэнергии, водород большей частью применяется в топливных элементах, использующих принцип электрохимической реакции. В конце 2006 года во всем мире эксплуатировалось около 5000 малых стационарных водородных электростанций. В 2010 году в Италии, недалеко от Венеции, открылась водородная электростанция мощностью 16 МВт.  Компания FuelCell Energy (США) создала водородную энергоустановку мощностью 40 МВт.

Проблемы водорода в энергетике

водород для заправки автомобилейНесмотря на преимущества водорода и все попытки его использования, нельзя сказать, что водород достиг широкого применения. Водородный транспорт не может составить  конкуренцию обычным электромобилям, так как его использование обходится дороже в несколько раз, и водородная инфраструктура пока еще  развита слабо.


ществует несколько промышленных способов получения водорода. Самым распространенным из них является паровая конверсия природного газа. При этом происходит выделение углекислого газа, поэтому проблема загрязнения воздуха не решается до конца. Что же касается получения водорода методом электролиза из воды, то  стоимость его получения выше в три раза, чем при паровой конверсии, а объем электроэнергии из полученного водорода будет не намного больше затраченной на его получение. Также водород получают из биомассы. Возможно, это самый перспективный путь для водородной энергетики, но пока водород, полученный таким путем, остается еще дорогим. Что же касается взрывоопасности водорода, то эта проблема в современной технике была решена. Остается  маловероятная, но, тем не менее, возможная проблема утечки водорода. Ее сложно заметить, так как водород не имеет запаха и горит бесцветным пламенем. Таким образом, требуются специальные газовые индикаторы в местах нахождения водородного топлива. Несмотря на серьезный недостаток водорода, а именно его дорогое получение, во многих странах ведутся серьезные, крупно финансируемые программы по развитию водородной энергетики. Применение водорода, медленно, но верно, продолжает свое развитие.

alternativnaya-energiya.ru

Описание и принцип работы водородного генератора

Есть несколько методик выделения водорода и из других веществ, перечислим наиболее распространенные:

  1. Электролиз, данная методика наиболее простая и может быть реализована в домашних условиях. Через водный раствор, содержащий соль, пропускается постоянный электрический ток, под его воздействием происходит реакция, которую можно описать следующим уравнением: 2NaCl + 2H2O→2NaOH + Cl2 + H2↑. В данном случае пример приведен для раствора обычной кухонной соли, что не лучший вариант, поскольку выделяющийся хлор является ядовитым веществом. Заметим, что полученный данным способом водород наиболее чистый (порядка 99,9%).
  2. Путем пропускания водяного пара над каменноугольным коксом, нагретым до температуры 1000°С, при таких условиях протекает следующая реакция: Н2О + С ⇔ СО↑ + H2↑.
  3. Добыча из метана путем конверсии с водяным паром (необходимое условие для реакции – температура 1000°С): СН4 + Н2О ⇔ СО + 3Н2. Второй вариант – окисление метана: 2СН4 + О2 ⇔ 2СО + 4Н2.
  4. В процессе крекинга (переработки нефти) водород выделяется в качестве побочного продукта. Заметим, что в нашей стране все еще практикуется сжигание этого вещества на некоторых нефтеперерабатывающих заводах ввиду отсутствия необходимого оборудования или достаточного спроса.

Из перечисленных вариантов последний наименее затратный, а первый наиболее доступный, именно он положен в основу большинства генераторов водорода, в том числе и бытовых. Их принцип действия заключается в том, что в процессе пропускания тока через раствор, положительный электрод притягивает отрицательные ионы, а электрод с противоположным зарядом – положительные, в результате происходит расщепление вещества.

Пример электролиза на растворе хлорида натрия
Пример электролиза на растворе хлорида натрия

Конструктивные особенности и устройство генератора водорода

Если с получением водорода проблем сейчас практически нет, то его транспортировка и хранение до сих пор остается актуальной задачей. Молекулы этого вещества настолько малы, что могут проникать даже сквозь металл, что несет определенную угрозу безопасности. Хранение в абсорбированном виде пока не отличается высокой рентабельностью. Поэтому наиболее оптимальный вариант – генерация водорода непосредственно перед его использованием в производственном цикле.

Для этой цели изготавливаются промышленные установки для генерации водорода. Как правило, это электролизеры мембранного типа. Упрощенная конструкция такого устройства и принцип работы приведен ниже.

Упрощенная схема водородного генератора мембранного типа
Упрощенная схема водородного генератора мембранного типа

Обозначения:

  • А – трубка для отвода хлора (Cl2).
  • B – отвод водорода (Н2).
  • С – анод, на котором происходит следующая реакция: 2CL→CL2 + 2е.
  • D – катод, реакцию на нем можно описать следующим уравнением: 2Н2О + 2е →Н2 + ОН.
  • Е – раствор воды и хлористого натрия (Н2О & NaCl).
  • F – мембрана;
  • G – насыщенный раствор хлористого натрия и образование каустической соды (NaОН).
  • H – отвод рассола и разбавленной каустической соды.
  • I – ввод насыщенного рассола.
  • J – крышка.

Конструкция бытовых генераторов значительно проще, поскольку в большинстве своем они не вырабатывают чистый водород, а производят газ Брауна. Так принято называть смесь кислорода и водорода. Этот вариант наиболее практичен, не требуется разделять водород и кислород, то можно значительно упростить конструкцию, а значит и сделать ее дешевле. Помимо этого полученный газ сжигается по мере его выработки. Хранить и накапливать его в домашних условиях не только проблематично, но и небезопасно.

Конструкция водородной ячейки бытового электролизера
Конструкция водородной ячейки бытового электролизера

Обозначения:

  • а – трубка для отвода газа Брауна;
  • b – впускной коллектор подачи воды;
  • с – герметичный корпус;
  • d – блок пластин электродов (анодов и катодов), с установленными между ними изоляторами;
  • e – вода;
  • f – датчик уровня воды (подключается к блоку управления);
  • g – фильтр водоотделения;
  • h – подвод питания, подаваемого на электроды;
  • i – датчик давления (подает сигнал блоку управления при достижении порогового уровня);
  • j – предохранительный клапан;
  • k – отвод газа с предохранительного клапана.

Характерная особенность таких устройств – использование блоков электродов, поскольку не требуется сепарирование водорода и кислорода. Это позволяет сделать генераторы довольно компактными.

Блоки электродов для установки, которая производит газ Брауна
Блоки электродов для установки, которая производит газ Брауна

Сферы применения водородного генератора

Ввиду проблем, связанных с транспортировкой и хранением водорода, такие устройства востребованы в производствах, где наличие этого газа требует технологический цикл. Перечислим основные направления:

  1. Производства, связанные с синтезом хлороводорода.
  2. Изготовление топлива для ракетных двигателей.
  3. Создание удобрений.
  4. Производство нитрида водорода (аммиака).
  5. Синтез азотной кислоты.
  6. В пищевой промышленности (для получения твердых жиров из растительных масел).
  7. Обработка металла (сварка и резка).
  8. Восстановление металлов.
  9. Синтез метилового спирта
  10. Изготовление соляной кислоты.
Основные сферы применения генераторов водорода в промышленности
Основные сферы применения генераторов водорода в промышленности

Несмотря на то, что производство водорода в процессе переработки нефти дешевле, чем его получение путем электролиза, как уже указывалось выше, возникают сложности с транспортировкой газа. Строить опасные химические производства, непосредственно, рядом с перерабатывающими нефть заводами не всегда позволяет экологическая обстановка. Помимо этого водород, полученный путем электролиза, значительно чище, чем при крекинге нефти. В связи с этим на промышленные водородные генераторы всегда высокий спрос.

Бытовое применение

В быту также есть применение водороду. В первую очередь это автономные отопительные системы. Но здесь некоторые особенности. Установки по производству чистого водорода стоят значительно дороже, чем генераторы газа Брауна, последние даже можно собрать самостоятельно. Но при организации отопления дома необходимо учитывать, что температура горения газа Брауна значительно выше, чем у метана, поэтому потребуется специальный котел, который несколько дороже обычного.

Топливный котел должен иметь соответствующую метку
Топливный котел должен иметь соответствующую метку

В интернете можно встретить немало статей, в которых написано, что для гремучего газа можно использовать обычные котлы, это делать категорически нельзя. В лучшем случае они быстро выйдут из строя, а в худшем могут стать причиной печальных или даже трагических последствий. Для смеси Брауна предусмотрены специальные конструкции с более термостойким соплом.

Необходимо заметить, что рентабельность отопительных систем на основе водородных генераторов вызывает большое сомнение ввиду низкого КПД. В таких системах имеются двойные потери, во-первых, в процессе генерации газа, во-вторых, при нагреве воды в котле. Дешевле для отопления сразу нагревать воду в электрическом бойлере.

Не менее спорная реализация для бытового использования, при которой газом Брауна обогащают бензин в топливной системе двигателя автомобиля с целью экономии.

Применение генератора ННО в авто
Применение генератора ННО в авто

Обозначения:

  • а – генератор ННО (принятое обозначение для газа Брауна);
  • b – отвод газа в камеру сушки;
  • с – отсек для удаления водяных паров;
  • d – возвращение конденсата в генератор;
  • е – подача осушенного газа в воздушный фильтр топливной системы;
  • f – автомобильный двигатель;
  • g – подключение к аккумулятору и электрогенератору.

Нужно заметить, что в некоторых случаях такая система даже работает (если ее собрать правильно). Но точные параметры, коэффициент прироста мощности, процент экономии вы не найдете. Эти данные сильно размыты, и достоверность их вызывает сомнения. Опять же не ясен вопрос, насколько уменьшится ресурс двигателя.

Но спрос порождает предложения, в интернетах можно найти подробные чертежи таких приспособлений и инструкцию по их подключению. Есть и готовые модели, сделанные в стране Восходящего Солнца.

www.asutpp.ru

Выбросы в атмосферу

Первая цель всей этой трансформации сделать воздух наших городов чище. Ещё бы, личный транспорт один из основных источников выбросов. Если «озеленить» хотя бы только легковые машины, воздух стал бы существенно чище. Правительства многих стран подталкивают автопроизводителей делать свои автомобили менее вредными для окружающей среды. Традиционные автомобили на бензине и дизельном топливе уже с трудом соответствуют все новым и новым экологическим нормам. Череда скандалов с занижением показателей вредных выбросов, так называемый «дизельгейт», только подтверждает, что для производства безвредного автомобиля нужно переходить на другие технологии. В данном случае водород и электричество. Как это делают, например, один из крупнейших автопроизводителей в мире японская – Toyota и ещё не так давно небольшой стартап из Калифорнии – Tesla Motors.

Автомобиль на водородных топливных элементах Mirai от компании Toyota не загрязняет атмосферу никакими вредными выбросами. Вместо дыма из выхлопной трубы автомобиль просто сливает образовавшуюся в процессе соединения кислорода и водорода воду на дорогу. Электрокары от Tesla, седан Model S, кроссовер Model X и бюджетник Model 3, по определению не имеют вредных выбросов в атмосферу. Здесь автомобили идут на равных.

Toyota  1:1 Tesla

 

Экологичность «топлива» 

Но если после появления «зелёных» автомобилей воздух наших городов станет чище, то о природе в целом этого сказать ещё нельзя. И начнём с водородных авто.

Водород, конечно, самый распространённый элемент во Вселенной. Вот только видел ли кто его на нашей планете в больших объёмах? В виде полезных ресурсов – как например природный газ, нефть или азот из которого в большей части состоит наша атмосфера? Нет. Ближайшее место, где водород есть в больших объёмах это Юпитер. Но добывать его там, даже через сто лет мы точно не сможем.

Есть вода. Посредством электролиза водород добывают из неё. Но для этого требуется электричество. Причём в больших количествах. А электричество получают путём сжигания того самого ископаемого топлива – угля, нефти (мазута), природного газа, а это к слову сказать 67 % всего электричества в мире. В результате природа получает свою долю вредных выбросов не от автомобиля, а ещё ранее в процессе выработки электричества. Есть, конечно, гидроэлектростанции и атомные электростанции, но они занимают только определённую долю в производстве электроэнергии.

Другой способ получения водорода – из углеводородного сырья (например, метана) ещё более вреден для природы. В этом случае для получения 1 тонны водородного топлива в атмосферу придётся выбросить от 10 до 30 тонн «парникового» CO2 (двуокиси углерода).

В конечном случае все снова сводится к использованию не возобновляемого природного сырья, которое просто сгорает не в двигателе внутреннего сгорания автомобиля, а на электростанции. Но инженерам Toyota есть что ответить.

Водород предлагается получать из отходов жизнедеятельности человека и животных. Правда при более внимательном рассмотрении выясняется, что речь идёт об усовершенствованной технологии получения так называемого биогаза. Усовершенствовали её, или во всяком случае заявили об этом, путём продления технологической цепочки. Если раньше конечным продуктом был метан, то теперь это – водород. Какие побочные вещества выделяются в атмосферу при получении водорода H2 из метана CH4, смотрите выше.

Другой способ – получение электричества для электролиза от возобновляемых источников – энергии Солнца, ветра и приливов. Правда, действующий водородной заправки с солнечными батареями в Toyota пока ещё не показали. В отличие от той же Tesla.

Сеть «Суперзаправок» от Тесла питает автомобили, как уверяют в компании, в основном от солнечных батарей. И только это, и сама концепция транспортной инфраструктуры будущего, где автомобили питаются от Солнца, не требуя ископаемого топлива, позволяет говорить, что здесь Tesla впереди.

Toyota  1:2 Tesla

 

Дальность хода

Toyota против Tesla: водород или электричество, кто кого?

 

А вот количество километров которые можно пройти на одной заправке у Mirai больше. Что не удивительно, водород имеет высокую энергоёмкость. Toyota Mirai производит в своих топливных ячейках 114 кВт ⋅ч электроэнергии. Энергоёмкость литиевых батарей Tesla Model S – 60 кВт⋅ч и 85 кВт⋅ч. В результате Model S на полной батарее может проехать только 434 километра на аккумуляторе ёмкостью 85 кВт⋅ч и 335 километров при 60 кВт⋅ч. Тогда как Mirai отвезёт своего владельца на одной заправке 502 километра. Toyota Mirai сравнивает счет.

Toyota  2:2 Tesla

 

Скорость заправки

Считается, что именно невозможность быстро перезарядить аккумуляторные батареи и была решающим аргументом в выборе Toyota заниматься именно водородным транспортом. На заправку Mirai её владелец потратит всего три минуты. А вот с Tesla все не так просто.

Есть два варианта «заправки» – автоматическая замена батареи, на неё уйдёт около полутора минут, и стандартная зарядка аккумулятора. Причём в первом случае владельцу электрокара придётся заплатить примерно 60-80 долларов. А вот зарядка батареи на зарядочной станции для Model S будет бесплатной. Чтобы зарядить аккумулятор на половину его ёмкости потребуется всего 20 минут, а до 80 % уже все 40. А вот владельцам бюджетной Model 3 придётся раскошелится – для них зарядка аккумуляторов будет платная. Вырывается вперёд Toyota Mirai.

Toyota  3:2 Tesla

 

Инфраструктура

 Toyota против Tesla: водород или электричество, кто кого?

Чтобы экологически чистые автомобили покупал, мало их только рекламировать. Первое с чем столкнётся потребитель купивший «зелёный» автомобиль – это отсутствие заправок. Особенно мало водородных. Mirai уже продается в Японии и США. Отправлены первые машины и в Евросоюз. Пока среди стран Европы, где продаются водородные автомобили только Германия, Дания и Великобритания. Больше всех заправочных станций среди европейских стран было в Германии – восемнадцать, далее Дания – семь и Великобритания, там их пока ещё четыре. К концу прошлого года германская сеть должна была быть расширена до 50 станций, а к 2023 году будет равняться четырем сотням. В Японии прошлый год должен был закрыться 80 заправками, а в штатах 30. Новых цифр пока не сообщалось.

А вот Tesla оперирует совсем другими цифрами. На сегодняшний день в мире построено 646 заправочных станций Supercharger. Из них в США – 270. Плотно охвачены заправками оба побережья и магистральные пути «Coast to Coast». Проехать от побережья Тихого океана к Атлантическому на электрокаре не составляет труда. В Северной Америке заправки есть и в Канаде и Мексике. Европа не отстает – 231 заправочная станция, преимущественно в Северной Европе, Великобритании, Швейцарии и Германии. Но и в остальных странах сеть быстро расширяется, Франция, Италия, Хорватия тоже уже имеют достаточно широкую сеть заправок.

В Азии, а это только Тихоокеанский регион заправочных станций 126. И это только Китай, в основном юго-восток страны и Япония. Восемь заправок построено в Австралии, в штатах Виктория и Новый южный Уэллс. На Ближнем Востоке только одна страна может похвастаться наличием зарядочных станций, это Иордания – здесь их три.

Не стоит забывать, что зарядить Теслу можно и на обычных электрических зарядных станциях которых тоже уже достаточно много. Можно зарядить электромобиль и дома.

 Toyota против Tesla: водород или электричество, кто кого?

Водородный автомобиль, казалось бы дома не зарядишь. Но нет. И если Toyota пока для этого ничего не придумала, то есть Honda которая также занимается водородным транспортом. Так как мы говорим не только о Toyota Mirai но и водородных автомобилях в целом то скажем и о ней. Водородный автомобиль Honda FCV будет доступен покупателям уже с этого года. Зарядить его можно будет и дома. Для этого предусмотрена специальная домашняя система которая получает водородное топливо из природного газа.

Но тем не менее Tesla в этом плане пока удобнее.

Toyota  3:3 Tesla

 

Команды поддержки

Не стоит забывать, Тесла и Тойота не единственные кто участвует в зелёной транспортной революции. Но сказать, что мировые производители жестко разделились на два лагеря нельзя. Многие присутствуют и там и там. Кроме Toyota делают ставку на водород Honda и Nissan, корейская Hyundai, немецкие Daimler, BMW и Volkswagen. Водородная Honda FCX, как уже говорилось, пойдёт в серию в текущем году. Свои концепты автомобилей на водородных топливных ячейках демонстрировали и другие производители. Но в отличие от двух японских компаний остальные предпочитают инвестировать в развитие сети водородных заправок, и пока не спешат запускать в серию свои концепты.

В стане производителей электромобилей кроме Tesla производители автомобилей со всех континентов – GM,Volvo, Nissan и другие. Учитывая более широкую сеть зарядок запускать в серию электрокары можно с меньшим риском. Тот же Hyundai, не покидая лагеря водородников, в марте текущего года представил электрический хэтчбек IONIQ. Новые серийные электромобили появляются все чаще. В конце года пойдет в серию Chevrolet Bolt EV. BMW выпускает свой ситикар i3 уже с 2013 года, а в этом году должен появится и i1. Не стоит забывать и об электрической версии кроссовера RAV4, разрабатывавшегося когда-то Toyota совместно с Tesla, может быть она и вернётся к электрокарам в целях диверсификации.

Добавим сюда и «новые» автомобильные компании Apple с проектом «Titan» и LeECO представившую в апреле концепт своего первого электрокара LeSEE – их автомобили электрические. Но учитывая «вес» автопроизводителей с той и другой стороны, а так же то, что некоторые делают ставку на оба вида «топлива» здесь приоритет кому-либо отдавать рано.

Toyota  3:3 Tesla

 

Цена

Toyota против Tesla: водород или электричество, кто кого?

И наконец, цена экологического вопроса. Стоимость  Toyota Mirai составляет 58 325 долларов в США и 66 000 евро в ЕС, совсем недешево, и сравнимо с автомобилями класса «премиум». Tesla Model S в США продается по цене от  62 400 до 85 900 долларов в зависимости от комплектации. В Европе от 54 720 до 73 000 евро. Ожидаемая цена Model 3 – $35 000 долларов.

Вот только отражает ли эта цена реальную стоимость автомобиля, как того так и другого? Tesla в убытках уже 11 кварталов подряд. За прошлый год убыток – 889 миллионов долларов. На каждый седан Model S приходится 4 000 долларов убытка.

Mirai не менее убыточен, в прессе озвучивалось что потери Toyota на одном автомобиле достигают 100 000 евро. Не удивительно, что электромобили уже давно ездят по дорогам, а водородные автомобили только сейчас выходят в серию.

Экологичность требует усложнения конструкции. В отношении Mirai это особенно точно. По сути, водородный автомобиль от Toyota тот же самый электрокар. Его двигатель не использует водород напрямую. Mirai приводится в движение электродвигателем. Необходимое ему электричество вырабатывается в блоке водородных топливных элементов. Помимо этого питает автомобиль и никель-металлгидридная аккумуляторная батарея, она подпитывается при рекуперативном торможении. Сам водород хранится под днищем Toyota в углепластиковых баках под давлением 680 атмосфер. Чтобы доказать их безопасность и прочность в компании даже расстреливали баки из крупно- и малокалиберного оружия. Даже на первый взгляд видно, что такой автомобиль дешевым быть не может. Во всяком случае, в ближайшем будущем.

Toyota  3:4 Tesla

 

econet.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.