Назначение коллектора


Хотя коллекторный принцип организации систем отопления и водоснабжения пока еще не получил у нас широкого распространения, все больше людей проявляют к нему живейший интерес.

Что же представляет собой коллектор для водопровода?

Рассмотрим конструктивные особенности системы и правила монтажа.

Особенности и назначение

Коллектор, также именуемый гребенкой, в самом простом исполнении представляет собой отрезок трубы с несколькими врезанными в него патрубками.

В трубопроводных системах данный элемент играет роль центрального распределителя – к патрубкам посредством труб подключаются приборы или небольшие их последовательности.

Подобные схемы получили название коллекторных или лучевых.

Главная задача коллектора – обеспечить равномерное поступление среды к приборам и сделать работу каждого из них не зависимой от величины расхода на других приборах.

Различные коллекторы могут отличаться друг от друга следующими особенностями:


  1. Наличие дополнительного оборудования: выпускаются коллекторы с уже установленными на их патрубках запорной и регулирующей арматурой, редукторами, манометрами и даже циркуляционными насосами. Самые современные модификации оснащаются датчиками и автоматическими клапанами.
  2. Материал: сегодня применяют как металлические коллекторы (латунные, стальные, бронзовые и медные), так и пластиковые (полипропилен). Дешевые силуминовые изделия (их выдает необычно малый вес) по причине низкой прочности и недолговечности приобретать не стоит.
  3. Количество отводов (патрубков): обычно коллекторы имеют 2 – 4 патрубка. Но пользователя это не должно ограничивать: при необходимости несколько коллекторов можно объединить в один, увеличив число отводов до нужного значения.
  4. Предельно допустимое давление.
  5. Пропускная способность.
  6. Межосевое расстояние между отводами.

Дополнительное оборудование изготавливается из различных материалов. От их выбора зависит качество коллектора, и максимальная температура рабочей среды.

Классическая схема разводки

В системах водоснабжения традиционным способом подключения потребителей считается последовательная или тройниковая схема. От стояка прокладывается общая магистраль, к которой посредством тройников и коротких подводящих трубопроводов подключаются все приборы.

Радиаторы системы отопления, если говорить о параллельной схеме, подключаются похожим образом, только помимо раздаточной магистрали еще имеется «собирающая», то есть обратная.

Такой способ организации трубопроводных систем имеет два преимущества:

  • задействуется минимальное количество труб;
  • контур имеет малое гидравлическое сопротивление.

Но пользоваться подобной системой не очень удобно. Стоит кому-то из домочадцев открыть кран на кухне, как тут же падает напор воды, к примеру, в душ-кабине. В случае с системой отопления приходится сталкиваться с проблемой ухудшения циркуляции теплоносителя через наиболее удаленные от теплогенератора радиаторы.

Коллекторная система обеспечения водоснабжением

От коллектора к каждому из приборов прокладывается отдельный трубопровод. При таком способе подключения, конечно, понадобится больше труб, но зато пользователь выиграет в следующем:

  1. Все потребители будут работать со стабильным напором, независимо от расхода на других приборах.
  2. Появляется возможность подавать на каждый прибор воду с оптимальными для него давлением (на коллекторе устанавливается редуктор) и качеством (установка фильтра).
  3. Каждый трубопровод между коллектором и тем или иным прибором представляет собой цельный отрезок без разъемных соединений, что позволяет безбоязненно прятать его в конструкциях стен или пола.
  4. Любой прибор в случае необходимости ремонта или обслуживания можно отрезать от подачи воды без отключения всей системы водоснабжения.
  5. В случае с системой отопления значительно упрощается ее балансировка: пользователь сможет добиться равномерной подачи теплоносителя к радиаторам, пребывая на одном месте.

При этом надо учесть и некоторые недостатки:


  • Из-за увеличения длины труб увеличивается гидравлическое сопротивление системы, а значит для нормальной работы приборов потребуется больший напор.
  • По той же причине коллекторная система отопления не может работать в термосифонном режиме (естественная циркуляция).

При отсутствии возможности скрытой прокладки система из-за большого количества труб может выглядеть не очень эстетично.

Правила монтажа систем отопления

В системах отопления применяют два коллектора – подающий и обратный. Если систему предполагается балансировать вручную, к патрубкам подающего коллектора подсоединяют регулирующую арматуру и балансировочные расходомеры, а на обратном – устанавливают запорную арматуру.

Теоретически вместо регулирующей арматуры можно применять более дешевую запорную – с ее помощью также можно изменять величину расхода среды. Но в этом случае она быстро выйдет из строя, так как не рассчитана на такой режим работы.

При наличии в системе отопления термостата вместо ручных кранов на подающий коллектор устанавливают арматуру с сервоприводами. В этом случае регулировка потока теплоносителя через каждый радиатор будет осуществляться автоматически.


Подающий коллектор следует располагать выше обратного. Сами же трубы можно прокладывать как угодно.

Если в традиционной схеме подключения радиаторов подающая магистраль обязательно должна быть выше обратной, то в коллекторной их расположение не имеет никакого значения. Поэтому трубы чаще всего прокладывают внутри пола.

Особенности конструкции

Если система отопления является комбинированной, то есть помимо радиаторов в ней имеется контур «теплого пола», то коллектор в точке его присоединения следует оборудовать узлом подмеса. Такая схема работает следующим образом: более холодный, чем в основной системе, теплоноситель циркулирует в контуре «теплого пола» изолированно, а по мере его остывания узел подмеса добавляет в него горячую среду из коллектора.

Если система состоит только из внутрипольного подогрева, узел подмеса устанавливать не нужно. При этом важно учесть одну особенность: в отличие от обычных систем с радиаторами, регулирующая арматура с сервоприводами устанавливается не на подающий, а на обратный коллектор.

При покупке изделия учитывайте межосевые расстояния между коллекторами подачи и обратки. Во многих китайских моделях данный параметр не соответствует стандартам Евросоюза. По этой причине установка узла подмеса может оказаться невозможной.


Коллекторы для «теплого пола» оборудуются патрубками с диаметрами 16, 18 и 20 мм. В частных домах рациональнее всего применять трубы с диаметром не более 16 мм.

Если контуры «теплого пола», подключенные к одному коллектору, имеют разную длину, распределитель нужно оборудовать балансировочным расходомером. Такая необходимость вызвана стремлением теплоносителя идти по пути наименьшего сопротивления.

Вращая кольцо на расходомере, можно менять его пропускную способность. При этом по специальному окошку со шкалой можно точно определять расход среды через прибор. Уравновесив поток теплоносителя через каждый контур, мы добьемся равномерного распределения тепла по всей площади помещения.

Правила монтажа систем водоснабжения

Для водопровода также понадобится два коллектора: один – на горячую, второй – на холодную воду. Регулирующую арматуру в данном случае устанавливать незачем – достаточно запорной.

Обычно краны на коллекторах для холодной воды снабжаются синими ручками, а для горячей – красными.

Водопроводный коллектор следует устанавливать в сухом месте: в кладовке, например, или в коридоре.

Идеальный вариант – установка в шкафу (коллектор снабжен специальными креплениями), но если тратиться на его покупку вы пока не собираетесь, можно просто разместить деталь в какой-нибудь нише.


Как уже говорилось, отсутствие соединений на трубах между приборами и коллектором позволяет прокладывать их скрытым образом. При этом нужно учитывать, что штробление несущих стен не допускается. При скрытой прокладке на все трубы, даже с холодной водой, необходимо надевать рукав из вспененного полиэтилена. Этот материал обеспечит зазор между стенками труб и раствором, необходимый для компенсации свободного температурного расширения.

Источник: aquacomm.ru

Устройство щеточно коллекторного перехода.

Наиболее сложным и ненадежным местом коллекторной машины является щеточно коллекторный переход который состоит из щеток (которые крепятся в щеткодержатели) и коллектора который состоит из набора коллекторных пластин трапецеидального сечения, разделенных миканитовыми прокладками. Пластины из меди и миканита удерживаются в сжатом состоянии за нижнюю часть, имеющую форму «ласточкина хвоста», посредством стальных конусных колец 1 (рис. 13.2). Выступающая вверх часть коллекторных пластин 6, называемая «петушок», служит для присоединения секций обмотки якоря к пластинам коллектора. Коллекторные пластины изолируют от конусных колец миканитовыми манжетами 3, а от втулки 5 — миканитовым изолирующим цилиндром 4.


1Поверхность медных пластин каллектора в процессе работы машины постепенно истирается щетками. Что бы при этом миканитовые прокладки не выступали над рабочей поверхностью медных пластин, что могло бы привести к нарушению электрического контакта коллектора со щетками, приходится периодически выполнять «продораживаные» коллектора. Эта операция состоит в том, что между рабочими поверхностями коллекторных пластин фрезеруют пазы (дорожки) на глубину до 1,5 мм (рис. 13.4). 2

Достоинства и недостатки коллекторных машин постоянного тока.

Электрические машины постоянного тока используют как в качестве генераторов, так и двигателей. Наибольшее применение имеют двигатели постоянного тока, диапазон мощности которых достаточно широк: от долей ватта (для привода устройств автоматики) до нескольких тысяч киловатт (для привода прокатных станов, шахтных подъемников и других крупных механизмов).


Двигатели постоянного тока широко используют для привода подъемных устройств в качестве крановых двигателей и привода транспортных средств, а также в качестве тяговых двигателей.

Основные достоинства двигателей постоянного тока по сравнению с бесколлекторными двигателями переменного тока — хорошие пусковые и регулировочные свойства, возможность получения частоты вращения более 3000 об/мин, а недостатки — относительно высокая стоимость, некоторая сложность в изготовлении, пониженная надежность. Эти недостатки машин постоянного тока обусловлены наличием в них щеточно-коплекторного узла, который к тому же является источником радиопомех и пожароопасности. Но, несмотря на отмеченные недостатки, двигатели постоянного тока в некоторых случаях пока незаменимы, так как обладают большой перегрузочной способностью, хорошими пусковыми и регулировочными свойствами.

Источник: electrikam.com


Устройство и принцип действия машин постоянного тока

Машины постоянного тока широко используются в качестве источника постоянного тока, либо преобразователя электрической мощности в механическую. Первая машина работает в режиме генератора, вторая в режиме двигателя. Двигатели постоянного тока широко используются в регулируемом электроприводе.

Работа этих машин основана на двух законах:

  1. Закон электромагнитной индукции Назначение коллектора,где Назначение коллектора – индукция, Назначение коллектора; Назначение коллектора – длина проводника, Назначение коллектора,Назначение коллектора– линейная скорость,Назначение коллектора

  2. Закон электромагнитных сил: Назначение коллектора,где Назначение коллектора – сила воздействия на проводник;


Назначение коллектора– ток в проводнике, Назначение коллектора

ЭНазначение коллектораДС, наводимая в проводнике, получается за счет того, что проводник пересекает магнитное поле со скоростьюНазначение коллектора.

Поэтому в реальной машине должно быть две основные части: первая часть – создает магнитный поток (индуктор – неподвижная часть), вторая часть – в которой индуктируется ЭДС (якорь).

1.Неподвижная часть – индуктор. К станине (1) крепятся шматованные полюса (2) на которых располагается обмотка возбуждения (3) (рис. 1).

ОНазначение коллекторабмотка возбуждения создает магнитный поток при протекании по ней постоянного тока.

2.Якорь. Якорь вращается. Представляет собой цилиндр, набранный из листов электротехнической стали (4).В наружной части якоря расположены пазы, где укладываются секции обмотки (5). Каждая секция соединяется с пластинами коллектора (6).

ТНазначение коллектора.к. в проводниках обмотки якоря машины постоянного тока индуктируется переменная ЭДС, то для ее выпрямления применяется коллектор, представляющий собой мех. выпрямитель. Коллектор служит для выпрямления переменной ЭДС в постоянную величину (режим генератора). Эта ЭДС снимается с помощью щеток (7), рис. 2. Коллектор является сложным и дорогим устройством, требующим тщательного ухода. Е

Рассмотрим принцип выпрямления: (рис. 3). Виток (8) подсоединен к двум кольцам и вращается в магнитном поле. При вращении витка в проводниках (1,2) будет наводиться переменная ЭДС (под северным полюсом одно направление, а под южным другое). Снятое со щеток напряжение будет иметь синусоидальный хар-р (рис. 3).

Если кольцо разрезать пополам и подсоединить к ним проводники (1,2) то это уже будет элементарный коллектор – выпрямитель, (рис. 4). Простейший коллектор состоит из двух изолированных между собой медных пластин, выполненных в форме полуколец, к которым присоединены кНазначение коллектораонцы витка обмотки якоря. Пластины коллектора соприкасаются с неподвижными контактными щетками, которые связаны с внешней электрической цепью. При работе машины коллектор вращается вместе с витками обмотки якоря. Щетки устан-тся таким образом, что в то время, когда ЭДС витка меняет свой знак на обратный, коллект. пластина перемещается от одной полярности к другой, приходя в соприкосновение со щеткой другой полярности. В результате этого на щетках возникает пульсирующее напряжение, постоянное по направлению. Для внешней цепи «+» будет на нижней щетке, а «-» на верхней. При одном витке выпрямленная ЭДС будет иметь большую пульсацию. При увеличении числа витков (коллекторных пластин) пульсация резко уменьшается (рис. 5).

ПНазначение коллектораульсация ЭДС характеризуется величиной –Назначение коллектора.Назначение коллектораи зависит от числа коллекторных пластин на полюс. При одном витке (одной коллекторной пластине на полюс) пульсация составляетНазначение коллектора.

Назначение коллектора, Назначение коллектора

При одном витке Назначение коллектора,Назначение коллектора,Назначение коллекторат. е.Назначение коллекторас увеличением числа коллект-х пластин на полюс пульсация ЭДС резко снижается : еслиНазначение коллектора, тоНазначение коллектора. На рис. 5 видно, что при двух витках (Назначение коллектора),Назначение коллектора, тоНазначение коллекторапульсация ЭДС резко снижается.

Назначение коллектора, то Назначение коллектора

Коллектор явл-тся той частью машины, которая преобр-т машину переменного тока в машину постоянного тока.

Основным достоинством дв-лей постоянного тока является возможность плавного и экономичного рег-ия скорости вращения в широких пределах. Машины постоянного тока широко исп-тся в системах автоматики в кач-ве исполнительных дв-лей, дв-лей для привода лентопротяжных самозаписывающих мех-мов, в кач-ве тахогенераторов и электромаш. усилителей. Дв-ли постоянного тока находят применение на транспорте, для привода металлургических станков, в крановых, подъемно-транспортных и других мех-мах. Генераторы постоянного тока применяются для питания радиостанций, дв-лей постоянного тока, зарядки аккумуляторных батарей, сварки, электрохимических низковольтных установок, а также в качестве возбудителей синхронных машин.

6.Поясните способы регулирования активной и реактивной мощности СГ. Поясните пуск СД. Поясните работу СД при недовозбужденном и перевозбужденном режимах (ib=var).

Регулирование активной и реактивной мощности СГ

Если изменять возбуждение генератора, то тем самым можно изменять реактивную мощность, отдавать, либо потреблять её (Назначение коллектораНазначение коллектораНазначение коллектора↑).Регулировать акт. мощность можно, только изменяя мех. мощность, со стороны паровой турбины, либо гидротурбины. При увеличении отдаваемой активной мощности, необходимо увеличить и механическую мощность со стороны турбины.

Пуск синхронного двигателя. СД не имеет начального пуск. момента. Если его подключить к сети переменного тока, когда ротор неподвижен, а по обмотке возб-ия проходит постоянный ток, то за один период изменения тока, электромагнитный момент будет дважды изменять свое направление, т.е. средний момент за период равняется 0. При этих условиях Д не может быть разогнан до синхронной частоты вращения. Следовательно, для пуска синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной.

Из-за отсутствия пуск. момента в СД для пуска его используют следующие способы:

1Назначение коллектора.Пуск с помощью вспомогательного двигателя.Пуск в ход СД с помощью вспомогательного дв-ля может быть произведен только без механической нагрузки на его валу, т.е. практически вхолостую. В этом случае на период пуска Д временно превращается в СГ, ротор к-го приводится во вращение небольшим вспомогательным Д до n=0,95n1. Статор этого генератора включается параллельно в сеть с соблюдением всех необходимых условий этого соединения. После включения статора в сеть, с небольшой выдержкой, включают ОВ, и Д втягивается в синхронизм, а вспом. приводной Д механически отключается.

2.Асинхронный пуск двигателя. СД на время пуска превращается в асинхр. В пазах полюсных наконечников явнополюсного дв-ля помещается пуск. КЗ обмотка.

Процесс пуска синхронного двигателя осуществляется в два этапа. При включении обмотки статора (1) в сеть в двигателе образуется вращающее поле, которое наведет в короткозамкнутой обмотке ротора (2) ЭДС. Под действием, которой будет протекать в стержнях ток. В результате взаимодействия вращающего магнитного поля с током в коротко замкнутой обмотке создается вращающий момент, как у асинхронного двигателя. За счет этого момента ротор разгоняется до скольжения близкого к нулю (S=0,05), рис. 313. На этом заканчивается первый этап.

Чтобы ротор двигателя втянулся в синхронизм, необходимо создать в нем магнитное поле включением в обмотку возбуждения (3) постоянного тока (переключив ключ К в положение 1). Так как ротор разогнан до скорости близкой к синхронной, то относительная скорость поля статора и ротора небольшая. Полюса плавно будут находить друг на друга. И после ряда проскальзываний, противоположные полюса притянутся, и ротор втянется в синхронизм. После чего ротор будет вращаться с синхронной скоростью, и частота вращения его будет постоянной, рис. 313. На этом заканчивается второй этап пуска.

Ротор разгоняется до скольжения близкого к нулю (S=0,05), до подсинхр. скорости. На этом заканчивается первый этап.

ЧНазначение коллекторатобы ротор дв-ля втянулся в синхронизм, необходимо создать в нем магнитное поле. Так как ротор разогнан до скорости близкой к синхронной, то относительная скорость поля статора и ротора небольшая. Полюса плавно притянутся, и ротор втянется в синхронизм. После чего ротор будет вращаться с синхронной скоростью, и частота вращения его будет постоянной (второй этап).

Работа СД при недовозбужденном и перевозбужденном режимах (ib=var)

Режим работы соответствует постоянству момента.

Назначение коллекторапри Назначение коллектора

Назначение коллектораНазначение коллектора,E0sinθ=const,P=mUcIcosφ=const,Icosφ=Ia=const.

При недовозб.синхронном двигателесоставляющей напряжения -Е0 соответствует ток I, который отстает от напряжения Uc на угол φ. Вектор тока I перпендикулярен продолжению вектора jIXc. Реактивная составляющая тока IL будет отставать на 900 от вектора напряжения Uc, т.е. этот ток чисто индуктивный. Значит, при недовозбуждении двигатель будет потреблять из сети индуктивный ток, а следовательно будет потреблять из сети и реактивную мощность.

При увеличении возбуждения величина –Е01 увеличится, а ток I уменьшится до Ia=I1 и будет минимальным. При этом режиме СД будет работать с cosφ=1 и реактивная мощность, не будет ни потребляться, ни отдаваться в сеть.

При дальнейшем увеличении тока возбуждения составляющая напряжения будет равна –Е011, а ток I11 , будет опережать вектор напряжения сети на угол φ1. Этот режим соответствует перевозбужденному режиму В перевозб. режиме реактивная составляющая тока будет емкостной (опережает вектор Uc на 900). Этот режим будет соответствовать отдаче реактивной мощности в сеть.

7. Понятие об электроприводе, как электромеханической системе, его назначение и функции. Типы электроприводов, структура и основные элементы современного электропривода. Особенности развития электропривода.

ЭП-электромеханическое устр-во, предназначенное для приведения в движение рабочих органов машин-орудий и управления их технологическими процессами. Блок схема эл.привода как объекта управления может быть представлена в след. виде:

Назначение коллектора

СУ ЭП состоит из энергетич. части и информ-ной части. Энергетич. часть – это преобразоват-ное уст-во, назнач-е которого – управл-е потоком энергии, поступающим из сети, с целью рег-ния режимами работы двигателя и механизма. Преобразовательное уст-во позволяет расширить гибкость управления, позволяет придать хар-кам ЭП нужный вид, что достигается или путем преобразования трехфазного переменного напряжения промышленной частоты в постоянное (выпрямленное) напряжение, или в переменное напряжение, но другой частоты.

В кач-ве преобразовательных устр-в для получения пост.напряжения прим-ся двигатель – генераторы, тиристорные преобраз-ли, а для получения перем. напряжения иной величины или иной частоты – электромашинные и вентильные преобраз-ли частоты.

Информ. часть СУ предназначена для фиксации и обработки поступающей информации о задающих воздействиях и реальном состоянии системы. На основе этой информации вырабатываются сигналы управления преобразовательным уст-вом и двигателем. Сама же система управления обеспечивает электроприводу необходимые статические и динамические свойства.

Передаточное уст-во (передаточный механизм) служит для изменения скорости или вида движения (из вращательного в поступательное или наоборот). К передаточному устройству относятся: редукторы, кривошипно – шатунные механизмы, зубчато – реечные или клино – ременные передачи, барабаны с тросами и т.п.. Все эти устройства по существу служат для передачи механической энергии от двигателя к исполнительному механизму.

Основной функцией простейшего не автоматизированного ЭП, состоящего только из электродвигателя, питаемого непосредственно от сети, и система управления которого включает в себя обычный рубильник или пакетный выключатель, или магнитный пускатель, явл-ся приведение в движение рабочего механизма с неизменной ск-тью.

Автоматизированные ЭП, имеющие САУ, выполняют более широкие функции, обеспечивая рациональное ведение технологического процесса, более высокую производительность механизма при лучшем качестве выпускаемой продукции.

В зависимости от схемы передачи энергии от сети к рабочим органам механизмов различаются три типа эл.привода:

1.Групповой (трансмиссионный).2.Однодвигательный или индивидуальный. 3.Многодвигательный (тоже индивидуальный).

Групповой ЭП представляет собой систему, в которой один электродвигатель посредством трансмиссий (системы шкивов и ремней) приводит в движение группу рабочих машин или группу рабочих органов одной машины, как показано на рис. Двигатель в этом случае конструктивно с рабочими машинами не связан. В такой системе невозможно регулирование отдельных машин воздействием на двигатель.

Назначение коллектора

Вследствие своего технического несовершенства такой ЭП в наст.время практически не применяется и представляет интерес лишь с т.зр. истории развития ЭП. Однодвигательный ЭП представляет собой систему, когда каждая рабочая машина приводится в движение отдельным, связанным только с ней электродвигателем, как изображено на следующем рисунке.

Назначение коллектораПримером применения однодвигательного ЭП являются простые металообрабатывающие станки и др.несложные механизмы. Во многих случаях привод осуществляется от электродвигателя специального исполнения, конструктивно представляющего одно целое с самим механизмом. Примером может служить ЭП электродрели.Характерным примером полного совмещения двигателя с рабочим органом является электрорубанок. В нем трехфазный АД имеет к.з. ротор, расположенный снаружи статора (внешний ротор), несущий ножи инструмента.

Можно назвать также электрическую таль, двигатель – ролик (рольганг) , применяемый в металлургической промышленности на прокатных станах. Неподвижный статор с обмоткой располагается здесь внутри рольганга, а сам ролик является ротором.

Преимуществом однодвигательного ЭП перед групповым является то, что в нем имеется возможность электрическими методами регулировать скорость каждой из машин. При этом значительно сокращается путь передачи энергии от сети к рабочим органам, помещения освобождаются от тяжелых трансмиссий, шкивов, ремней, улучшается освещение, резко снижается вероятность несчастных случаев. В случае механизмов с одним рабочим органом возможен выбор для ЭП двигателя с характеристиками, наиболее полно удовлетворяющим требованиям производственного процесса.

Переход на однодвигательный ЭП дал возможность широко автоматизировать работу машин. В настоящее время этот тип ЭП является основным и имеет наибольшее применение.

Однако, при однодвигательном ЭПе машин с несколькими рабочими органами внутри машины еще сохраняется система механического распределение энергии (посредством шестерен и т.п. ) с присущей ей недостатками. Поэтому в современных машинах подобного рода широко применяется многодвигательный ЭП, при котором каждый рабочий орган приводится в движение отдельным электродвигателем. Такие ЭПы применяются например в сложных металлообрабатывающих станках, бумагоделательных машинах, прокатных станах, экскаваторах и др. При этом значительно упрощается кинематическая схема машины. Встречаются металлообрабатывающие станки и др. механизмы, где число электродвигателей достигает 30 и более.

Современный ЭП хар-ся высокой степенью автоматизации. Многие современные высокоточные ЭПы управляются посредством вычислительных машин (например, ЭП мощных прокатных станов, доменных печей, копировальных станков). Их управляющие устройства, как правило, построены на основе использования микроэлектроники. Аналогичной техникой управления снабжаются и многие ответственные ЭПы малой мощности, например ЭПы механизмов роботов и манипуляторов. Во всем диапазоне мощностей ЭПов находят применение современные системы программного управления технологическими процессами, устройства, оптимизирующие по тем или иным критериям работу ЭП и механизма, используются принципы адаптивного автоматического управления.

Наряду с регулируемыми ЭПми широко применяются и простейшие нерегулируемые ЭПы с двигателями переменного тока, получающими питание непосредственно от промышленной сети. Однако управляющие устройства и таких ЭПов постоянно совершенствуются в связи с повышением требований к надежности работы, необходимостью повышения их энергетических показателей, усложнением технологических блокировок между механизмами.

Особенности развития ЭПа:

  • расширение областей применения вентильного ЭП постоянного тока и частотно – регулируемого ЭП переменного тока

  • расширение и усложнение его функций, связанных с управлением технологическими процессами и соответствующее усложнение систем управления (САУ), повышение требований к динамическим и точностным показателям, увеличение быстродействия, надежности, экономичности, снижение габаритов

  • стремление к унификации его элементной базы, создание унифицированных комплектных ЭПов путем использования современной микроэлектроники и блочно – модульного принципа. На этой основе, как известно, уже созданы серии комплектных тиристорных ЭПов, обладающих техническими показателями, удовлетворяющими требованиям широкого круга механизмов

Одним из проявлений развития регулируемого ЭП является тенденция к упрощению кинематических схем машин и механизмов, за счет создания безредукторного ЭП, в котором должны использоваться специальные тихоходные двигатели. Уже имеются и применяются тихоходные двигатели, имеющие номинальную скорость вращения

18 – 120 об/мин. Область применения – мощные ЭПы прокатных станов, шахтных подъемных машин, основных механизмов экскаваторов, скоростных лифтов.

Источник: StudFiles.net

Принцип функционирования распределителя

Основное предназначение распределительного коллектора – равномерно раздавать тепловые потоки, поступающие из основной магистрали, по контурам системы и за счет циркуляционного оборота возвращать остывшую жидкость к котлу.

При этом отдельные ветки системы, подключенные к коллектору, становятся независимыми друг от друга.

Прибор являет собой промежуточный распределительный узел, ключевыми элементами которого выступают две взаимосвязанные части:

  • подающая гребенка – отвечает за подачу теплоносителя;
  • обратная – выполняет функцию отвода остывшего теплоносителя к генератору тепла.

Вместе они образуют коллекторную группу. От каждой гребенки отходит по несколько выводов для подключения контуров, ведущим к отопительным приборам.

Каждый вывод устройства может быть оснащен выпускными вентилями и отсекающим либо регулировочным краном.

Их наличие дает возможность регулировать давление внутри каждого контура и в случае надобности отсоединения ветки для ремонта, например, перекрывать поток теплоносителя.

Чтобы повысить производительность системы и получить возможность контролировать все отопительные процессы в каждой комнате обогреваемого дома, корпус распределительной гребенки задействуют также в качестве платформы под установку:

  • воздуховыпускных клапанов;
  • водосливных клапанов;
  • расходомеров;
  • счетчиков тепла.

Принцип работы коллекторной системы довольно прост. Разогретая теплогенератором жидкость поступает в подающую гребенку.

Внутри промежуточного сборного узла скорость движения жидкости замедляется благодаря увеличенному внутреннему диаметру устройства, она перераспределяется между всеми отводами.

Зная расход теплоносителя, равный мощности теплогенератора, и скорость движения воды, несложно найти необходимую площадь сечения. Только предварительно следует перевести литры в удобную для расчетов единицу мм3.

Через соединительные патрубки, сечение которых меньше диаметра трубы коллекторного узла, теплоноситель поступает в отдельно проложенные контуры и двигается к радиаторам или к сеткам теплого пола.

Благодаря такому распределению должным образом прогревается каждый элемент, снабжаемый теплоносителем равной температуры.

Достигнув батареи и отдав полученное при нагреве тепло, жидкость направляется по другой трубе в противоположном направлении к распределительному блоку. Там она поступает на обратную гребенку, откуда перенаправляется к теплогенератору.

Для загородного коттеджа система с использованием коллектора по праву считается самой эффективной и надежной.

Единственное, что может останавливать рачительного хозяина– стоимость. Ведь обустройство такой системы обойдется дороже, чем устройство обычной системы тройникового типа.

Типы коллекторов в системах отопления

Коллекторные установки, применяемые при проектировании закрытых циркуляционных отопительных систем, бывают трех разновидностей.

В зависимости от назначения конструкции на рынке представлены: радиаторные и солнечные системы, а также устройства, оснащенные гидрострелкой.

Тип #1 — радиаторное коллекторное отопление

Какой бы тип отопления не был запроектирован в доме, радиаторы в нем присутствуют всегда. А потому коллекторы, распределяющие потоки теплоносителя непосредственно к установленным в комнатах батареям, являются самым востребованным типом.

Коллекторы, применяемые при радиаторном отоплении, в зависимости от архитектурных и интерьерных особенностей помещения можно подключать различными способами.

По способу подключения радиаторная система отопления может быть выполнена в любом из перечисленных ниже вариантах исполнения:

  • верхнее подключение;
  • нижнее присоединение;
  • установка сбоку;
  • ведение по диагонали.

Наибольшее распространение получил все же нижний способ соединения. При такой разводке контуры, скрытые под поверхностью плинтуса или пола, не так бросаются в глаза.

Да и расчеты подтверждают, что при нижнем присоединении все преимущества частного отопления проявляются в полной мере.

Коллектором для радиаторов оснащают каждый этаж дома. Устанавливают его в центре, маскируя устройство в нише или в устроенном специально для него шкафчике на стене.

Место для установки должно быть выбрано так, чтобы по возможности ко всем приборам подводились ветки равной длины.

Если невозможно достичь равенства подключенных к коллектору колец, то каждый отвод снабжается собственным циркуляционным насосом.

По сути, все подключенные к распределительному узлу ветки представляют собой самостоятельный контур с собственной запорной арматурой, а иногда и автоматикой.

Ярким примером коллекторной схемы отопления являются водяные теплые полы.

Трубопроводы теплых полов собирают из медных труб или их пластиковых аналогов, для соединений используют неразъемные фитинги.

В отопительные кольца монтируют вентили, с помощью которых регулируют подачу теплоносителя, а в случае необходимости отключают «теплые полы» от общедомовой отопительной сети.

Такие системы всегда оснащают циркуляционным насосом. Его располагают в промежуточный коллекторный узел на входе в трубу обратного направления.

Число патрубков на распределительном узле зависит от количества помещений, зацикленных на одной гребенке.

Количество коллекторных групп определяют, ориентируясь на длину контуров. За основу расчетов берут соотношение, при котором на одну коллекторную группу отводится 120 метров трубопровода.

Тип #2 — гидравлическая стрелка

При обустройстве мощных и разветвленных систем отопления, которые проектируют в жилых постройках большой площадью, применяют распределительные коллекторы, оборудованные термогидравлическим распределителем или гидрострелкой.

При монтаже связующего звена с одной стороны к нему подключают контур отопительного котла, а с другой – радиаторное отопление или «теплые полы».

Наличие распределительной гидравлической стрелки позволяет решить сразу несколько задач:

  • избежать резких перепадов температуры в трубах, губительно сказывающихся на эксплуатационном сроке системы;
  • за счет подмеса и вторичной циркуляции части теплоносителя сохранить постоянный объем котловой воды, а также сэкономить топливо и электроэнергию;
  • в случае необходимости компенсировать во второстепенном контуре дефицит расхода.

Поддержание температурного баланса достигается за счет того, что устройство позволяет отделить гидравлический контур котла от вторичной цепи.

Оптимальную работу системы, оснащенной гидрострелкой, можно обеспечить при условии, если каждый контур оборудован собственным циркуляционным насосом.

Тип #3 — солнечные коллекторные установки

Устройства этого типа выбирают при обустройстве автономного водопровода в негазифицированных областях, где уровень солнечного излучения достаточно высок.

Конструкция солнечных установок немного отличается от традиционных аналогов. По сути, они представляют собой своего рода теплицы, накапливающие солнечную энергии.

Естественная циркуляция теплоносителя в них осуществляется за счет конвекционных потоков и под действием присоединенных к поглощающей пластине вентиляторов.

Распределитель, поглощающий солнечные лучи, представляет собой небольшой плоский ящик, покрытый черной адсорбирующей пластиной. Эта тепловоспринимающая пластина и аккумулирует тепло.

Накопленное тепло передается теплоносителю, в роли которого может выступать циркулирующий по трубам воздух или жидкость.

В продаже можно встретить подвижные коллекторные системы, работающие на солнечной энергии. Их конструкция устроена так, что зеркала и нагревательные элементы «следят» за передвижением солнца, благодаря чему его энергию поглощают по максимуму.

Но из-за высокой стоимости оборудования применение солнечных установок в качестве основного источника обогрева в условиях климата даже южных регионов нашей страны невыгодно.

А потому их больше задействуют в качестве дополнительного источника тепла при обустройстве систем отопления с исполльзованием твердотопливных и газовых котлов.

Модификации распределительных гребенок

Сегодня на рынке оборудования представлено множество разновидностей коллекторов для отопительных систем.

Производители предлагают как связующие звенья самого простого исполнения, конструкция которых не предусматривает наличие вспомогательной арматуры для регулирования оборудования, так и коллекторные блоки с полным комплектом вмонтированных элементов.

Простые в исполнении устройства являют собой латунные модели с дюймовым проходом ответвлений, оснащенных двумя соединительными отверстиями по бокам.

На обратном коллекторе такие устройства имеют заглушки, вместо которых в случае «наращивания» системы всегда можно установить дополнительные приборы.

Более сложные в конструктивном решении промежуточные сборные узлы оснащены шаровыми кранами. Под каждый отвод в них предусмотрена установка запорной регулировочной арматуры. Навороченные дорогостоящие модели могут быть оснащены:

  • расходомерами, основное предназначение которых – регулировать поток теплоносителя в каждой петле;
  • термодатчиками, призванными контролировать температуру каждого отопительного прибора;
  • воздуховыпускными клапанами автоматического типа для слива воды;
  • электронными клапанами и смесителями, направленными на поддержание запрограммированной температуры.

Количество контуров в зависимости от подсоединяемых потребителей может варьироваться в пределах от 2 до 10 штук.

Если за основу брать материал изготовления, то промежуточные сборные коллекторы бывают:

  1. Латунные – отличаются высокими эксплуатационными параметрами при доступной цене.
  2. Нержавеющие – стальные конструкции чрезвычайно долговечны. Они могут с легкостью выдерживать большое давление.
  3. Полипропиленовые – модели из полимерных материалов, хоть и отличаются невысокой ценой, но по всем характеристикам уступают металлическим «собратьям».

Модели, выполненные из металла, для продления срока службы и повышения эксплуатационных параметров обрабатывают антикоррозионными составами и покрывают теплоизоляцией.

Детали устройства могут быть литого исполнения либо же оснащены цанговыми зажимами, позволяющих осуществлять соединение с металлопластиковыми трубами.

Но специалисты не советуют выбирать гребенки с цанговыми зажимами, поскольку те часто «грешат» подтеканием теплоносителя в местах соединения вентиля. Это возникает вследствие быстрого выхода из строя уплотнителя. И заменить его не всегда представляется возможным.

Рекомендации грамотного выбора

Основная сложность заключается не только в самом монтаже коллектора, но и в правильном выборе оборудования.

При выборе модели гребенки следует ориентироваться на такие параметры:

  1. Предельно допустимое давление для этой модели. Оно определяет тип материала, из которого может выполнен гидрораспределитель.
  2. Пропускная способность узла.
  3. Наличие вспомогательных устройств.
  4. Количество выходных патрубков гребенки. Оно должно соответствовать количеству контуров охлаждения.
  5. Возможность дополнительного присоединения элементов.

Все эксплуатационные параметры указываются в паспорте к изделию.

Для обустройства поэтажных независимых обогревательных контуров, оснащенных автономным управлением, гребенки необходимо монтировать на каждом этаже дома.

При выборе и установке поэтажных распределителей ориентируются на параметры «подсистемы», которую они призваны обслуживать.

Это значительно упрощает обслуживание отопительной системы и ее ремонт.

Поскольку коллекторный блок – недешевое удовольствие, чтобы обезопасить себя от разочарований при быстром выходе системы из строе при выборе модели стоит ориентироваться на продукцию проверенных производителей.

Смело можно доверять таким производителям, как «GREENoneTEC», «Rehau», «Soletrol», «Oventrop» и «Meibes». В каждой серии ведущих европейских производителей можно подобрать полный комплект необходимого дополнительного оборудования.

Вспомогательные элементы и арматура к коллекторному блоку также должна соответствовать ГОСТу и ТУ.

Каждый из дополнительных элементов конструкции выполняет свою функцию:

  • автоматический воздухоотводчик – монтируется, если блок и радиаторы расположены на одном этаже;
  • переходник – потребуется при монтаже воздухоотводчика, диаметр которого равен ½ дюйма, при условии что резьба коллектора составляет ¾ дюйма.
  • уголок – позволит подсоединить трубы и направить воздухоотводчик вверх.
  • кран – необходим для подключения к устройству идущей от котла трубы;
  • сгон, оборудованный накидкой гайкой – позволит в случае необходимости перекрыть подачу теплоносителя и, открутив накидную гайку, отсоединить устройство.

Если предполагается подключать от коллектора водяной теплый пол, дополнительно потребуется установить кран для подпитки.

Для фиксации коллектора к стене потребуются также хомуты, «посаженные» на пластиковые дюбеля. При монтаже конструкции допустимо также применять специальные кронштейны.

Такие конструкции удобны тем, что верхний коллектор в них выдвинут вперед, благодаря чему трубы узла не мешают подводу трубопровода к нижнему коллектору.

Правила установки и подключения

Выбирать и устанавливать коллектор лучше всего еще на этапе проектирования и монтажа отопительной системы.

Устанавливают такие промежуточные конструкции в помещениях, защищенных от избыточной влажности. Чаще всего для этих целей отводят место в коридоре, кладовой или гардеробной.

В продаже встречаются накладные и встраиваемые модели металлических шкафов. Каждая модель оснащена дверцей и выштамповкой по боковым сторонам.

За неимением возможности установить металлический шкафчик, поступают проще, фиксируя устройство прямо на стену. Нишу под обустройство коллекторного блока размещают на небольшой высоте относительно пола.

Общепринятой инструкции по монтажу коллекторных распределительных схем по сути нет. Но есть ряд основных моментов, относительно которых специалисты пришли к единому знаменателю:

  1. Наличие расширительного бака. Объем конструктивного элемента должен составлять не менее 10% от общего количества воды в системе.
  2. Наличие циркуляционного насоса для каждого проложенного контура. Относительно этого элемента не все специалисты едины во мнении. Но все же, если планируется задействовать несколько независимых контуров, для каждого из них стоит установить отдельный агрегат.

Перед циркуляционным насосом на магистрали обратной подачи размещают расширительный бак. Благодаря этому он становится менее уязвимым к турбулентности потоков воды, часто возникающих в этом месте.

Если же используется гидрострелка – бак монтируют перед основным насосом, основная задача которого состоит в том, чтобы обеспечивать циркуляцию на малом контуре.

Место расположения циркуляционного насоса не принципиально. Но, как показывает практика, ресурс устройства несколько выше именно на «обратке».

Главное при монтаже – расположить вал строго горизонтально. При несоблюдении этого условия первый же пузырь скопившегося воздуха оставит агрегат без охлаждения и смазки.

Сам процесс сборки и подключения коллекторной системы наглядно представлен в видео-блоке.

Выводы и полезное видео по теме

Видео-руководство по последовательной сборке коллекторного блока:

Видео-обзор установки и работы модульного пластикового коллектора:

Распределительный узел для «теплого пола»:

Грамотно выбранная и смонтированная коллекторная разводка гарантирует эффективность и надежность системы отопления.

Благодаря малому количеству соединений и тройников вероятность протечек таких конструкций сводится к минимуму. Ну а возможность регулировать температуру нагрева каждого отопительного радиатора делает эксплуатацию отопительной системой особенно комфортной.

Если обладаете необходимыми знаниями или есть опыт подключения коллекторной системы отопления, пожалуйста, поделитесь им с нашими читателями. Сделать это можно оставив комментарий внизу статьи.

Источник: sovet-ingenera.com

Устройство и принцип действия машин постоянного тока

Машины постоянного тока широко используются в качестве источника постоянного тока, либо преобразователя электрической мощности в механическую. Первая машина работает в режиме генератора, вторая в режиме двигателя. Двигатели постоянного тока широко используются в регулируемом электроприводе.

Работа этих машин основана на двух законах:

  1. Закон электромагнитной индукции Назначение коллектора,где Назначение коллектора – индукция, Назначение коллектора; Назначение коллектора – длина проводника, Назначение коллектора,Назначение коллектора– линейная скорость,Назначение коллектора

  2. Закон электромагнитных сил: Назначение коллектора,где Назначение коллектора – сила воздействия на проводник;

Назначение коллектора– ток в проводнике, Назначение коллектора

ЭНазначение коллектораДС, наводимая в проводнике, получается за счет того, что проводник пересекает магнитное поле со скоростьюНазначение коллектора.

Поэтому в реальной машине должно быть две основные части: первая часть – создает магнитный поток (индуктор – неподвижная часть), вторая часть – в которой индуктируется ЭДС (якорь).

1.Неподвижная часть – индуктор. К станине (1) крепятся шматованные полюса (2) на которых располагается обмотка возбуждения (3) (рис. 1).

ОНазначение коллекторабмотка возбуждения создает магнитный поток при протекании по ней постоянного тока.

2.Якорь. Якорь вращается. Представляет собой цилиндр, набранный из листов электротехнической стали (4).В наружной части якоря расположены пазы, где укладываются секции обмотки (5). Каждая секция соединяется с пластинами коллектора (6).

ТНазначение коллектора.к. в проводниках обмотки якоря машины постоянного тока индуктируется переменная ЭДС, то для ее выпрямления применяется коллектор, представляющий собой мех. выпрямитель. Коллектор служит для выпрямления переменной ЭДС в постоянную величину (режим генератора). Эта ЭДС снимается с помощью щеток (7), рис. 2. Коллектор является сложным и дорогим устройством, требующим тщательного ухода. Е

Рассмотрим принцип выпрямления: (рис. 3). Виток (8) подсоединен к двум кольцам и вращается в магнитном поле. При вращении витка в проводниках (1,2) будет наводиться переменная ЭДС (под северным полюсом одно направление, а под южным другое). Снятое со щеток напряжение будет иметь синусоидальный хар-р (рис. 3).

Если кольцо разрезать пополам и подсоединить к ним проводники (1,2) то это уже будет элементарный коллектор – выпрямитель, (рис. 4). Простейший коллектор состоит из двух изолированных между собой медных пластин, выполненных в форме полуколец, к которым присоединены кНазначение коллектораонцы витка обмотки якоря. Пластины коллектора соприкасаются с неподвижными контактными щетками, которые связаны с внешней электрической цепью. При работе машины коллектор вращается вместе с витками обмотки якоря. Щетки устан-тся таким образом, что в то время, когда ЭДС витка меняет свой знак на обратный, коллект. пластина перемещается от одной полярности к другой, приходя в соприкосновение со щеткой другой полярности. В результате этого на щетках возникает пульсирующее напряжение, постоянное по направлению. Для внешней цепи «+» будет на нижней щетке, а «-» на верхней. При одном витке выпрямленная ЭДС будет иметь большую пульсацию. При увеличении числа витков (коллекторных пластин) пульсация резко уменьшается (рис. 5).

ПНазначение коллектораульсация ЭДС характеризуется величиной –Назначение коллектора.Назначение коллектораи зависит от числа коллекторных пластин на полюс. При одном витке (одной коллекторной пластине на полюс) пульсация составляетНазначение коллектора.

Назначение коллектора, Назначение коллектора

При одном витке Назначение коллектора,Назначение коллектора,Назначение коллекторат. е.Назначение коллекторас увеличением числа коллект-х пластин на полюс пульсация ЭДС резко снижается : еслиНазначение коллектора, тоНазначение коллектора. На рис. 5 видно, что при двух витках (Назначение коллектора),Назначение коллектора, тоНазначение коллекторапульсация ЭДС резко снижается.

Назначение коллектора, то Назначение коллектора

Коллектор явл-тся той частью машины, которая преобр-т машину переменного тока в машину постоянного тока.

Основным достоинством дв-лей постоянного тока является возможность плавного и экономичного рег-ия скорости вращения в широких пределах. Машины постоянного тока широко исп-тся в системах автоматики в кач-ве исполнительных дв-лей, дв-лей для привода лентопротяжных самозаписывающих мех-мов, в кач-ве тахогенераторов и электромаш. усилителей. Дв-ли постоянного тока находят применение на транспорте, для привода металлургических станков, в крановых, подъемно-транспортных и других мех-мах. Генераторы постоянного тока применяются для питания радиостанций, дв-лей постоянного тока, зарядки аккумуляторных батарей, сварки, электрохимических низковольтных установок, а также в качестве возбудителей синхронных машин.

6.Поясните способы регулирования активной и реактивной мощности СГ. Поясните пуск СД. Поясните работу СД при недовозбужденном и перевозбужденном режимах (ib=var).

Регулирование активной и реактивной мощности СГ

Если изменять возбуждение генератора, то тем самым можно изменять реактивную мощность, отдавать, либо потреблять её (Назначение коллектораНазначение коллектораНазначение коллектора↑).Регулировать акт. мощность можно, только изменяя мех. мощность, со стороны паровой турбины, либо гидротурбины. При увеличении отдаваемой активной мощности, необходимо увеличить и механическую мощность со стороны турбины.

Пуск синхронного двигателя. СД не имеет начального пуск. момента. Если его подключить к сети переменного тока, когда ротор неподвижен, а по обмотке возб-ия проходит постоянный ток, то за один период изменения тока, электромагнитный момент будет дважды изменять свое направление, т.е. средний момент за период равняется 0. При этих условиях Д не может быть разогнан до синхронной частоты вращения. Следовательно, для пуска синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной.

Из-за отсутствия пуск. момента в СД для пуска его используют следующие способы:

1Назначение коллектора.Пуск с помощью вспомогательного двигателя.Пуск в ход СД с помощью вспомогательного дв-ля может быть произведен только без механической нагрузки на его валу, т.е. практически вхолостую. В этом случае на период пуска Д временно превращается в СГ, ротор к-го приводится во вращение небольшим вспомогательным Д до n=0,95n1. Статор этого генератора включается параллельно в сеть с соблюдением всех необходимых условий этого соединения. После включения статора в сеть, с небольшой выдержкой, включают ОВ, и Д втягивается в синхронизм, а вспом. приводной Д механически отключается.

2.Асинхронный пуск двигателя. СД на время пуска превращается в асинхр. В пазах полюсных наконечников явнополюсного дв-ля помещается пуск. КЗ обмотка.

Процесс пуска синхронного двигателя осуществляется в два этапа. При включении обмотки статора (1) в сеть в двигателе образуется вращающее поле, которое наведет в короткозамкнутой обмотке ротора (2) ЭДС. Под действием, которой будет протекать в стержнях ток. В результате взаимодействия вращающего магнитного поля с током в коротко замкнутой обмотке создается вращающий момент, как у асинхронного двигателя. За счет этого момента ротор разгоняется до скольжения близкого к нулю (S=0,05), рис. 313. На этом заканчивается первый этап.

Чтобы ротор двигателя втянулся в синхронизм, необходимо создать в нем магнитное поле включением в обмотку возбуждения (3) постоянного тока (переключив ключ К в положение 1). Так как ротор разогнан до скорости близкой к синхронной, то относительная скорость поля статора и ротора небольшая. Полюса плавно будут находить друг на друга. И после ряда проскальзываний, противоположные полюса притянутся, и ротор втянется в синхронизм. После чего ротор будет вращаться с синхронной скоростью, и частота вращения его будет постоянной, рис. 313. На этом заканчивается второй этап пуска.

Ротор разгоняется до скольжения близкого к нулю (S=0,05), до подсинхр. скорости. На этом заканчивается первый этап.

ЧНазначение коллекторатобы ротор дв-ля втянулся в синхронизм, необходимо создать в нем магнитное поле. Так как ротор разогнан до скорости близкой к синхронной, то относительная скорость поля статора и ротора небольшая. Полюса плавно притянутся, и ротор втянется в синхронизм. После чего ротор будет вращаться с синхронной скоростью, и частота вращения его будет постоянной (второй этап).

Работа СД при недовозбужденном и перевозбужденном режимах (ib=var)

Режим работы соответствует постоянству момента.

Назначение коллекторапри Назначение коллектора

Назначение коллектораНазначение коллектора,E0sinθ=const,P=mUcIcosφ=const,Icosφ=Ia=const.

При недовозб.синхронном двигателесоставляющей напряжения -Е0 соответствует ток I, который отстает от напряжения Uc на угол φ. Вектор тока I перпендикулярен продолжению вектора jIXc. Реактивная составляющая тока IL будет отставать на 900 от вектора напряжения Uc, т.е. этот ток чисто индуктивный. Значит, при недовозбуждении двигатель будет потреблять из сети индуктивный ток, а следовательно будет потреблять из сети и реактивную мощность.

При увеличении возбуждения величина –Е01 увеличится, а ток I уменьшится до Ia=I1 и будет минимальным. При этом режиме СД будет работать с cosφ=1 и реактивная мощность, не будет ни потребляться, ни отдаваться в сеть.

При дальнейшем увеличении тока возбуждения составляющая напряжения будет равна –Е011, а ток I11 , будет опережать вектор напряжения сети на угол φ1. Этот режим соответствует перевозбужденному режиму В перевозб. режиме реактивная составляющая тока будет емкостной (опережает вектор Uc на 900). Этот режим будет соответствовать отдаче реактивной мощности в сеть.

7. Понятие об электроприводе, как электромеханической системе, его назначение и функции. Типы электроприводов, структура и основные элементы современного электропривода. Особенности развития электропривода.

ЭП-электромеханическое устр-во, предназначенное для приведения в движение рабочих органов машин-орудий и управления их технологическими процессами. Блок схема эл.привода как объекта управления может быть представлена в след. виде:

Назначение коллектора

СУ ЭП состоит из энергетич. части и информ-ной части. Энергетич. часть – это преобразоват-ное уст-во, назнач-е которого – управл-е потоком энергии, поступающим из сети, с целью рег-ния режимами работы двигателя и механизма. Преобразовательное уст-во позволяет расширить гибкость управления, позволяет придать хар-кам ЭП нужный вид, что достигается или путем преобразования трехфазного переменного напряжения промышленной частоты в постоянное (выпрямленное) напряжение, или в переменное напряжение, но другой частоты.

В кач-ве преобразовательных устр-в для получения пост.напряжения прим-ся двигатель – генераторы, тиристорные преобраз-ли, а для получения перем. напряжения иной величины или иной частоты – электромашинные и вентильные преобраз-ли частоты.

Информ. часть СУ предназначена для фиксации и обработки поступающей информации о задающих воздействиях и реальном состоянии системы. На основе этой информации вырабатываются сигналы управления преобразовательным уст-вом и двигателем. Сама же система управления обеспечивает электроприводу необходимые статические и динамические свойства.

Передаточное уст-во (передаточный механизм) служит для изменения скорости или вида движения (из вращательного в поступательное или наоборот). К передаточному устройству относятся: редукторы, кривошипно – шатунные механизмы, зубчато – реечные или клино – ременные передачи, барабаны с тросами и т.п.. Все эти устройства по существу служат для передачи механической энергии от двигателя к исполнительному механизму.

Основной функцией простейшего не автоматизированного ЭП, состоящего только из электродвигателя, питаемого непосредственно от сети, и система управления которого включает в себя обычный рубильник или пакетный выключатель, или магнитный пускатель, явл-ся приведение в движение рабочего механизма с неизменной ск-тью.

Автоматизированные ЭП, имеющие САУ, выполняют более широкие функции, обеспечивая рациональное ведение технологического процесса, более высокую производительность механизма при лучшем качестве выпускаемой продукции.

В зависимости от схемы передачи энергии от сети к рабочим органам механизмов различаются три типа эл.привода:

1.Групповой (трансмиссионный).2.Однодвигательный или индивидуальный. 3.Многодвигательный (тоже индивидуальный).

Групповой ЭП представляет собой систему, в которой один электродвигатель посредством трансмиссий (системы шкивов и ремней) приводит в движение группу рабочих машин или группу рабочих органов одной машины, как показано на рис. Двигатель в этом случае конструктивно с рабочими машинами не связан. В такой системе невозможно регулирование отдельных машин воздействием на двигатель.

Назначение коллектора

Вследствие своего технического несовершенства такой ЭП в наст.время практически не применяется и представляет интерес лишь с т.зр. истории развития ЭП. Однодвигательный ЭП представляет собой систему, когда каждая рабочая машина приводится в движение отдельным, связанным только с ней электродвигателем, как изображено на следующем рисунке.

Назначение коллектораПримером применения однодвигательного ЭП являются простые металообрабатывающие станки и др.несложные механизмы. Во многих случаях привод осуществляется от электродвигателя специального исполнения, конструктивно представляющего одно целое с самим механизмом. Примером может служить ЭП электродрели.Характерным примером полного совмещения двигателя с рабочим органом является электрорубанок. В нем трехфазный АД имеет к.з. ротор, расположенный снаружи статора (внешний ротор), несущий ножи инструмента.

Можно назвать также электрическую таль, двигатель – ролик (рольганг) , применяемый в металлургической промышленности на прокатных станах. Неподвижный статор с обмоткой располагается здесь внутри рольганга, а сам ролик является ротором.

Преимуществом однодвигательного ЭП перед групповым является то, что в нем имеется возможность электрическими методами регулировать скорость каждой из машин. При этом значительно сокращается путь передачи энергии от сети к рабочим органам, помещения освобождаются от тяжелых трансмиссий, шкивов, ремней, улучшается освещение, резко снижается вероятность несчастных случаев. В случае механизмов с одним рабочим органом возможен выбор для ЭП двигателя с характеристиками, наиболее полно удовлетворяющим требованиям производственного процесса.

Переход на однодвигательный ЭП дал возможность широко автоматизировать работу машин. В настоящее время этот тип ЭП является основным и имеет наибольшее применение.

Однако, при однодвигательном ЭПе машин с несколькими рабочими органами внутри машины еще сохраняется система механического распределение энергии (посредством шестерен и т.п. ) с присущей ей недостатками. Поэтому в современных машинах подобного рода широко применяется многодвигательный ЭП, при котором каждый рабочий орган приводится в движение отдельным электродвигателем. Такие ЭПы применяются например в сложных металлообрабатывающих станках, бумагоделательных машинах, прокатных станах, экскаваторах и др. При этом значительно упрощается кинематическая схема машины. Встречаются металлообрабатывающие станки и др. механизмы, где число электродвигателей достигает 30 и более.

Современный ЭП хар-ся высокой степенью автоматизации. Многие современные высокоточные ЭПы управляются посредством вычислительных машин (например, ЭП мощных прокатных станов, доменных печей, копировальных станков). Их управляющие устройства, как правило, построены на основе использования микроэлектроники. Аналогичной техникой управления снабжаются и многие ответственные ЭПы малой мощности, например ЭПы механизмов роботов и манипуляторов. Во всем диапазоне мощностей ЭПов находят применение современные системы программного управления технологическими процессами, устройства, оптимизирующие по тем или иным критериям работу ЭП и механизма, используются принципы адаптивного автоматического управления.

Наряду с регулируемыми ЭПми широко применяются и простейшие нерегулируемые ЭПы с двигателями переменного тока, получающими питание непосредственно от промышленной сети. Однако управляющие устройства и таких ЭПов постоянно совершенствуются в связи с повышением требований к надежности работы, необходимостью повышения их энергетических показателей, усложнением технологических блокировок между механизмами.

Особенности развития ЭПа:

  • расширение областей применения вентильного ЭП постоянного тока и частотно – регулируемого ЭП переменного тока

  • расширение и усложнение его функций, связанных с управлением технологическими процессами и соответствующее усложнение систем управления (САУ), повышение требований к динамическим и точностным показателям, увеличение быстродействия, надежности, экономичности, снижение габаритов

  • стремление к унификации его элементной базы, создание унифицированных комплектных ЭПов путем использования современной микроэлектроники и блочно – модульного принципа. На этой основе, как известно, уже созданы серии комплектных тиристорных ЭПов, обладающих техническими показателями, удовлетворяющими требованиям широкого круга механизмов

Одним из проявлений развития регулируемого ЭП является тенденция к упрощению кинематических схем машин и механизмов, за счет создания безредукторного ЭП, в котором должны использоваться специальные тихоходные двигатели. Уже имеются и применяются тихоходные двигатели, имеющие номинальную скорость вращения

18 – 120 об/мин. Область применения – мощные ЭПы прокатных станов, шахтных подъемных машин, основных механизмов экскаваторов, скоростных лифтов.

Источник: StudFiles.net


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.