Смесительный узел для тёплого пола без насоса


Все больше пользователей монтируют в своих жилищах теплые полы, и чаще всего они устанавливаются в ванных комнатах и гостиных. Когда тёплый пол не является основным источником обогрева дома, то наряду с этой системой используются и другие способы обогрева жилища, к примеру, обычные батареи отопления. Зачем необходим узел смешения для теплого пола в комбинированных системах обогрева помещения?

Смесительный узел для тёплого пола без насоса

В этих случаях существует проблема, каким образом совместить два типа системы отопления, так как теплые полы относятся к низкотемпературным системам обогрева, а радиаторы, наоборот, к высокотемпературным. Для того чтобы согласовать работу этих систем, требуется специальное устройство – смесительная группа для теплого пола, который используется непосредственно для водяных контуров обогрева.

Задачей смесительного узла является настраивание температурного режима теплого пола методом перемешивания теплоносителя из подачи и обратки. Сделать смесительный узел для теплого пола своими руками достаточно просто. Однако, во время изготовления необходимо придерживаться определенного алгоритма действий, для того чтобы в будущем избежать различного рода поломок.

Конструктивные особенности и принцип работы


Вначале необходимо выяснить принцип работы смесительного узла для теплого пола. Его используют лишь для водяного обогревательного пола, так как у него примерно такой же механизм, как и радиаторного теплоносителя. Типовая схема, как правило, строится на следующем основании – котел, прогревающая жидкость контуры батарей отопления и теплого пола.

Теплоноситель прогревается в котле до температуры равной температуре в радиаторе, как правило, ее значение составляет 95оС. Оптимальный температурный режим не должен превышать 31оС. Для этого существует ряд причин, главной из которых является комфортные ощущения для пола, он не должен быть чрезмерно горячим или холодным.

Особое внимание стоит обратить также на:

  • какова толщина и разновидность финишного покрытия;
  • какая высота стяжки обогревательного пола, в которой находятся трубки.

Исходя из этого, оптимальной температурой теплоносителя в трубах должна колебаться от 35оС до 55оС. Но так как температура теплоносителя находящегося в котле довольно высокая, такую температуру направлять в трубки категорически не рекомендуется.

Для того чтобы ее снизить в начале системы отопления используется коллекторный узел подмеса. Именно здесь смешивается теплоноситель низкой и высокой температуры. А уже охлажденный теплоноситель направляется в трубки находящиеся в полу. При помощи смесителя система обогрева теплого пола работает без каких-либо помех во всем доме.

Стандартная комплектация смесительных узлов включает в себя:


  • термостатический и настроечный вентиль;
  • термостатическую головку;
  • насос;
  • устройство температурного режима.

Существуют также конструкции теплых полов способных функционировать без смесительного узла. Но в этом случае они оборудуются специальным водонагревательным устройством, которое доводит теплоноситель до оптимального температурного режима.

Разновидности смесителей для обогревательного пола

Есть всего 2 вида смесителей — с 2-х и 3-х ходовыми клапанами. Их задачей является перемешивание холодной и горячей воды для обогревательного пола, что создает ее беспрерывный круговорот.

Двухходовый клапан оборудуется термической головкой с датчиком. Датчик контролирует температуру в режиме реального времени и в случае необходимости останавливает подачу теплоносителя от котла. Подача осуществляется только тогда, когда вода остынет во время подмешивания обратки в подачу. Двухходовые клапана предназначаются для помещений чья общая площадь не превышает 200 м2.

У трехходового клапана более высокая пропускная способность, чем у двухходового. Он не сможет пропустить воду в общую систему в помещениях небольших размеров, в том случае когда полностью открыт. Как результат это может вызвать резкие скачки температуры и следствем этого может стать разрыв трубок.


Исходя из данных приведенных выше можно сделать заключение что 3-ходовый клапан наиболее оптимально справляется со своими функциями в больших и просторных помещениях, где смонтированы системы с большим количеством контуров и используются контролеры окружающих условий.

На прилавках современных магазинов можно будет встретить модели отличающиеся по потребительскому типу:

  • для присоединения к персональному типовому коллектору;
  • как групповой персональный узел для установки системы с высокой мощностью.

Последний вариант может быть использован для того чтобы подсоединить несколько маломощных систем либо большой мощностью с 2 – 12 выходами.

Существуют также уличные датчики температуры. Эти приборы рекомендуются для того чтобы автоматизировать регулировку теплоносителя исходя из погодных условий. К примеру при падении температуры на улице то датчик дает сигнал об увеличении температуры теплоносителя. Как только на улице становится теплее датчик предает команду системе об понижении температурных показателей теплоносителя.

Прибор сконструирован таким образом что его устройство предполагает поворот на 90о . А специальный контролер делит их на 20 участков и мониторит погоду на улице. В том случае когда температура воды не соответствует погодным условиям, вентиль поворачивается на необходимое число делений. Это естественно можно сделать и самостоятельно, погодный датчик температуры намного удобнее.

Смесительный узел для тёплого пола без насоса

Схемы подключения смешивающего узла


Подсоединение к котлу обогревательного пола осуществляется по определенной схеме, параметры которой зависят от системы отопления:

  • 1-трубной;
  • 2-трубной.

При однотрубной обогревательной системе необходимо чтобы байпас постоянно находился в открытом положении, двухтрубной же этого не нужно. Проект бывает как довольно простой , так и с использованием ряда дополнительных элементов.

Но в любом случае необходимо установить термостаты для коллекторной группы, устройства для контроля расхода воды и клапаны. Перемешивание непосредственно может быть совершено на всех отводах коллекторной группы либо до них.

Смесительный узел для тёплого пола без насоса

Как собрать смесительный узел своими руками?

Цена смесительного узла довольно высокая, поэтому большинство предпочитает сделать его самостоятельно. Более того достаточно сложно найти регулятор с нужным количеством выходов. В этом случае рекомендуется, купить еще и гребенки, которые можно смонтировать самому.

Для самостоятельной сборки узла смешения для теплого пола своими руками необходимо:

  • 2х или 3х ходовый клапан;
  • специальные гайки;
  • воздухоотводчик ручного типа;
  • клапан обратки;
  • зажимы;
  • кран шарового типа;
  • циркуляционный насос;
  • тройники;
  • устройства для определения температуры.

Разберем на примере насосно смесительного узла для теплого пола Valtec. На первом этапе собирается коллектор. Для этого существует 2 способа:

  • спаять полипропиленовые тройники;
  • скрутить тройники.

В обеих случаях диаметр элементов должен быть ¾ дюйма. Спаянные коллекторы обойдутся дороже, так как каждое ответвление гребенки должно быть оснащено МРН, цена которого достаточно высокая.

Наиболее подходящим материалом являются именно тройники высокого качества. Главным нюансом является их грамотная подборка. Для гребенки идеально подойдут изделия с 2 внешними и 1 внутренним концом. Их скручивание друг с другом должно осуществляться только с помощью пакли.

На втором этапе происходит изготовление гидрострелки. Ее изготовление можно осуществить даже без использования трехходового крана. Вполне подойдет и обычный регулировочный кран, используемый для радиаторов отопления. Кроме этого понадобятся 2 тройника, таких же, как для гребенок и 2 соединительных ниппеля с внутренней и наружной резьбой, их длина должна составлять 0,5 м. Сборка узла Валтек должна осуществляться на пакле. Для этого с двух сторон крана вкручиваются ниппели, далее к ним подсоединяются с каждой стороны по тройнику.


Третий этап включает в себя сооружение насоса. Самостоятельно собрать насосно смесительный узел для системы теплого пола невозможно, и поэтому его покупают. Установка насоса происходит снизу гидрострелки при помощи разъемных соединений, которые входят в комплект. Также его можно смонтировать вместо гидрострелки. Он сможет легко ее заменить ни чуть не хуже работая чем она.

Завершающий этап включает в себя соединение гидрострелки с гребенками. Наиболее удачным решением будет сделать разъемные соединения. Таким образом если насос будет выступать в роли отдельного элемента, потребуется приобретение патрубка. Его длина должна соответствовать характеристикам насоса. Он устанавливается на подаче , а коллектор прикручивается к патрубку. Поэтому использование гидронасоса вместо гидрострелки более экономично.

После этого гребенки оборудуются кранами Маевского, регулировочными клапанами либо автоматическими устройствами для воздушного сброса. Далее смеситель устанавливают в отведенную зону особого шкафа и подключаются к обогревательной системе.

Для самостоятельного присоединения термосмесительного узла для теплого пола необходимы отсекающие краны. Таким же образом подключают и узлы обогревательного пола. У первого конца гребенка внизу, у второго – сверху. Для того чтобы не запутаться, необходимо придерживаться определенного алгоритма – подача и обратка одного сегмента должны подключатся последовательно. Кроме этого, к насосу подключается электроснабжение.

Смесительный узел для тёплого пола без насоса

Как настроить узел смешивания?


После завершения установки смесителя необходимо проверить его работоспособность. Обычно регулировка отнимает намного больше сил и времени чем монтаж смесителя. Но правильные расчеты помогут сделать это с минимальными потерями.

  1. Сначала необходимо снять сервопривод. Это необходимо для того чтобы он ни оказывал влияния на узел во время процесса настройки. Перепускной клапан устанавливается на крайнюю позицию. Сработавший случайно в момент настройки клапан приведет к неверному результату. Исходя из этого ,следует что механизму необходимо задать такое положение, во время которого он будет находиться в полном бездействии.
  2. После этого приходит очередь уравновешивания контуров пола. Сначала необходимо закрыть радиаторный контур, то есть это должен быть балансировочный запорный вентиль первой линии. С клапана снимается крышка и при помощи шестигранного ключа его поворачивают до упора по часовой стрелке.
  3. Линии контура балансируются при помощи особых клапанов. В том случае если в смесителе всего одна линия уравновешивание не требуется. В случае необходимости она проводится при помощи следующих действий. Регуляторы открываются на максимум. Клапан запирается до достижения наилучшего размера в контуре, где уклонение от расхода составляет максимум.

  4. Таким образом регулируются линии согрева в общем. В случае, когда расходные данные сбиваются во время балансировки линий, они заново настраиваются. Когда расход невозможно откорректировать при открытых вентилях, необходимо увеличить рабочую быстроту насоса.
  5. После этого насосный смесительный узел необходимо увязать с прочими отопительными элементами системы. Для этого открывают балансировочный запорный радиаторный клапан, закрытый перед началом настройки. Его нужно открыть до показателя, который соответствует оптимальному расходу теплоносителя. Расход контролируется при помощи особых расходомеров. Таким образом можно настраивать через возвратный ход в системе пола.
  6. После этого необходимо заняться перепускным клапаном. Вначале выставляется вентильное давление. Данная характеристика не должна превышать более 10% от наибольшего насосного давления. Данный максимум должен соответствовать основным особенностям разновидности насоса. Данный клапан активизируется тогда, когда агрегат нагнетает давления во время минимального расхода теплоносителя.

Очень важно правильно настроить смесительный узел, чтобы работа системы обогрева была максимально эффективной.

Смесительный узел для тёплого пола без насоса

Преимущества теплого пола со смесителем

Система типа обогревательный пол оборудованная смесительным узлом обладает целым рядом преимуществ в отличии от остальных систем отопления:


  1. Комфорт. Он достигается при помощи поступления тепловой энергии путем излучения, а не конвекции. Кроме этого поверхность пола и само помещение равномерно нагреваются. В комнатах нет мостиков холода или чрезмерно горячих батарей. Это позволяет создать комфортные условия и здоровую атмосферу. Благодаря этому уменьшается количество пыли. Поверхность постоянно сухая. Что предотвращает размножение на ней плесени клещей и прочих вредоносных организмов.
  2. Экономия. Исходя из того где расположены трубки и каким образом работает система, можно существенно сэкономить средства на обогреве жилища. Доказано что в жилых помещениях со стандартной высотой экономия электроэнергии составляет 30%. Благодаря этим данным можно сократить затраты энергоресурсов до 50%.
  3. Безопасность. Данная характеристика имеет особое значение где находятся люди. При работе обогревательного пола исключается вероятность получения ожогов и прочего ущерба для здоровья, которые можно получить при эксплуатации конвекторов или радиаторов.
  4. Гигиена. Система обогревательных полов сама предполагает необходимую дезинфекцию финишного покрытия. Чистка пола может осуществляться с помощью моющих средств и воды. Данный вид системы обогрева идеально подойдёт для помещений с особыми запросами к гигиене. К примеру, водяной пол с узлом перемешивания является оптимальным решением для больниц и детских садов.

  5. Удобство. Для данного вида отопительной системы не требуется монтаж дополнительных приборов в обогреваемом помещении. Все необходимое оборудование монтируется обычно в кладовках. Поэтому планировку можно делать такой как вам заблагорассудится, при этом нет необходимости задумываться о выделении места под агрегат.

Это главные достоинства насосно смесительного узла для теплого пола.

Смесительный узел для тёплого пола без насоса

Особенности монтажа смешивающего узла

Монтаж узла перемешивания теплого пола осуществляется непосредственно рядом с калорифером. В момент, когда все элементы гидравлической системы подключены эластичными трубками, узел подмеса нужно жестко закрепить к стене. Кроме этого, перед тем как приступить к монтажу требуется распределить места для осуществления свободного доступа к элементам смесителя. Регулировочный клапан должен располагаться в зоне входа теплоносителя в калорифер.

Во время подбора труб необходимо убедится что материал, из которого они сделаны, способен выдерживать температуру заходящего теплоносителя. Для этого предпочтительно приобрести полимерные трубы. Также стоит помнить о том, что трубу, изготовленную из оцинковки, не рекомендуется использовать для гликолево–водного раствора. Запорные части в идеале должны быть изготовлены из бронзы и латуни, трубки — из черной стали, насос из чугуна. Производители стальных частей всей системы грунтуют и окрашивают внешнюю сторону.

Во время выбора места для монтажа и подключения узла, нужно учитывая появление воздушных пузырей, вероятность появление которых возникает от устройства отвода котлового контура. Также необходимо позаботится том, чтобы предотвратить попадание воды и конденсата на части находящиеся под напряжением.

Исходя из информации приведенной выше, целесообразней подбирать смесительный узел индивидуально, для того чтобы обеспечить максимальный комфорт от эксплуатации обогревательной системы пола. Достаточно просто самому подобрать подходящую систему, но предварительно необходимо изучить все виды схем подключения. Но в том случае, если абсолютно нет ни каких знаний об данных узлах и назначениях деталей, для того чтобы не рисковать, лучше всего будет приобретение готовой конструкции.

santehnikportal.ru

Смесительный узел: назначение и состав

водяной пол от смесительного узлаУстройство, которое иногда называется коллектором теплого пола, имеет точное техническое определение — смесительный узел теплого пола, в котором гребенка является только одной из функциональных частей оборудования. Ведь в его состав входят и другие комплектующие, задача которых – оптимизация работы системы обогрева пола.

Стандартный узел смешения для теплого пола включает в свой состав следующие функциональные элементы:

  • коллектор (распределительная гребенка);
  • составные части смесительного узлагидрострелка (смеситель для теплого пола);
  • трехходовой кран;
  • циркуляционный насос;
  • термореле (только для автоматизированного смесительного узла);
  • запорная арматура (смесительный клапан для теплого пола);
  • приборы для удаления воздуха из системы (автоматические или ручные).

Коллектор в составе смесительного узла

коллекторРаспределительная гребенка — это основной элемент узла, но следует понимать, что их в реальном узле две – распределительная гребенка для подачи теплоносителя в трубопроводы отопления теплого пола и собирающая охлажденную воду из обратки. Они ничем не отличаются и представляют собой разветвитель с необходимым числом резьбовых ответвлений для подключения трубопроводов системы теплых полов. Без коллектора понятие: смесительная группа для теплого пола, теряет свой смысл.

Гидрострелка и ее назначение

гидрострелка для смесительного узлаВ систему теплых полов подается теплоноситель с температурой, не превышающей 55 градусов, правда специалисты рекомендуют поддерживать температуру 45 градусов с величиной перепада температур на подающей и собирающей гребенке в 5 – 10 градусов. Такая система отопления называется «низкотемпературной» и для согласования с «высокотемпературной» радиаторной системой необходим смеситель – гидрострелка. Она устанавливается на входе смесительного узла и снижает температуру подаваемого теплоносителя до приемлемых значений.

Двухходовый кран для смесителей

двухходовый кранПитающий кран (двухходовой) оснащается термоголовкой с датчиком, который непрерывно контролирует температуру теплоносителя в подающем коллекторе смесителя. При увеличении значения температуры выше установленного уровня кран отсекает подачу горячей воды от котла отопления. Схема узла с двухходовым клапаном применяется при обогреве площадей до 200 кв. метров из-за небольшой пропускной способности крана и медленной регулировки перепадов температуры.

Трехходовой кран узла смешения

трехходовой кран в смесительном узлеВ отличие от двухходового крана трехходовой кран удачно совмещает две функции – функцию пропускного крана и функцию балансировочного байпаса. Для работы в составе автоматизированных систем клапаны снабжаются электрическими сервоприводами, которые управляются сигналами сметеоконтроллеров и термостатов. Трехходовые краны могут применяться в сложных многоконтурных системах обогрева значительных площадей.

место установкиС помощью трехходового крана регулируется режим работы гидрострелки. Он монтируется в нижней части трубы соединяющей подающий и обратный трубопровод. Изменяя поток теплоносителя через гидрострелку, трехходовой смесительный клапан для теплого пола регулирует температуру теплоносителя на подающем коллекторе контуров теплых полов.

В процессе эксплуатации специалисты выяснили некоторые недостатки трехходовых универсальных клапанов:

  1. собранный смесительный узелпропускная способность трехходовых клапанов велика и температура в контуре может резко увеличиться даже при незначительной разбалансировке клапана;
  2. по управляющему сигналу термодатчика клапан может открыться полностью, что приведет к появлению в контуре теплого пола перегретого теплоносителя со всеми вытекающими из этого неприятными последствиями для пластикового контура теплого пола.

Насос для узла подмеса

насос для узла подмесаДля эффективного прогрева полов помещения необходимо обеспечить активное перемещение теплоносителя, поэтому узел подмеса теплого пола обязательно комплектуется циркуляционным насосом, который монтируется на обратке, между собирающей гребенкой и гидрострелкой.

Термореле для коллектора теплых полов

место установки терморелеЕсли предполагается монтаж автоматизированного смесителя, то для его функционирования необходимо установить термостатический смесительный клапан для теплого пола между гидрострелкой и распределительным коллектором. Кроме того систему обогрева полов снабжают внешними температурными датчиками, чтобы осуществить коррекцию внутренней температуры помещений в зависимости от климатических условий.

Комплект запорной арматуры

Стандартный смеситель для теплого водяного пола комплектуется двумя видами запорной арматуры – регулирующими и шаровыми кранами.

Регулирующие краны предназначены для регулировки системы, а шаровые краны изменяют режим работы узла смешения для поддержания определенной температуры.

коллектор теплого полаДля автоматизированных систем отопления устанавливают трехходовой термостатический смесительный клапан для теплого пола, который получает сигнал для коррекции температуры от блока управления. Они отсекают в нужный момент подачу горячего теплоносителя и закольцовывают контур теплых полов через гидрострелку. При уменьшении температуры теплоносителя происходит обратный процесс.

Схемы подключения трехходовых клапанов

коллектор водяного полаС помощью трехходовых кранов происходит переключение или смешение потоков жидкости различной температуры. Таким образом, схема подключения трехходового смесительного клапана теплого пола может выполняться в двух вариантах: схема подключения для переключения потоков жидкости и схема подключения клапана для смешивания потоков жидкости.

Важное отличие трехходового крана от двухходового заключается в невозможности перекрытия потока теплоносителя. Его можно только перенаправить. Такое свойство изделия позволяет контролировать расход и напор жидкости.

Основные достоинства трехходовых клапанов следующие:

  • сборка смесительного узлапростой монтаж в смесительном узле;
  • долговечность, клапан изготовляется из стойких к коррозии металлов;
  • эффективность работы клапана в узлах подмеса теплых полов;
  • практичность;
  • простота регулировки системы.

Система удаления воздуха из смесительного узла

узел подмесаВ заводских коллекторах для теплых полов обычно монтируются автоматические клапаны удаления воздуха. Если же имеется возможность изготовить узел подмеса для теплого пола своими руками, то их можно с успехом заменить обычными кранами Маевского или стандартными шаровыми кранами.

Разновидности схем смесительных узлов

вариант смесительного узлаРеальная схема смесительного узла теплого пола может монтироваться в двух вариантах – на двухходовых или 3 ходовых кранах. Разница между ними заключается в том, что при использовании двухходового крана необходимо установить дополнительный элемент — термосмесительный клапан для теплого пола, который несколько усложняет узел, но при раздельном регулировании температуры полов отдельных помещений без него не обойтись. Термосмесительный клапан подключается к каждому подающему патрубку коллектора и управляется сигналами с термостатов конкретных помещений.

spetsotoplenie.ru

Общие понятия о смесительном узле «теплого пола»

В чем значимость насосно-смесительного узла в системе водяного «теплого пола»?

Чтобы любая работа шла успешно, исполнителю необходимо понимать, что он делает, и в чем принцип действия создаваемого им изделия. Не является исключением и наш случай: для начала следует полноценно представить, какие же функции возлагаются на насосно-смесительный узел – так будет проще разобраться в дальнейшем в его конструкции.

Итак, начнем с того, что температура циркулирующего по контурам тёплого пола теплоносителя значительно, практически вдвое, отличается от аналогичного показателя в традиционной системе отопления, где роль теплообменников выполняют радиаторы или конвекторы.

Так, в обычных высокотемпературных системах нагрев воды в трубах подачи обычно балансирует на уровне 70÷80 °С, а в ряде случаев может даже превышать эти границы. Именно под такие режимы эксплуатации создавались ранее и преимущественно создаются теперь тепловые магистрали, выпускается подавляющее большинство моделей котельного оборудования.

Но те температурные режимы, что считаются нормой для классических систем отопления, совершенно не приемлемы в условиях эксплуатации «тёплых полов». Это объясняется следующими обстоятельствами:

  • Если принять в расчет площадь активного теплообмена (практически вся поверхность пола в помещении), и присовокупить сюда еще и весьма внушительную теплоёмкость стяжки, в которую заключены трубы «теплого пола», то очевидно, что для достижения в комнате камфорной температуры большого нагрева и не требуется.
  • Порог комфортного восприятия нагрева поверхности пола босой ногой тоже ограничен – обычно для этого достаточно температуры до 30 °С. Согласитесь, будет не особо приятно, если снизу начнет «припекать».
  • Подавляющее большинство финишных напольных покрытий, применяемых в жилых комнатах, не рассчитано на сильный нагрев. Превышение температуры выше оптимальной приводит к деформациям, к появлению щелей между отдельными деталями, к выходу из строя замковых соединений, к образованию волн или «горбов» и другим негативным последствиям.
  • Высокие температуры нагрева вполне способны деструктивно влиять и на состояние бетонной стяжки, в которой «покоятся» трубы контуров «теплого пола».
  • Наконец, повышенные температуры совершенно не полезны и трубам проложенных контуров. Следует правильно понимать, что они жестко зафиксированы в стяжке, лишены возможности свободного термического расширения, и при высоких температурах в стенках труб будут возникать весьма сильные внутренние напряжения. А это – прямой путь к быстрому износу, к повышению вероятностей появления протечек.

В последнее время в продаже появились модели котлов, которые вполне могут работать в режиме «теплого пола», то есть давать низкотемпературный нагрев. Но есть ли смысл приобретать новое оборудование, если есть возможность обойтись имеющимся? Кроме того, «тёплые полы» в «чистом» виде применяются не столь часто – обычно они в масштабах одного дома комбинируются с «классикой». Ставить два раздельных котла? — очень расточительно. Лучше несколько усовершенствовать свою систему, выделив из нее участок «тёплых полов», и на границе этого разделения как раз и установить тот самый насосно-смесительный узел, о котором будет вестись речь.

Есть и еще одно обстоятельство, объясняющее необходимость насосно-смесительного узла. Одно дело – обеспечить циркуляцию в основном контуре отопления, и другое – в проложенных контурах теплого пола, каждый их которых достигает в длину десятков метров, с многочисленными изгибами и поворотами, дающими значимый прирост гидравлического сопротивления. Значит, необходимо выделенное насосное оборудование, которое также, как правило,  входит в схему этого узла, что, кстати, отражается и на его названии.

Принцип работы смесительного узла

Задача понятна – необходимо, не нарушая режима работы основной системы отопления, добиться того, чтобы в контурах «теплого пола» циркулировал теплоноситель с гораздо более низким уровнем нагрева. Как этого добиться?

Ответ напрашивается сам собой – качественным регулированием, то есть подмесом в горячий поток более холодного. Полная аналогия с тем, что мы проделывает неоднократно каждый день, настраивая температуру воды в душевой или в кухонном смесителе.

С горячим потоком – все понятно, а вот откуда взять охлажденный? Да из проходящей рядом трубы «обратки», по которой теплоноситель, отдавший тепло в приборах отопления или в контуре «тёплого пола», возвращается обратно в котельную. Изменяя пропорции подмеса горячей и охлажденной жидкости, можно добиться требуемой температуры.

Безусловно, по сложности устройства смесительный узел весьма существенно отличается от обычного бытового крана. Так и задачи перед ним стоят более ответственные!

Так, смесительный узел должен уметь работать без постоянного вмешательства человека – автоматически отслеживать уровни температуры и вносить оперативные изменения в процесс смешивания потоков, изменяя их количественно. Нередко возникает ситуация, когда в дополнительном поступлении тепла и вовсе нет необходимости, и оборудование должно просто «запереть» контур, обеспечивая только внутреннюю циркуляцию теплоносителя по нему, до требуемого остывания.

Складывается впечатление, что все это очень мудрено для неспециалиста. Действительно, если посмотреть на насосно-смесительные узлы заводского производства, предлагаемые в продаже, то, на первый взгляд, разобраться в хитросплетении труб, кранов, клапанов и т.п. – очень непросто. А стоимость подобных сборок выглядит весьма пугающей.

Но, оказывается, на практике реализуется всего несколько ходовых схем, и если понять принцип их действия, тол подобный насосно-смесительный узел вполне можно собрать и собственными силами. Разбору этих схем мы и посвятим следующий раздел нашей публикации.

Необходимо сразу внести одну ясность – данная статья посвящена именно насосно-смесительным узлам, а вот подключаемые к ним коллекторы подачи и «обратки» упоминаться, безусловно, будут, но в их устройство углубляться не станем. Просто по той причине, что этот узел системы «теплого пола», а именно – его устройство, принцип действия, порядок сборки и балансировки, все же требуют подробного рассмотрения в отдельной публикации.

Схемы насосно-смесительных узлов и принципы их действия

Изо всего разнообразия схем подобных смесительных узлов было выбрано пять. Основными критериями выбора служили простота восприятия принципа работы и доступность в самостоятельном изготовлении. То есть предлагаемые конструкции вполне можно собрать из деталей, имеющихся в свободной продаже, и для этого не требуется специальной подготовки – достаточно устойчивых навыков в проведении обычного сантехнического монтажа.

Схемы, безусловно, различаются, но для простоты их восприятия они сделаны по одному графическому принципу, с сохранением изображений и нумераций одинаковых элементов. Новым деталям, которые будут появляться в схемах, будут присваиваться буквенные обозначения по нарастанию.

Во всех схемах принята одна ориентация – подвод труб подачи и «обратки» слева, а выход на «гребенки» — коллектор теплого пола – справа. Цветовая маркировка труб наглядно говорит об их предназначении. Сам коллектор в реальности может непосредственно примыкать к насосно-смесительному узлу (так бывает чаще) или даже располагаться на некотором отдалении от него – это зависит от особенностей помещения и свободного места для размещения оборудования. На принципе работы схемы это нисколько не отражается.

Трубы могут использоваться любые, по желанию мастера – от обычных стальных ВГП до пластиковых (полипропилен или металлопласт) или гофрированной нержавейки. Соответствующим образом будут меняться и некоторые комплектующие. Так, например, на схемах показаны латунные тройники или отводы, но они могут быть исполнены и из иных материалов.

Соответствующими утолщенными стрелками с изменяемыми оттенками показаны направления потоков теплоносителя.

СХЕМА №1

В данной схеме используется обычный термоклапан, как для радиаторов отопления. Циркуляционный насос расположен последовательно.

Схема считается одной из наиболее простых для монтажа, но она вполне действенная.

Давайте подробно пройдемся по деталям и устройствам, составляющим схему:

  • «а» – трубы, показанные с цветовой маркировкой, для простоты восприятия. Как уже отмечалось, могут применяться различные типы труб, лишь бы они соответствовали по своим характеристикам условиям эксплуатации в системе отопления.

— «а.1» – вход трубы подачи из общего контура системы отопления;

— «а.2» – выход в трубу «обратки»;

— «а.3» – подача на коллектор «теплого пола»;

— «а.4» – возврат теплоносителя с коллектора.

  • «б» — запорная арматура – шаровые краны. Важно – они не играют никакой роли в процессе регулировки температуры или давления в системе «теплого пола». Их функциональность ограничена, но вместе с тем – не менее важна. Наличие кранов позволяет производить отключение отдельных узлов системы отопления, когда это вызвано необходимостью, например, проведения каких-либо ремонтно-профилактических работ.

Особых требований к конструкции запорных кранов для смесительного узла не предъявляется, кроме, пожалуй, качества их исполнения. Но желательно применять краны, оснащенные накидной гайкой-«американкой» (как показано на иллюстрации), что позволит быстро проводить демонтаж узла, не прибегая к сложным операциям. Соответственно, на входе («б.1» и «б.2») эти накидные гайки должны быть со стороны смесительного узла.

Краны «б.3» и «б.4» (между смесительным узлом и коллектором) нельзя назвать обязательными элементами системы, но лучше не пожалеть денег и на них. Их наличие позволяет отключать коллектор и полностью демонтировать узел, не сбивая выверенной балансировки контуров.

  • «в» — фильтр механической очистки теплоносителя (его часто называют еще «косым фильтром»).

Этот элемент можно и не ставить, но только в том случае, если есть полная уверенность в чистоте циркулирующего теплоносителя. Обычно фильтрующие устройства предусматриваются на уровне котельной. Тем не менее, чтобы полностью исключить вероятность попадания твердых взвесей в область точной регулировки «теплых полов», можно и подстраховаться.

Стоит такой фильтр недорого, но зато появится гарантия, что в клапанные устройства самого смесительного узла и настроечных механизмов контуров не попадут никакие твердые частицы, способные нарушить их корректную работу. Кроме того, следует помнить, что твердые взвеси в теплоносителе ускоряют износ уплотнений клапанов.

  • «г» – приборы для визуального контроля температуры теплоносителя (термометры).

Тип термометра может быть любой – как удобно мастеру. Так, применяются приборы с зондами, которые контактируют непосредственно с теплоносителем. Если попроще – можно приобрести накладную модель, но замер уже будет вестись по температуре стенки трубы. Термометр может быть жидкостной, механический со стрелочным указателем или даже цифровой – он удобен при использовании электронных систем управления системами отопления.

На схеме показан вариант с использованием трех термометров:

«г.1» – замеряет температуру в общей трубе подачи системы отопления;

«г.2» – для контроля температуры теплоносителя, подаваемого со смесительного узла на коллектор;

«г.3» – позволяет отслеживать разницу температур на входе и выходе коллектора. Оптимально эта разница не должна превышать 7÷10 градусов.

Такое расположение приборов видится оптимальным, так как дает наиболее полную картину корректности работы системы. Впрочем, многие мастера из соображений экономии обходятся и меньшим количеством термометров.

  • «д» – основной управляющий элемент смесительного узла данной конструкции – термостатический клапан. Это точно такой же клапан, что обычно монтируется на батареях отопления.

Небольшая тонкость. В продаже представлены клапаны для радиаторов, рассчитанные на однотрубную и двухтрубную системы отопления. В нашем случае для смесительного узла предпочтительнее будет модель для однотрубной системы, как более производительная. Ее легко отличить по ряду признаков: такой клапан имеет несколько больший диаметр «бочонка», в маркировке присутствует буква «G», а защитный колпачок – серого цвета.

Направление тока теплоносителя указано на корпусе клапана стрелкой.

  • «е» – термостатическая головка, которая надевается на термоклапан (с помощью накидной гайки М30 или специальным типом фиксации). Важно – в данном случае требуется головка только с выносным датчиком («ж»), соединенным с нею капиллярной трубкой.

Устройство головки таково, что при изменении температуры меняется и ее механическое воздействие на шток термоклапана – при повышении клапан закрывается, при понижении – наоборот, открывает проход теплоносителю.

Смесительный узел для тёплого пола без насосаКак устроены и как действуют терморегуляторы для радиаторов отопления?

В данной публикации детально останавливаться на этих устройствах не станем. Это из тех соображений, что устройство и принцип действия терморегуляторов для радиаторов отопления подробно рассмотрены в отдельной статье нашего портала.

Термодатчик накладывается на трубу – для этого имеются специальные пружинные фиксаторы. Но сразу возникает вопрос – а где именно он должен стоять?

Возможны два варианта, каждый из которых хорош по-своему.

Первый вариант: датчик стоит на трубе подачи от смесительного узла в коллектор «тёплого пола». Преимущества такого подхода – в контуры поступает теплоноситель со стабильной температурой, то есть полностью исключается возможность перегрева. Недостатки – система смешения никак не реагирует на изменение внешней температуры (если, конечно, соответствующие дополнительные устройства не размещены на самом коллекторе). Например, при похолодании в помещении или подъеме температуры, смесительный узел все равно будет подавать на контуры теплоноситель с неизменяемым уровнем нагрева.

Второй вариант: датчик стоит на трубе обратки от коллектора до смесительного узла (до перемычки, в районе термометра «г.3»). Преимущества – стабильность температуры именно на этом участке, то есть с учетом уже отданного в помещение тепла. А вот уровень нагрева теплоносителя в трубе подачи на коллектор будет варьироваться в соответствии с изменением внешних условий. Похолодало в комнате – контуры отдали больше тепла – термоклапан приоткрылся больше, и соответственно, наоборот. Недостатки – наличие вероятности перегрева в контурах «тёплого пола». Например, после заполнения системы при первом ее пуске в коллектор на первых порах будет подаваться слишком горячая вода, пока не прогреется стяжка. Другой вариант – слишком резкое похолодание в помещении (например, экстренное проветривание открытием окон настежь) также может дать приток в контуры слишком горячего для них теплоносителя.

Впрочем, при продуманной эксплуатации всего этого негатива можно избежать. А еще лучше – предусмотреть участки для размещения термодатчика на обеих трубах в указанных выше местах. Переставить такой датчик – минутная задача, не требующая никаких инструментов.

  • «з» – сантехнические тройники, с помощью которых между трубами подачи и обратки формируется перемычка – байпас («и»). Через этот байпас и будет осуществляться отбор охлаждённого теплоносителя для его смешивания. А сам процесс смешивания, по сути, проходит в тройнике «з.1».
  • «к» – балансировочное устройство. На байпасе рекомендуется установить вентиль (можно даже обычный сантехнический), с помощью которого проводится точная настройка системы после ее запуска, в частности, необходимых показателей напора и производительности циркуляционного насоса. Наличие такой регулировки позволяет «придушить» поток, чтобы в коллекторе и самом смесительном узле не образовывалось зон с чрезмерно повышенным давлением или, наоборот, разрежением. Насос станет работать в наиболее оптимальном режиме, снизится шумность системы.

Оптимальное решение – установка не сантехнического вентиля, а так называемого блок-крана, такого, какой частенько ставится на «обратке» радиатора отопления. По функциональности, в принципе, разницы нет никакой, но в плане обеспечения сохранности настроек – она очевидна. Балансировка проводится специальным ключом, а после этого регулировочное устройство закрывается защитной заглушкой. То есть до него не дотянутся, например, шаловливые детские ручки.

  • «л» – циркуляционный насос, обеспечивающий перемещение теплоносителя по контурам «теплого пола».

В основной системе отопления, безусловно, есть свое насосное оборудование, но «теплым полам» как правило, выделяется отдельный насос, с учетом протяженности и разветвленности проложенных контуров труб. Насос – обычный, а его параметры рассчитываются индивидуально для каждого смесительного узла – об этом речь еще пойдет ниже.

Смесительный узел для тёплого пола без насосаЦиркуляционные насосы – устройство, принцип действия, выбор оптимальной модели

Системы отопления с естественной циркуляцией встречаются все реже – предпочтение отдается схемам с установленным насосным оборудованием. Как устроен циркуляционный насос для системы отопления, и с какими оценочными критериями подходят к его выбору – читайте в специальной публикации нашего портала.

  • «м» – сантехнический обратный клапан. Это всем знакомая деталь, которая пропускает поток жидкости только в заданном направлении.

Насколько он нужен? В процессе смешивания, безусловно, он никакой роли не играет, но вот для обеспечения постоянной корректности работы может стать нелишним. Представим ситуацию – в контурах температура такова, что притока тепла не требуется, и термоклапан полностью перекрыт. Но насос продолжает работать, и циркуляция в контурах не прекращается. И вот здесь возможно явление подсасывания теплоносителя из общей трубы обратки системы отопления. А ведь там температура даже намного выше, чем должна быть в подаче «теплого пола». Подобный приток несанкционированного тепла может здорово разбалансировать работу смесительного узла, но установка клапана полностью снимает даже малейшую вероятность такого явления.

Теперь перейдем к рассмотрению принципа действия этой схемы.

Теплоноситель поступает из общей трубы подачи, доочищается на «косом фильтре». На термоклапане поток заметно снижается за счет прикрытой задвижки, уменьшающей сечение свободного прохода. За изменение положения клапана отвечая термостатическая головка, передающая механическое усилие на его шток, в зависимости от температуры на выносном термодатчике.

Циркуляционный насос работает постоянно, и перед ним, в области тройника «з.1» создается зона разрежения, которая затягивает и изменяющийся поток горячего теплоносителя, и охлаждённого – из трубы обратки через байпас. Потоки соединяются именно в упомянутом тройнике, смешиваются, и в таком виде, с нужной температурой, прокачиваются насосом далее на коллектор «теплого пола».

Если термодатчик показывает, что уровень нагрева достаточен или даже избыточен, клапан будет полностью закрыт, и насос станет просто прокачивать теплоноситель по кругу, без притока его извне. По мере постепенного остывания теплоносителя клапан приоткроется, чтобы добавить очередную «порцию» тепла, так, чтобы температура приняла необходимое значение.

Как видно, приток горячего теплоносителя при хорошо отлаженной системе будет не особо большим – в нормальном положении при стабильной работе узла, клапан бывает едва приоткрытым. Но в случае изменения внешних условий термоголовка внесет необходимые коррективы.

В данной схеме циркуляционный насос расположен таким образом, что он полностью перекачивает весь поток теплоносителя на коллектор «теплого пола». Этот принцип называют последовательным расположением насоса.

СХЕМА №2

Схема во многом повторяет первую, но вместо обычного термоклапана в ней применяется трёхходовой.

Итак, смотрим на особенности конструкции:

Вместо верхнего тройника устанавливается трехходовой смесительный термоклапан («н»), а обычный клапан из схемы, соответственно, изъят. Управляет же этим  устройством все та же термоголовка с выносным датчиком, что и в первой схеме. Положение датчика также не изменяется – один из двух упомянутых выше вариантов.

Смешение потоков происходит непосредственно в корпусе трехходового клапана. Он устроен таким образом, что при изменении положения штока один проход приоткрывается а второй пропорционально закрывается.

Необходимо обратить особое внимание на один нюанс. Такие клапаны могут быть не только смесительного, но и, наоборот, разделительного принципа действия. На показанной схеме требуется клапан именно смесительный, то есть с двумя сходящимися потоками. Как правило, на корпусе изделия имеется соответствующее указание – стрелки, демонстрирующие направление потоков теплоносителя.

Показанная схема может иметь и иную вариацию – термоклапан установлен вместо нижнего тройника, но здесь, понятно, уже должна стоять разделительная разновидность изделия. То есть управляться температура станет изменением подаваемого потока из обратки.

Трехходовые краны могут и не требовать термоголовки —  у многих моделей имеются свои встроенный датчики температуры. Правда, некоторые мастера выражают мнение, что с выносным датчиком система работает все же корректней, и вероятность возникновения нештатных ситуаций – гораздо ниже.

На схеме показан (полупрозрачным) еще и обратный клапан («м1»), установленный на байпасе. Он бывает необходим в тех случаях, когда автоматика управляет еще и работой циркуляционного насоса. Если клапана не будет, то в режиме простоя циркуляции байпас становится обычной неуправляемой перемычкой, что сразу сказывается на сбалансированности узла и на работе других отопительных приборов системы отопления. Но в большинстве случаев, когда насос работает постоянно, такая деталь в схеме не требуется, а многие мастера вообще считают ее вредной, так как такой клапан создаёт дополнительное гидравлическое сопротивление.

Когда выгодно использовать такую схему с трехходовым клапаном? Как правило, она находит применение в крупных смесительных узлах, к которым подключено несколько контуров, причем – различной протяженности. Оправдана одна и в системах отопления, которые управляются погодозависимой автоматикой, так как изменение параметров в них идет не только за счет клапана, но и за счет изменения режимов работы циркуляционного насоса. В небольших системах применение подобной схемы – не особо приветствуется, так как она будет сложнее в регулировке.

СХЕМА №3

Еще одна вариация схемы с последовательным расположением циркуляционного насоса. В этот раз также применен трёхходовой термоклапан («н.1»), но уже иной компоновки – он смешивает два сходящихся по одной линии потока и перенаправляет их в центральный патрубок.

Такие клапаны имеют соответствующую маркировку – стрелочную или цветовую, что позволяет не ошибиться в выборе.

В остальном же схема – полный аналог предыдущей. Байпаса может вообще не быть – вместо него смонтирован трёхходовой клапан, что дает немалую экономию места, и схема получается более компактной.

СХЕМА №4

Эта и следующая схема имеют коренное отличие от рассмотренных выше, и это принципиальная разница заключается в расположении циркуляционного насоса

Как видно из схемы, никаких новых элементов в ней не появилось. Трубы подачи и обратки со стороны общей системы – остались на месте, а вот со стороны коллектора – поменялись местами. Байпас, естественно, остается, но получается, что потоки горячего и остывшего теплоносителя встречаются в его верхней точке. А на самом байпасе разместился циркуляционный насос, обеспечивающий прокачку сверху вниз.

Принцип работы заключается в следующем. Поток горячего теплоносителя проходит через термоклапан, где дозируется до нужного количества, и встречается в верхнем тройнике байпаса с потоком из «обратки» коллектора. Стоящий на байпасе насос захватывает эти оба потока и прокачивает вниз. Таким образом, микширование происходит как в верхнем тройнике, так и в рабочей камере самого насоса.

В нижней точке байпаса, в тройнике, поток вновь разделяется. Большая часть прокачанного теплоносителя уже нужной температуры обычно возвращается в коллектор и далее – в контуры «теплого пола». А образовавшийся излишек – просто сбрасывается в «обратку» основного контура общей системы отопления.

Достоинством подобной схемы можно считать ее компактность, что бывает важно при недостаточности места под установку смесительного оборудования. Но недостатков у не все же больше:

— Производительность системы снижается, так как часть перемешанного теплоносителя попросту сбрасывается в линию «обратки».

— Подобная схема – намного сложнее в балансировке, так как необходимо добиться полного постоянного заполнения контуров «теплого пола», без участков разрежения, и только избыточное количество отправить в «обратку». Часто это требует установки дополнительных балансировочных элементов, например, блок-кранов или перепускных клапанов.

Интересно, что, видимо, в угоду компактности, большинство смесительных узлов промышленного изготовления собирается именно по параллельной схеме установки циркуляционного насоса. И это нередко побуждает народных умельцев несколько видоизменять заводские схемы установкой дополнительных перемычек – так, чтобы прийти к более производительной и более простой в настройке схеме с последовательным расположением насоса.

СХЕМА №5

Про эту схему можно много не рассказывать – все уже должно быть понятно. Отличие ее от предыдущей – только в использовании трёхходового термоклапана (смесителя), работающего по принципу смешивания встречных потоков.

Следует заметить, что существуют и гораздо более «навороченные» схемы, которые реализуются в смесительных узлах заводского производства. Но собирать их самостоятельно – вряд ли имеет смысл. Вполне можно выбрать вариант их предложенных выше.

Как определиться с основными параметрами смесительного узла?

Если принято решение собирать смесительный узел для «теплого пола» своими руками, то необходимо при подборе комплектующих следить, чтобы их параметры соответствовали характеристикам системы. Здесь речь идет не столько о диаметрах и монтажных размерах (хотя и это очень важно), сколько о производительности основных элементов узла (насоса и термоклапана), то есть о способности пропустить через себя необходимый объем теплоносителя в единицу времени.

А для циркуляционного насоса важен и еще один параметр – показатели создаваемого им напора жидкости. Насос обязан обеспечить нормальную циркуляцию во всех подключённых к узлу контурах «теплого пола», то есть преодолеть их гидравлическое сопротивление, а протяженность проложенных труб может быть весьма внушительной.

По правде говоря, проведение подобных вычислений – это удел специалистов. Но со вполне приемлемой степенью точности выполнить такие расчеты можно и самостоятельно, и мы в этом поможем.

Определение требуемой производительности насосно-смесительного узла

Этот параметр важен как для насоса, так и для термостатического клапана. Правда, насос выступает в роли активного узла, который и обеспечивает перекачку требуемого объема. Клапан же должен суметь пропустить через себя это количество жидкости, и они выпускаются с различными уровнями пропускной способности, которая, кстати, может даже регулироваться на них самих специальным кольцом предустановки.

Не станем загружать внимание читателей формулами, а предложим воспользоваться онлайн-калькулятором расчета. Несколько пояснений по проведению вычислений будут приведены ниже.

Калькулятор расчета производительности насосно-смесительного узла

Перейти к расчётам

Пояснения по выполнению расчетов

  • Теплоноситель так называется не зря – чем больше его перекачано в единицу времени, тем большее количество тепловой энергии перемещено от источника (котла) к месту потребления (к контурам теплого пола). Значит, одно из исходных значений для вычислений минимально необходимой производительности является площадь помещений, в которых организован такой тип отопления и контуры которых подключены к рассматриваемому смесительному узлу.

Здесь тоже может быть различие – одно дело, когда «теплый пол» является единственным источником тепла, и совершенно другое – когда он организуется только в целях поддержания более комфортной атмосферы в комнате: количество тепловой энергии будет отличаться. В полях ввода данных необходимо указать эти значения площади, с возможным их разграничением по указанному признаку. При этом если «теплый пол» делается для кухни, ванной, санузла или прихожей, то лучше сразу указывать, что он является основным источником тепла.

  • Для оценки количества переносимой тепловой энергии необходимо знать теплоемкость теплоносителя (она уже заложена в программу расчета) и перепад температур в подающем и обратном коллекторах. Этот перепад обычно не превышает 10 градусов, при том, что для комфортного восприятия, как уже говорилось, достаточно уровня нагрева не более, чем 30 градусов. Тем не менее, в калькуляторе есть два слайдера, на которых необходимо указать предполагаемый температурный режим работы системы.
  • Иногда вместо воды (характеристики которой уже заложены в программу) в системах отопления применяется незамерзающий теплоноситель. Чтобы результаты расчетов для него были более точными, можно указать его плотность и теплоемкость.

Итоговый результат будет показан в кубометрах в час, литрах в минуту и в секунду – как кому удобнее для восприятия.

Какой минимальный напор должен создавать циркуляционный насос смесительного узла?

В общей системе отопления, безусловно, стоит свой циркуляционный насос, но надеяться на напор, созданный им, не приходится. Как было видно из приведенных схем и принципов их работы, зачатую клапан закрывается полностью, и все давление, требуемое для циркуляции теплоносителя по контурам теплого пола, будет обеспечивать только насос, встроенный в смесительный узел.

Расположенный ниже калькулятор поможет определиться с минимальным значение требуемого напора. А под приложением – несколько разъяснений по работе с ним.

Калькулятор определения минимально необходимого напора циркуляционного насоса

Перейти к расчётам

Пояснения по проведению расчетов

  • К смесительному узлу подключается коллектор, от которого уже запитываются контуры «тёплого пола». Согласно законам гидравлики, давление, созданное насосом, на коллекторе будет равным для всех подключенных контуров, и для точной настройки обычно на каждом из них устанавливаются свои балансировочные устройства. Но эти клапаны позволяют лишь «придушить» избыточное давление, например, в контурах минимальной протяженности. А расчет, совершенно очевидно, должен вестись по самому длинному контуру, так как именно в нем будет оказываться максимальное гидравлическое сопротивление. Поэтому в поле ввода данных необходимо указать протяженность этого самого длинного контура, с учетом труб подводки к нему.
  • Гидравлическое сопротивление тем выше, чем меньше диаметр условного прохода трубы контура «теплого пола». Поэтому в следующем поле указывается этот параметр.

Кроме самих труб, немалое сопротивление оказывают и другие элементы системы – фитинги или клапаны. Но поправка на это обстоятельство уже учтена в алгоритме расчета.

  • Итоговое значение будет показано в нескольких единицах измерения: Паскалях, метрах и дециметрах водяного столба. Это сделано из тех соображений, что в паспортах насосов разных производителей могут применяться и различные единицы.

При выборе насоса имеет смысл ознакомиться с его техническим паспортом – там обычно прикладывается диаграмма оптимальных соотношений производительности и создаваемого напора в различных режимах работы (большинство современных приборов имеет переключатель таких режимов).

stroyday.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.