Энергосберегающие технологии для частного дома


Изучаем проблему на реальном опыте, с расчетами специалистов и форумчан

В связи с неуклонным ростом цен на энергоносители и дороговизну подключения газа, всё большее количество застройщиков задумывается о строительстве энергоэффективного дома.

Мы уже рассказывали читателям нашего сайта о том, что такое энергоэффективный дом, и какие технологии используются при его строительстве.

Настало время понять, как рассчитать экономическую целесообразность строительства такого дома.

А помогут нам в этом пользователи FORUMHOUSE.

Из нашего материал вы узнаете:

  • Какой дом энергоэффективный, а какой – нет.
  • Можно ли отопить энергоэффективный дом только электричеством.
  • Как рассчитать необходимую толщину утеплителя.
  • Окупится ли возведение энергоэффективного дома.

Что такое энергоэффективность

Энергоэффективные дома строят в европейских странах уже давно, но для нашей страны подобное жилище всё ещё является экзотикой.


Многие застройщики с недоверием относятся к строительству таких зданий, считая это неоправданной тратой средств.

Разбираемся, так ли это и выгодно ли строить энергоэффективный дом применительно к климатическим условиям большинства зон России, в том числе Москве.

Энергоэффективный (энергопассивный) дом – это строение, в котором затраты, связанные с потреблением энергии, в среднем на 30% меньше, чем в обычном доме. Энергоэффективность недавнего времени можно было определить по коэффициенту сезонного использования тепловой энергии – Е.

  • Е <= 110 кВт*ч /м2/год – это обычный дом;
  • Е <= 70 кВт*ч /м2/год – энергоэффективный;
  • Е <= 15 кВт*ч /м2/год – пассивный.

При подсчёте коэффициента Е учитывается: отношение площади всех наружных поверхностей ко всей кубатуре дома, толщина слоя теплоизоляции в стенах, кровле и перекрытиях, площадь остекления и количество людей, проживающих в здании.

Энергосберегающие технологии для частного дома

В Европе для определения класса энергоэффективности принято использовать коэффициент ЕР, который определяет количество электроэнергии, затрачиваемой на отопление, ГВС, свет, вентиляцию и работу бытовых электроприборов.

За отправную точку берётся ЕР = 1 и энергетический класс D, т.е. стандартный. Современная классификация домов, принятая в европейских странах, выглядит так:


  • ЕР <= 0,25 – класс А, пассивный дом;
  • 0.26 < ЕР <= 0,50 – класс В, экономичный;
  • 0,51 < ЕР <= 0,75 – класс С, энергосберегающий дом;
  • 0,75 < ЕР <= 1 – класс D, стандартный;
  • 1,01< ЕР <= 1.25 – класс Е;
  • 1,26 < EP <= 1,50 – класс F;
  • ЕР >1,51 – класс G, самый энергозатратный                    .

В обычном, недостаточно утеплённом жилье с большими теплопотерями через ограждающие конструкции, большая часть энергии (до 70%) уходит на отопление.

Энергосберегающие технологии для частного дома

Можно сказать, что владельцы такого жилища отапливают улицу.

Поэтому в европейских странах уже никого не удивить толщиной утеплителя в стенах в 300-400 мм, а сам контур здания делается герметичным.

Но прежде чем покупать кубометры утеплителя, необходимо понять, когда дополнительное утепление и весь комплекс мер, связанных со строительством энергоэффективного дома экономически оправданы.

Энергоэффективность в цифрах

В нашей стране отопительный период в среднем длится 7-8 месяцев, а климат более суровый, чем в Европе. Из-за этого возникает масса споров о том, выгодно ли строить у нас энергосберегающие дома. Одним из самых частых утверждений противников энергоэффективного строительства является довод о том, что в нашей стране строительство такого здания обходится очень дорого, а затраты на его возведение не окупятся никогда. 
Но вот комментарий участника нашего портала.


Энергосберегающие технологии для частного дома

Следует заострить внимание на технических характеристиках этого дома:

  • толщина утеплителя в полу – 420 мм;
  • толщина утеплителя в стенах – 365 мм;
  • толщина утеплителя в кровле – 500 мм.

Коттедж построен по каркасной технологии. Система отопления дома – электрические низкотемпературные конвекторы общей мощностью 3.5 кВт. Также в доме смонтирована система приточно-вытяжной вентиляции с рекуператором и грунтовым теплообменником подогрева уличного воздуха. Для снабжения горячей водой дополнительно установлены вакуумные солнечные коллекторы.

Также интересен опыт форумчанина Александра Федорцова (ник на форуме Скептик), самостоятельно построившего каркасный дом в 186 кв. м на фундаменте “утепленная шведская плита”, с самодельным теплоаккумулятором на 1.7 м3 и с врезанными в него электрическими тэнами.


Как показывает опыт пользователей нашего сайта, строительство энергоэффективного дома по силам любому. Причём, совсем не требуется оснащать его дорогими инженерными системами наподобие рекуператоров воздуха, тепловыми насосами, гелиоколлекторами или солнечными батареями. По мнению форумчанина с ником Toiss, главное – это тёплый замкнутый контур, превосходящий современные СНиПы в три раза, отсутствие мостиков холода, тёплые окна, хорошо утеплённая кровля, фундамент и стены.

Энергоэффективность – базовые принципы

Как и чем утеплять дом – один из главных вопросов, возникающих при строительстве.
И думать об этом нужно ещё на стадии проектирования. По мнению Павла Орлова (ник на форуме Smart2305), перед экономическим расчётом оправданной толщины утеплителя надо определиться со следующими исходными данными, а именно:

  1.  Площадь планируемого дома;
  2.  Площадь и тип окон;
  3.  Площадь фасадов;
  4.  Площадь фундамента и поверхностей цокольного этажа;
  5.  Высота потолков, или внутренний объем дома;
  6.  Тип вентиляции (естественная, принудительная).

Энергосберегающие технологии для частного дома

Основные теплопотери в доме происходят через:

  1. Окна;
  2. Ограждающие конструкции (крышу, стены, фундамент);
  3. Вентиляцию;

При чоздании проекта экономически сбалансированного дома необходимо стремиться к тому, чтобы теплопотери по всем трём категориям были примерно одинаковы, т.е. по 33,3%. В этом случае достигается баланс между дополнительным утеплением и экономической выгодой от такого утепления.

Энергосберегающие технологии для частного дома

Т.к. уменьшить теплопотери через окна сложнее всего, то при проектировании теплоизоляции ограждающих конструкций дома и системы вентиляции, для сбалансированности, нужно стремиться к тем же значениям – 3000 Вт.

Отсюда общие теплопотери дома составят 3000х3 = 9000 Вт.

Если же пытаться уменьшить только теплопотери ограждающих конструкций, без уменьшения теплопотерь окон, то это приведёт к необоснованному перерасходу средств на утеплитель.

Также необходимо уменьшить теплопотери, связанные с вентилированием помещений. По современным стандартам, необходимо чтобы весь объём воздуха в жилом помещении сменялся 1 раз в час. Дому площадью 170 кв. м с высотой потолков 3 м необходимо 500 м3/час свежего уличного воздуха.

Если обеспечить приток в дом только холодного воздуха с улицы, то тепловые потери составят 16,7х500=8350 Вт. Это не укладывается в баланс энергоэффективного дома, мы не сможем сказать что такой дом энергосберегающий.

Остаётся два выхода:

  1. Уменьшить воздухообмен, но это не отвечает современным нормативам по необходимому воздухообмену;
  2. Уменьшить тепловые потери при подаче холодного воздуха в дом.

Для подогрева уличного холодного воздуха, поступающего в дом, применяется установка систем принудительной, приточно-вытяжной вентиляции с рекуператором. С помощью этого устройства тепло уходящего на улицу воздуха передаётся входящему потоку. Таким образом повышается эффективность вентиляции.

Энергосберегающие технологии для частного дома

Экономическая целесообразность дополнительного утепления

Основной показатель экономической эффективности дополнительного утепления дома – срок окупаемости системы утепления.

Энергосберегающие технологии для частного дома

Интересен опыт пользователя с ником Андрей А.А, сравнившего затраты на отопление в режиме ПМЖ утеплённого и неутеплённого дома. Для чистоты эксперимента за исходные условия принимаем следующие данные:

  • отопление магистральным газом;
  • теплопотери через ограждающие конструкции – 300кВт/ч/(кв.м.*год);
  • дом имеет срок службы в 33 года.

Теперь подсчитаем, какую сумму можно сэкономить, если как следует утеплить дом.

Чтобы получить 100% экономический эффект от дополнительного утепления, необходимо, чтобы сумма, потраченная на дополнительное утепление, не превысила половину суммы, сэкономленной на стоимости энергии.

Т.е. для данного примера затраты на утепление не должны превысить 200 тыс. рублей.

Также интересен подход к расчёту рентабельности от дополнительного утепления форумчанина с ником mfcn:

– Рассмотрим следующие гипотетические условия:

  • в доме +20°C, на улице -5°C;
  • отопительный период – 180 дней;
  • дом – с однослойным каркасом, стоимостью 8000 руб/м3, утеплённый минеральной ватой по 1500 руб/м3;
  • стоимость монтажа – 1000 руб/м3 утепления;
  • шаг каркаса – 600 мм, толщина – 50 мм.

Исходя из этих данных, кубометр утепления стоит 3000 руб.

После всех расчётов mfcn пришёл к выводу, что оптимальная толщина утеплителя для этого здания должна быть не более 20 см: дальнейшее увеличение толщины утеплителя экономически нерентабельно.

Посмотрим, оправдан ли такой подход.

Энергосберегающие технологии для частного дома


Учитывая, что стоимость магистрального газа растёт быстрее инфляции, то можно предположить, что в будущем цены на газ сравняются с ценами на другие энергоносители (которые также растут). Поэтому при расчёте срока окупаемости утепления брать сегодняшние цены на газ в перспективе, что в будущем они останутся на прежнем уровне, через 10-20 лет, неправильно.

www.forumhouse.ru

Оптимизируем все, от стоимости до планировки

Поскольку владельцы дома — люди далеко не богатые, они попросили, чтобы стоимость 1 м² с отделкой была недорогой.

  • в доме установлены пластиковые окна;
  • на пол уложены ламинат, ковролин и лакированная фанера;
  • белые гипсокартонные стены покрыты фактурной краской, а части деревянного каркаса — лаком;
  • использованы сантехника эконом класса и встроенные в потолок и недорогие светильники;
  • весьма оригинальные лестницы, изготовленные строительным способом, безопасны для детей

То есть дом площадью около 200 м² (без мансарды) обеспечен всем, что нужно для жизни, и при этом достигнут необходимый уровень комфорта. В доме три санузла, две кухни (одна оборудована полностью, вторая — частично), финская баня (правда, пока без купели), четыре изолированные спальни и большое зонированное общественное пространство, включающее зимний сад. Поэтому места здесь хватает и детям, и взрослым, и даже гостям.


Оптимален дом и с точки зрения планировки. Спальня владельцев и две детские находятся на третьем этаже. На втором, куда можно попасть сразу с главного входа, — спальня для родителей хозяев (им трудно подниматься на третий этаж), хозяйская кухня и гостиная. На первом этаже — общественные и технические помещения, баня и ещё одна кухня. Такое расположение исключает хаотичное перемещение жильцов с нижнего этажа на самый верхний: члены семьи весь день могут проводить в общественных зонах первого и второго уровней, а на третий (спальный) подниматься только вечером. Если приехали друзья, они могут расположиться на первом этаже. В том случае, если гостей много или одновременно пришли две разные компании, можно открыть для посещения и второй этаж (при этом в хозяйскую спальню и детские доступ будет по-прежнему ограничен).

Дом не только тёплый, но и светлый: его довольно толстые энергосберегающие стены оптимально сочетаются с большими светопрозрачными конструкциями, создающими ощущение простора. Конечно, при этом сопротивление теплопередаче ограждающих конструкций оказалось несколько неравномерным, но в целом оно сбалансировано и соответствует заданным требованиям: у дома Green Balance данный показатель близок к 7 м² х °С/Вт, что чуть ниже европейских нормативов для пассивных зданий (8-10 м² х °С/Вт). Как этого добились?

 

 

Компактно и тепло

Чтобы дом эффективно сберегал энергию, недостаточно заложить в его стены толстый слой утеплителя. Он должен быть компактным. Чем компактнее здание, тем проще сохранять в нём тепло, и к тому же стоить оно будет дешевле. Поясним это утверждение.


Можно построить энергоэффективный одноэтажный дом площадью 200 м², но он получится очень дорогим из-за огромной площади фундамента и стен. Другое дело — трёхэтажное здание той же площади. Оно гораздо более компактно, а следовательно, решить задачу удержания тепла внутри его можно значительно быстрее и дешевле. А фундамент у него будет почти в 3 раза меньше (кстати, стоимость основания составляет 30 — 40 % от общей цены дома). Чтобы сделать фундамент ещё дешевле и одновременно снизить теплопотери, архитекторы применили два оригинальных приёма. Во-первых, поставили дом на плавающую монолитную «утеплённую» плиту, которая одновременно служит основанием пола первого этажа. Благодаря этому под зданием нет «закопанных» в землю массивных конструкций, которые забирают тепло. Во-вторых, заглубили первый этаж на 1 м ниже отметки грунта, создав с одной стороны постройки земляную подсыпку на всю высоту первого этажа. Она позволила решить сразу две задачи: искусственно заглубить основание ниже точки промерзания грунта и устроить главный вход в дом на уровне второго этажа.

Таким образом, первый этаж оказался под землёй, но не полностью, а лишь частично. Это позволило ему остаться полноценным жилым этажом. В той части здания, которая не заглублена в землю, обустроили общественные помещения. Днём свет в них поступает сквозь высокие панорамные окна. В конструкции последних предусмотрена и дверь — через неё можно выйти на примыкающую к дому площадку для отдыха. Там, где стены первого этажа засыпаны землёй, находятся помещения, которым окна не требуются: финская баня, санузел и т. п. Котельная, расположенная в этой части дома, имеет отдельный вход со стеклянной дверью. Теперь, когда мы разобрались с основными, заложенными в проект идеями, рассмотрим, как их воплощали в жизнь на строительной площадке.

 

Котлован и фундамент

Сначала выполнили разметку участка и выставили так называемые обноски. Затем сняли плодородный слой грунта (он пригодится для ландшафтных работ) и выкопали котлован глубиной 1 м не только под самим домом, но и под «патио» — площадкой, на которую будут выходить окна первого этажа. Грунт не вывозили, а сразу подсыпали на указанные в проекте места. Дно котлована вручную выровняли и закрыли песчаной подушкой толщиной около 10 см.

Основанием дома стала монолитная плита с прямоугольными рёбрами, расположенными в виде сетки. Шаг последней был переменным: под той частью дома, где стены каменные, он меньше, под каркасной — больше. Такая конструкция (она представляет собой ноу-хау архитекторов и на фотографиях подробно не показана) позволяет уравнять давление, которое оказывают на грунт части здания, имеющие различный вес (в данном случае — каменная и каркасная).

Под силовые рёбра выкопали траншеи глубиной около 50 см и шириной 30 см. Их полностью засыпали песчано-гравийной смесью (ПГС) толщиной примерно 40 см. ПГС и песок тщательно утрамбовали. Между будущими рёбрами на песчаную подсыпку уложили в несколько слоев гидроизоляцию, а на неё — плиты «Rockwool Флор Баттс» общей толщиной 120 мм и прикрыли их слоем гидроизоляции. Затем в образовавшихся между плитами утеплителя «канавках» создали из арматуры диаметром 12 мм каркас будущих рёбер. После этого по всей площади фундамента уложили в два слоя дорожную сетку из проволоки диаметром 5 мм с ячейками 100 х 100 мм, связав её с арматурой силовых рёбер. Далее в местах расположения стоек силового деревянного каркаса дома к арматуре вертикально присоединили металлические стержни, к которым будут крепиться «башмаки », удерживающие стойки от горизонтального смещения. Наконец из бетона марки М300 отлили плиту с рёбрами сечением 300 х 300 мм и толщиной «стяжки» 80 мм.

 

Возведение стен подвала

Наружную стену первого этажа, которая впоследствии окажется ниже уровня грунта, изготовили из кирпича, причём весьма оригинальным способом. Вначале торчащую из-под основания гидроизоляцию загнули вверх и герметично приклеили к торцевой поверхности плиты. Затем вдоль контура стены установили лист сотового поликарбоната толщиной 5 мм, закрепив его в вертикальном положении с помощью деревянных стоек, и герметично приклеили к слою гидроизоляции. Таким образом, ещё до возведения самой стены решили проблему её изоляции от поступающей из фунта влаги. Эта изоляция была сплошной— она состояла из одного листа сотового поликарбоната длиной 12 м. Возвести саму дугообразную стену толщиной в полкирпича (она тонкая, так как является не несущей, а служит всего лишь подпорной стенкой для фунта) было, как говорится, делом техники.

 

Силовой каркас и стены

Наружные стены здания комбинированные — частично кирпичные, частично каркасные. Почему так? Кирпичные стены из-за своей большой массы обладают довольно значительной теплоёмкостью, иногда даже излишней. Стены каркасного дома имеют минимальную массу и поэтому отличаются невысокой теплоёмкостью. Комбинация двух материалов даёт ряд существенных преимуществ. Во-первых, она позволяет переложить часть нагрузки с каркаса на гораздо более мощные кирпичные конструкции. Во-вторых, даёт возможность уравнять теплоёмкость стен дома в целом (каменная стена будет работать как пассивный аккумулятор). В-третьих, кирпичные стены станут надёжной опорой для бетонных стяжек в ванных комнатах и санузлах.

Деревянный каркас и кирпичные стены возводили параллельно. Сопряжение частей деревянного каркаса с кладкой выполняли через прокладки из утеплителя. Это позволило создать «скользящую посадку», которая и дала возможность нивелировать разницу величин температурного расширения кирпича и дерева.

Каменные стены многослойные: они состоят из двух кирпичных стенок и уложенного между ними слоя утеплителя «Rockwool Венти Баттс» толщиной 100 мм. Толщина внутренней опорной стены— 380 мм (полтора кирпича). Внешняя стенка, выложенная из более дорогого облицовочного кирпича, имеет толщину 120 мм (полкирпича). Деревянные стойки каркаса сечением 150 х 150 мм установили в стальные подпятники. На них закрепили ригели — горизонтальные деревянные балки сечением 200 х 120 мм, которые изготовили на месте, склеивая и скрепляя саморезами доски сечением 200 х 4О мм (балка позволяет перекрывать пролёты до 8 м). Затем, уже опираясь на ригели, создали конструкцию перекрытия (о ней чуть позже).

А где же каркасные стены? Их пока нет. При возведении этого здания использовали практически тот же приём, что и при строительстве многоэтажного дома из монолитного бетона: сначала соорудили несущую «этажерку», а потом опёрли на неё внешние ненесущие ограждения. То есть возведённая силовая каркасная «этажерка» являлась самонесущей конструкцией. Единственное отличие от бетонного аналога в том, что в момент создания её надо было удерживать от боковых колебаний временными раскосами. После того как соорудили кирпичные стены, образующие весьма жёсткую угловую конструкцию, и соединили их с каркасом, именно они стали защищать последний от боковых колебаний. Все временные раскосы сняли.

 

Решетчатые перекрытия

У перекрытий дома необычная конструкция — решётчатая. Они созданы из устанавливаемых на узкую кромку досок сечением 100 х 40 мм, расположенных с шагом 600 мм в двух перпендикулярных друг другу рядах (по высоте). При этом нижний ряд досок опирается на прикреплённые к стойкам балки-ригели. Снизу к кромкам «решётки» плашмя подшили доски сечением 100 х 20 мм. Сверху на «решётку » уложили настил из ОСП-плит толщиной 8 мм, поверх которого так же, как снизу — «клеткой», — прибили доски 100 х 20 мм, и уже к ним прикрепили сплошной настил пола из ОСП-плит толщиной 18 мм.

Чтобы обеспечить звуковой комфорт, перекрытие изолировали плитами «Rockwool Акустик Баттс», а сверху на «решётку» (прежде чем создавать настил из ОСП-плит толщиной 8 мм) уложили вспененный фольгированный материал (фольгоизол). Он одновременно служит и «амортизатором» для сплошного настила пола, и отражателем тепла, а также света, если в решётку снизу будет встроен светильник. Следует отметить, что даже при перекрывании пролётов шириной до 8 м толщина перекрытия не превышает 300 мм — клеёные балки-ригели, на которые опирается «решётка», остаются в интерьере и не уменьшают видимую высоту потолков.

И ещё один любопытный момент. Внешний контур решётчатого перекрытия в момент возведения лишь приблизительно совпадает с внешним контуром будущих наружных стен дома. Точные размеры оно приобретает позднее — при создании каркаса обшивки внешних стен, когда края перекрытия опиливают. В решётчатом перекрытии можно выпиливать проёмы произвольной формы, только необходимо укрепить их края. Внутренние перегородки допускается устанавливать в любом месте.

«Решётку» кровельного перекрытия создали не из двух, а из трёх рядов стоящих на узкой кромке досок. Поверх неё уложили сплошной настил из ОСП-плит толщиной 12 мм, а на него— рулонный кровельный материал в несколько слоёв. Форма кровельного перекрытия довольно оригинальна— оно односкатное (уклон кровли составляет около 7-10°), но не плоское, а как бы закрученное по спирали.

 

Каркасные стены

Кровельное перекрытие и перекрытие первого этажа по периметру обрезали по заданному проектом контуру. После этого их утеплили, используя плиты «Rockwool Лайт Баттс». Далее к «решёткам» обоих перекрытий с шагом 600 мм вертикально прикрепили доски сечением 100 х 50 мм, создав из них каркас наружных стен. Когда их контур полностью обрисовался, по нему обрезали края перекрытия второго этажа.

Затем в местах, предусмотренных проектом, каркас обшили ОСП- плитами толщиной 9 мм. Плиты прибивали к каркасу, оставляя между ними горизонтальные щели шириной 2 см. Они по замыслу архитекторов должны обеспечивать возможность выхода наружу из влажных помещений или зимнего сада паров воды, попавших в смонтированный на стенах изнутри дома утеплитель. Проникнув сквозь щели во внешнее утепление, эти пары затем смогут выйти из него в атмосферу. В дальнейшем стены были оштукатурены и окрашены.

 

Светопрозрачные конструкции

ОСП-плиты прибили к каркасу только в местах, предусмотренных проектом. Дело в том, что значительную часть фасада обшили листами сотового поликарбоната толщиной 25 мм, которые с торцов тщательно загерметизировали. В чём плюсы такой отделки? Благодаря применению листов размером 12 х 2 м создаваемые с их помощью «стены» практически не продуваются. И хотя теплосберегающие характеристики поликарбоната толщиной 25 мм практически такие же, как двухкамерного стеклопакета, собранная с его использованием светопрозрачная конструкция значительно теплее, чем остеклённая такой же площади.

В доме использованы и обычные стеклянные окна и двери. Их рамы выполнены из пятикамерного ПВХ-профиля (самый экономичный вариант) и оснащены двухкамерными стеклопакетами, которые изготовлены с применением низкоэмиссионного i-стекла и заполнены инертным газом.

Чтобы уменьшить теплопотери в зоне примыкания окон к кирпичной стене, их крепили следующим образом. При возведении стен по периметру оконных проёмов оставили пазы сечением 120 х 120 мм, в которые перед монтажом окон вкладывали нарезанные из утеплителя полосы. Окна устанавливали на анкерные пластины, прикрепляемые к кирпичной кладке проёма со стороны помещения. При монтаже утеплитель слегка поджимали, чтобы он, распрямившись после установки окон, сам прикрыл щель между рамой и проёмом. В дальнейшем оконные откосы снаружи оштукатурили.

 

Система отопления

Несколько необычно организована подача теплоносителя к обогревающим устройствам: он поступает наверх, а затем самотёком расходится по системе отопления. В обычном режиме воду наверх подаёт электронасос, а в отсутствие электроснабжения она направляется туда за счёт так называемой гравитационной циркуляции. Последнюю обеспечивает подающий воду наверх стояк, который состоит не из одной, а из двух труб диаметром 32 мм (клапан, открывающий подачу теплоносителя через вторую трубу, срабатывает, когда в сети исчезает напряжение).

В доме использованы сразу три системы обогрева. Первая — водяные тёплые полы, смонтированные на первом этаже, а также в санузлах. Вторая — конвекторы, установленные под большими светопрозрачными конструкциями. Третья — тёплые стены. Их мы рассмотрим подробно. К этим утеплённым и покрытым фольгой стенам в горизонтальном положении прикрепили стальные профили шириной 27 мм, в которые змейкой уложили полипропиленовые трубы диаметром 20 мм. Поверх последних смонтировали профили металлокаркаса и закрыли их гипсокартоном.

«Тёплая стена» передаёт тепло двумя способами — это излучение и конвекция. Лучистый обогрев создаётся в результате того, что трубы нагревают гипсокартон и он, в свою очередь, начинает излучать тепло в помещение.

Конвективный обогрев возникает потому, что воздух через отверстия в нижней зоне обшивки проникает в пространство за гипсокартоном, где, нагреваясь, постепенно поднимается вверх и выходит в помещения через отверстия в верхней зоне обшивки.

 

Что бы еще почитать?

remstd.ru

Энергосбережение с использованием монолитных кварцевых теплоэлектронагревателей

Сэкономить электроэнергию можно, если, к примеру, использовать кварцевые теплоэлектронагреватели. Такое эффективное отопление частного дома преобразует электрическую энергию в тепловую. Имеющийся в составе ТЭНов кварцевый песок достаточно долго сохраняет в себе тепло после того, как отключается электропитание.

В чём преимущества панелей из кварца:

  1. Доступная цена.
  2. Достаточно большой срок эксплуатации.
  3. Высокий КПД.
  4. Сравнительно небольшое потребление электроэнергии.
  5. Удобство и лёгкость в монтаже оборудования.
  6. Отсутствие выгорания кислорода в здании.
  7. Пожарная и электро безопасность.
эффективное отопление частного дома
Монолитный кварцевый теплоэлектронагреватель

Энергосберегающие панели для отопления изготовлены с применением раствора, сделанного с использованием кварцевого песка, который и обеспечивает хорошую отдачу тепла и большой срок эксплуатации. Благодаря наличию кварцевого песка обогреватель хорошо сохраняет тепло даже тогда, когда отключается электроэнергия, и может обогреть до 15 кубометров здания. Изготавливать эти панели начали в 1997 году, с каждым годом они всё больше становятся популярными благодаря своему энергосбережению. Многие здания, в том числе школы, переходят на это энергосбережение в системах отопления.

Эта система отопления изготовлена из модулей, подключенных параллельно, и сколько их будет, зависит от размеров помещения. Ещё один плюс – это возможность автоматического управления.

Инфракрасные отопительные панели

Очень хороший вариант для экономичного обогрева дома – инфракрасное энергосберегающее отопление частного дома. Производить панели начали в 1967 году и пользуются они хорошим спросом. В чём плюсы:

  1. Большая безопасность в использовании.
  2. Экономически выгодно.
  3. Просты в эксплуатации.
  4. Не светятся в тёмное время суток.

Оборудование, которое включает такая эффективная система отопления, интересно тем, что нагревает оно не воздух, а различные поверхности, которые после того, как впитают в себя тепло, излучают его в пространство, которое их окружает, тем самым, обогревая помещение. Тепло, излучаемое инфракрасными лучами, безопасно.

энергосберегающее отопление частного дома
Настенная инфракрасная панель отопления

Если вы установите инфракрасные энергосберегающие системы отопления домов на потолке, то можете создать интересный интерьер, преобразовав его по своему вкусу. Такие энергосберегающие системы отопления могут быть сделаны своими руками, это позволит вам значительно сэкономить.  В чём заключается экономия в установке данных систем:

  1. Очень небольшой перепад температур пола и потолка.
  2. Панели, установленные на потолке, нагревают предметы, создавая эффект солнца, при этом температура помещения может быть немного ниже, чем та, которую мы чувствуем.
  3. Инфракрасные панели очень легко устанавливаются, и практически нет необходимости в их обслуживании.
  4. Экономия составляет до 60% в сравнении с обычной системой отопления.
  5. Они хорошо подходят для тех помещений, которые нет необходимости отапливать постоянно.

Энергосбережение в обычных системах отопления

Даже в обычных отопительных системах есть возможность увеличить энергосбережение и применять энергосберегающие технологии отопления. Например, если вы для обогрева дома используете газовый котёл, то, используя термостатные клапаны, можно сделать систему отопления более эффективной. Клапаны устанавливают перед каждым радиатором на подающей трубе. При достаточно большой температуре в помещении нужно прикрутить клапан и, тем самым, снизить отдачу тепла от батарей, а лишняя вода будет поступать по перемычке к другому радиатору.

самое эффективное отопление частного дома
Термостатный клапан

Проделывая эту несложную процедуру, можно сэкономить до двадцать процентов энергии. Так как цена этих клапанов достаточно доступна, их широко применяют при отоплении газом. Ещё лучше установить автоматическую систему для регулирования работы котла, это добавит удобство в его эксплуатации.

Для того чтобы такое эффективное отопление дома слаженно работало, необходимо несколько приборов. К ним относятся: датчик температуры воздуха снаружи, вычислительный механизм, набор кабелей, датчик температуры внутри здания.

энергосберегающие системы отопления домов
Датчик температуры воздуха снаружи с вычислительным механизмом

Как работают такие энергоэффективные системы отопления? Датчики температуры получают параметры температуры воздуха как в помещении, так и на улице, затем, используя эти данные, вычислительный механизм систематизирует и вычисляет, какую нагрузку следует дать, и затем регулирует её.

Таким образом, на сегодняшний день можно найти для себя самое эффективное отопление, выбрать подходящий вариант и наслаждаться – как комфортом, так и возможностью экономии энергии.

otoplenie-doma.org

Принципы энергосберегающего отопления

Идея энергосберегающих отопительных систем базируется на принципах экономии топлива, затрат на обслуживание и содержание технической инфраструктуры. Чтобы система соответствовала данным требованиям, конструкторы используют обширный диапазон инструментов и технологических решений. Например, в котлах предусматриваются камеры двойного сгорания, привычные радиаторные установки получают материалы с повышенной теплоотдачей, а схемы распределения несущих компонентов изначально рассчитываются с учетом особенностей места эксплуатации. Набирает популярность и энергосберегающее отопление без труб и котлов, которое основывается на панельной теплоотдаче. По мнению многих специалистов, это наиболее перспективное направление. Данная концепция основывается на принципе рациональной аккумуляции генерируемой энергии. На практике применения это означает сокращение не только потребляемого энергоресурса, но и конструкционной элементной базы. То есть в доме устанавливается набор компактных плит-излучателей, которые экономят свободное пространство, но при этом вырабатывают тот же объем тепла, что и системы, в которых предусматривается трубная инфраструктура.

Принципы отопительных экосистем

Технологии энергосбережения во многих сферах тесно связываются с принципами экологической безопасности. С одной стороны, главным принципом эксплуатации такого оборудования является минимизация расхода природных энергетических ресурсов из класса исчерпаемых, а с другой – полная безвредность для самих пользователей. Последний фактор особенно важен на фоне стремления многих производителей привлекать владельцев частных домов системами с повышенной энергоэффективностью, которая обеспечивается как раз благодаря применению токсически опасных материалов. Что касается оптимизации расхода энергетических ресурсов, то эту концепцию реализует энергосберегающее отопление, потребляющее биотопливное сырье. Экологически безопасные системы такого типа предполагают модернизацию традиционных котлов, в результате которой они позволяют генерировать тепло в процессе сжигания отходов древесной переработки, растительных остатков, сушеного навоза и т.д. Теперь стоит подробнее рассмотреть конкретные технологии энергосбережения в системах отопления.

электрические котлы отопления энергосберегающие

Кварцевые нагреватели

Это наиболее эффективная разновидность панельного отопления, которая соответствует основным принципам энергоэффективности и экологической безопасности. Обогреватель представляет собой плиту, изготовленную с применением кварцевого песка. Специальный раствор смешивается с гранулами кварца, а также армируется хромоникелевым элементом нагрева. Далее масса компонуется в прессе под определенную форму и под действием температуры обретает твердость и прочность. В сущности, получается электрическое отопление, энергосберегающее свойство которого выражается в способности кварца аккумулировать распространяемый по хромоникелевому проводнику ток. В момент активации системы панель быстро набирает необходимую температуру, а после отключения сохраняет ее длительное время. То есть для поддержания заданного режима не обязательно оставлять агрегат включенным постоянно. Несколько часов тепловой отдачи система обеспечит в пассивном режиме.

Инфракрасные панели

Еще одна разновидность панельных энергосберегающих обогревателей, которая имеет свои преимущества, обусловленные особым принципом работы. Инфракрасное излучение характеризуется способностью нагревать не столько воздух, сколько объекты. Прибор действует по принципу отдачи тепла предметам, которые, в свою очередь, рассеивают потоки в помещении. В результате достигается равномерный прогрев. По расчетам специалистов, перепад температур от места установки излучателя до крайней точки в комнате составляет не более одного градуса, при этом эти приборы энергосберегающие. Отопление для дома с большими помещениями можно построить и по этому принципу. В данном случае организуется не точечный, а именно сбалансированный микроклимат по всему пространству. По остальным характеристикам инфракрасные обогреватели сохраняют преимущества вышеупомянутой кварцевой панели.

электрическое отопление энергосберегающее

Энергоэффективные радиаторы

Радиаторные системы обогрева также представляют интерес со стороны компаний, занимающихся энергосберегающими технологиями. В отличие от обычных радиаторов, такие модели формируются отдельными вакуумными секциями, наполненными литиево-бромидной жидкостной основой. При температуре 35 °С происходит парообразование в данном наполнителе. В результате обеспечивается прогрев верхних частей вакуумных секций, которые, в свою очередь, распределяют тепло по всему помещению. В процессе эксплуатации энергосберегающие радиаторы отопления отличаются меньшим расходом воды – как правило, для одного агрегата требуется всего 500 мл. Это в разы меньше, по сравнению с уровнем потребления обычных радиаторных установок.

Энергоэффективные котлы

Котельные и печные установки также подвергаются улучшению в конструкционных и эксплуатационных качествах. К традиционным агрегатам более приближены пиролизные энергосберегающие котлы отопления, в которых реализуется принцип длительного нагрева. Достигается он за счет специальной конструкции с двойной камерой сгорания. В процессе работы происходит так называемое вторичное сгорание отработанных продуктов. Твердотопливный материал изначально сжигается в основной камере, а затем уже газовые вещества проходят еще один этап обработки с выделением тепла.

энергосберегающее отопление без труб и котлов

Другое направление развития концепции энергосберегающих котлов основывается на принципах сжигания биотоплива. Это комбинированные электрические котлы отопления, энергосберегающие качества которых обуславливаются возможностью работы на пеллетах, специальных топливных гранулах и брикетах.

Солнечные энергосберегающие батареи

Аккумуляторы, работающие за счет энергии солнечных панелей, позволяют обеспечивать практически бесплатное энергоснабжение инженерной инфраструктуры жилого дома. Отопительная система в данном случае выступает потребителем аккумулируемой энергии, которая преобразуется в электричество с помощью специальных генераторов. В качестве непосредственного оборудования для отопления могут выступать те же электрические котлы или радиаторы с конвекторами. Но если в процессе выработки тепла энергосберегающие батареи отопления не требуют затрат, то их техническое содержание обходится недешево. И это не говоря о первичных вложениях в те же солнечные панели и преобразующие генераторы. Именно этот нюанс пока сдерживает широкое распространение данной технологии, но уже в скором будущем солнечные аккумуляторы смогут в полной мере оправдать свою энергосберегающую функцию.

энергосберегающие батареи отопления

Средства оптимизации традиционного отопления

Практика показывает, что показатели расходов на энергоресурсы отопительных систем в немалой степени определяются качеством проекта. Схема прокладки отопительных труб, точки инсталляции излучающих тепло панелей, рабочие показатели котельных установок – все это влияет на потребление электричества или топливных материалов. Поэтому еще на этапе выбора способа обогрева желательно как минимум соотнести мощность установки с требованиями к объемам теплоотдачи. Помимо этого, энергосберегающее отопление на базе обычных систем можно реализовать посредством интеграции автоматических систем. Они помогут без участия пользователя добиться рационального расхода посредством управления рабочими режимами.

Особенности монтажа энергосберегающего оборудования

Системы с минимальным потреблением энергоресурсов отличаются не только принципами работы, но зачастую и нюансами установки. В частности, модели энергосберегающих радиаторов в некоторых исполнениях крепятся к потолку, что позволяет с большей теплоотдачей выполнять свою функцию. И напротив, современные системы напольного обогрева интегрируются непосредственно в стяжку и рассеивают теплые потоки от низа к верхней части. Имеет свои особенности и энергосберегающее отопление в виде кварцевых панелей. Они устанавливаются на поверхностях стен, но с минимальным охватом площади.

энергосберегающее отопление частного дома

Обслуживание энергосберегающих систем

Содержание и обслуживание энергосберегающего оборудования часто обходится дороже, чем для традиционных агрегатов. Связано это как раз с применением нестандартных источников питания. Например, биотопливные котлы предполагают организацию условий для хранения тех же пеллет и брикетов. Такие материалы чувствительны к сырости и требуют соблюдения повышенных мер пожарной безопасности. Также и солнечное энергосберегающее отопление частного дома нуждается в технической поддержке преобразователей, а сами панели должны регулярно контролироваться для более эффективной аккумуляции тепла.

Как выбрать оптимальное энергосберегающее решение?

Объем теплоотдачи является главным показателем, который следует учитывать при выборе средства отопления. В базовых версиях малогабаритные установки, наподобие тех же радиаторов, вполне справляются с обслуживанием помещений площадью 25-35 м2. Но для больших гостиных, залов и комнат с высокими потолками скорее потребуются мощные электрические котлы отопления. Энергосберегающие свойства такого оборудования будут не столь очевидны, но важно понимать, что применение для аналогичных нужд традиционных печей и бойлерных станций обойдется еще дороже.

энергосберегающие отопление для дома

Заключение

Технологии оптимизации расходов на эксплуатацию отопительных агрегатов и сопутствующей оснастки в разных сферах переживают радикальные изменения. Коррективы вносятся и в конструкционные схемы, и в функциональное обеспечение. Но исходные точки для модернизации, которой подвергаются энергосберегающие системы отопления, основываются на принципах работы оборудования. Наиболее значительные отклонения от традиционных систем демонстрируют технологии альтернативных источников энергии, хотя среди рядовых потребителей они пока не пользуются высоким спросом. Чего нельзя сказать об энергосберегающих радиаторах и котлах, особенности которых выражаются в применении более доступного по цене биологического топлива.

fb.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.