Как рассчитать капельный полив


Капельный полив: как производится правильный расчет самостоятельно

Комплектация системы капельного орошения и расчет давления и другого

На сегодняшний день базовая комплектация системы капельного орошения состоит из следующих элементов:

  • источника водоснабжения;
  • фильтростанции;
  • узла внесения и регулятор подготовки удобрений;
  • магистральных трубопроводов;
  • разводящих трубопроводов;
  • регулятор давления;
  • запорной фурнитуры;
  • соединительной фурнитуры;
  • данный полив (система) может дополнительно содержать узлы автоматического управления и регулятор контроля системы, регулятор расхода воды и давления.

Фильтрационная станция является одним из важнейших элементов, из которых состоит полив. В зависимости от наличия определенных примесей в поливной воде и величины поливаемой площади, фильтрационная станция может включать дисковые, сетчатые, гидроциклонные и гравийные фильтры. Сетчатые фильтры могут устанавливаться не только с целью очистки, но и с предупредительной, после гравийного. Состоят из фильтрующего элемента в виде мелкоячеистых сеток и корпуса. Данные фильтры применяются для того, чтобы фильтровать воду при невысоком содержании неорганических частиц. В таком случае будет качественный полив.


Степень очистки воды будет зависеть от того, какие размеры ячеек фильтрующей сетки, а пропускная способность — от площади. Фильтрующий элемент при засорении промывается обратным потоком воды.

Дисковые фильтры разрабатываются для обеспечения более глубокого фильтрования. Они состоят из фильтрующего элемента в виде набора тонких плотно сжатых дисков с радиальными канавками и корпуса. Сочетают наименьшую себестоимость обслуживания и надежность. Могут использоваться для удаления органических и неорганических частиц. Чаще всего используются для получения воды из скважин. При засорении могут быть промыты обратным потоком воды.

Гравийные фильтры применяются для того, чтобы удалить органические и неорганические частицы. Песок, который применяется в качестве фильтрующего элемента, за счет своей удельной высокой фильтрационной поверхности, дает возможность удерживать большое количество взвешенных частиц. Могут использоваться при заборе воды из открытого водоема. Промывка должна производиться обратным потоком воды. Гравийно-песчаная смесь, которая засыпается, используется 2 фракций: мелкая (0,5-0,8 мм), которая засыпается сверху, и крупная (1,2-2,4 мм), засыпаемая снизу.


Гидроциклоны используются для того, чтобы разделить и удалить тяжелые частицы из воды (в частности песка). Используются для предварительной очистки в случае большого загрязнения воды тяжелыми частицами.

Расчет системы капельного орошения (методика и полив)

Далее есть смысл определить потребности в воде на площадь, где будет выполняться полив, и количество оросительной трубки, чтобы обеспечить качественный полив.

Агрономия — это не точная наука, как, к примеру, математика. Несмотря на то, что в этой области на протяжении нескольких веков проводились масштабные исследования, был получен большой объем информации о влиянии орошения, удобрений на развитие растений, нельзя говорить о полном планировании и прогнозировании процессов в с/х производстве. Даже при отсутствии четкой зависимости, есть возможность, исходя из информации, которая имеется, оказывать большое влияние на урожайность с/х культур с помощью корректировки некоторых факторов. Одним из данных факторов является орошение. Когда речь идет об овощеводстве, то можно с уверенностью сказать о том, что самым эффективным сегодня является капельный полив.

После выбора на основе водных, почвенных, маркетинговых исследований набора культур, их фирмы-производителя оборудования и площади следует переходить непосредственно к расчету непосредственной самой системы (с помощью которой производится полив) с использованием следующего порядка проектирования:


  1. Предварительный расчет потребления воды для того, чтобы выполнить полив.
  2. Расчет необходимого количества оросительной трубки на имеющейся участок согласно схеме посадки.
  3. Деление участка на блоки капельного полива (необходимо учитывать мощность насоса, длину рядов, давления, дебет скважины).
  4. Подбор фильтростанции (необходимо учитывать расход по блокам воды, желаемое время, в которое будет выполнен полив участка).
  5. Подбор материалов разводящих и магистральных трубопроводов, чтобы выполнялся полив.

Для начала необходимо определить максимальную ежедневную потребность в воде для проверки возможностей источника воды, выбора фильтростанции и другой фурнитуры. За максимальную оросительную ежедневную норму следует принимать 60-70 м³ на гектар. Исходя из этого и необходимо производить предварительный расчет пропускной способности фильтрующей станции. Формула следующая:

Q = (60м3 / га * S) / T, где Q — пропускная способность фильтрующей станции (м³/ч), S — площадь орошения, которая планируется (га), T — время работы системы, которое планируется в сутки (16-20 ч).

Если источник водоснабжения позволит расчетный расход воды, необходимо переходить к следующему этапу расчета. Расчет необходимого количества оросительной трубки должен вестись с учетом перечня культур, которые возделываются.

С учетом схемы посадки и возделываемой площади, для каждой культуры рассчитывается потребность в оросительной трубке: Lt = Sк * 10000 / L, где Lt — необходимость в оросительной трубке (м), Sк — площадь культуры, которая возделывается, L — расстояние между оросительными трубками.


Разбивка участка на поливочные зоны или блоки, расчет

В процессе разбивки участка на поливочные зоны необходимо знать, что максимальной пропускной способностью магистрального рукава LAY FLAT 4″ является значение 80 м³ /ч, а пропускная способность LAY FLAT 3″ — 40 м³ /ч. В некоторых случаях возможно повышение на 10-15% пропускной способности. Соответственно, водопотребление 1 блока капельного полива не должно быть больше, чем пропускная способность трубопроводов. Помимо гибких рукавов, в качестве отводных трубопроводов используются жесткие трубопроводы из ПНД. В связи с этим за контрольные показатели для разделения на блоки необходимо принимать значения пропускных способностей трубопроводов.

Зависимость для расчета размера поливочного блока (га):

S = (Qt * L * x) / 10 * q, где Qt — пропускная способность разводных трубопроводов (м³/ч), L — расстояние между трубками для орошения (м), x — расстояние между эмиттерами оросительной трубки (м), q — норма вылива одного эмиттера (л/ч).

Далее необходимо определить предварительное количество блоков капельного полива. Общую площадь культуры, которая возделывается, для этого надо разделить на расчетную площадь блоков и округлить в сторону увеличения. Если нет возможности разместить расчетное количество блоков капельного полива (либо если это экономически нецелесообразно), необходимо увеличить их количество.


Для того чтобы определить расход воды на гектар, необходимо пользоваться следующей зависимостью:

W = (10 * q) / L * x.

Следующим этапом будет определение геометрических размеров блоков капельного полива. Магистральные трубопроводы могут проходить через поливной блок посредине (либо со смещением), либо по границе поливного блока. В большинстве случаев более выгодно располагать разводной трубопровод посредине орошаемого блока с разводкой оросительных трубок с 2-х сторон, из-за большой стоимости трубопровода. Однако, не следует забывать о том, что у капельной ленты существует ограничение максимальной длины. В некоторых случаях экономически целесообразнее будет расположение оросительных трубок с одной стороны относительно разводных трубопроводов в случае неудобной конфигурации поля и больших затратах на магистральный трубопровод.

Второй фактор, который влияет на геометрические размеры поливного блока — техническая характеристика оросительных трубок. Есть возможность задавать 5-15% неравномерностью капельного полива. Для наиболее массовой оросительной трубки (которая имеет диаметр 16 мм, норму полива на эмиттер 1,2 л в час и расстояние между эмиттерами 0,3 м) при неравномерности 10% наибольшая длина поливной линии составит приблизительно 150 м. Таким образом, понадобится изучить технические характеристики оросительной трубки, которая предлагается.

Нюансы, которые нужно знать

Если разбивать поле на поливочные блоки, целесообразно использовать поливочные линии, которые имеют длину 70-90% от максимальной.


После того как определена длина поливочных блоков, нужно рассчитать длину магистрального трубопровода.

Не следует допускать выращивания разных культур в одном блоке, особенно с разными нормами полива. В случае, если возникнет подобная необходимость, понадобится использовать соединительные фитинги с кранами. Не допускается использовать различные схемы посадки с разных сторон разводного трубопровода.

После того как будут определены размеры и количество поливочных блоков, необходимо уточнить расход воды на каждый из поливочных блоков (м³ /ч):

Wi = W * Sб, где Wi — расход воды одного поливочного блока, W — расход воды на гектар схемы посадки, которая используется, Sб — площадь одного поливочного блока.

Расчет магистрального трубопровода

В каком порядке происходит расчет трубопровода:

  • определяется диаметр трубопроводов по скорости потока и расходу воды для каждого участка;
  • по участкам определяются потери напора;
  • определяется максимальная возможная потеря напора;
  • определение входного минимального давления;
  • сравниваются потребности системы с возможностями источника водоснабжения.

Методика проведения кислования трубки для полива:

  • определение количества воды под необходимое количество кислоты;
  • определение производительности трубки орошения в зависимости от рабочего давления;
  • определение рабочего давления в трубе для достижения необходимой производительности;
  • подготовка маточного раствора;
  • настройка в системе расчетного давления;
  • проведение кислования согласно методу, который содержится далее.

Другой метод:

  • определение расхода воды на оросительные блоки;
  • определение по времени кислования и расходу воды необходимого количества кислоты;
  • подготовка маточного раствора для системы капельного полива;
  • закачка данного раствора в системы на протяжении 30 минут;
  • промывка системы капельного полива на протяжении 30 минут.

Гидравлический расчет сети провода воды заключается в определении диаметра трубопровода по известному водному расходу и потерь напора на всех участках, определения наименьшего давления на входе системы.

Диаметр трубопровода (D) определяется по формуле (м):

D = 1,13 корень кв. (Wi / 3600 * V), где 1,13 — коэффициент, который получается при переходе от живого поточного сечения к диаметру трубопровода, Wi — расчетный поток воды, который протекает по данному участку трубопроводов (м³ /ч), V — экономически целесообразная скорость водного движения в трубопроводах (0,9-1,9 м/с).


Фактические значения диаметров труб, которые получены, необходимо округлить до ближайшего стандартного большего значения. После того как будет определен диаметр трубопровода, необходимо определить фактическую скорость водного движения в нем (Vf, м/с):

Vt = Wi / w, где w — площадь живого сечения трубопроводов (м²), Df — принятый диаметр трубопроводов (м).

hn — потери давления (м) — приблизительно 0,1 бар — определяются по следующей формуле:

hn = A * Lt * b * Wi2, где A — удельное сопротивление труб (с/м²), Lt — расчетная длина трубопроводов (м), b — поправочный коэффициент.

1landscapedesign.ru

Эффективность методов полива

При идентичных условиях коэффициент эффективности работы будет таким:

  • Капельное орошение – 90%;
  • Стационарное дождевальная система – 75-80%;
  • Передвижное дождевальное орошение – 65-70%;
  • Самотечное орошение (по трубам) – 80%;
  • Самотечное орошение (по бороздам) – 60%.

Плюсы капельного орошения по сравнению с традиционными методами:

  • минимальный расход воды;
  • возможность применения почти не зависит от топографии участка;
  • почва не заболачивается, нет засоления;
  • не повышается уровень влажности при использовании в теплице;
  • отсутствие эрозии.

По статистике, урожайность сельскохозяйственных культур повышается на 20-40% у плодовых культур и винограда и на 50-80% у овощных. Период созревания сокращается на 5-10 дней.

Лучше один раз увидеть

Предлагаем посмотреть видео в котором подробно рассказывается о преимуществах и принципе работы капельного полива.

Дополнительные преимущества

  • Предотвращение образования земляной корки у корней,
  • Отсутствие условий для почвенной гнили,
  • Возможность осуществлять орошение на участках с большим уклоном и сложным рельефом без террасирования;
  • Экономия воды, удобрений, труда;
  • Благодаря точечному увлажнению корня, сельскохозяйственные культуры усваивают до 95% поданной воды;
  • Возможность осуществлять орошение в любое время суток;
  • Нет воздействия ветра и испарения (последнее важно для теплиц);
  • Возможность подачи удобрений вместе с водой. Благодаря точному попаданию в прикорневую зону, экономится до 50% от обычного количества удобрения;
  • При капельном орошении капли не попадают на листья и стебли, что уменьшает вероятность возникновения их заболеваний. Кроме того, с листьев не смываются средства защиты от листогрызущих и сосущих вредителей в отличие от дождевания системами типа Фрегат;
  • Так как вода и удобрения не попадают на междурядья, распространение новых сорняков прекращается, развитие существующих замедляется;
  • Сбор плодов и уход за листьями осуществляется вне зависимости от времени полива.

Из чего состоит система

  1. Источник воды

    Им может быть водопровод, колодец, скважина или резервуар, стоящий на высоте более 3 метров. Открытые водоемы не подходят для этих целей из-за возможного разрастания водорослей и засорения ими капельниц. В промышленном растениеводстве открытые водоемы используются после устройства песчано-гравийных фильтров. Однако, их стоимость слишком высока для малых фермерских хозяйств.

  2. Регулятор давления

    При подсоединении к водопроводу необходимо замерить давление. Если оно превышает 100 кПа (1 атм.), то необходимо установить регулятор для понижения давления.

  3. Труба разводящего трубопровода

    Для небольших площадей достаточно ПНД трубы диаметром 32 мм. Такой вид доступен на рынке или в магазине стройматериалов. Труба из вторичного сырья не подходит, так как будет деформироваться от солнечных лучей и протекать в местах соединения с другой трубой или лентой.

  4. Лента

    Плоская полиэтиленовая лента при наполнении принимает форму трубки. В нее установлены капельницы с одинаковым интервалом. Например, лента Aqua-TraXX Æ 16 мм. и с толщиной стенки 200 мк., выпускаемая в Италии, подходит для орошения моркови, огурцов, свеклы при расстоянии между капельницами в 15 см. и для помидоров при расстоянии в 30 см.

  5. Дисковый фильтр

    Очищает поток, поступающий в систему, от гидроокиси железа и взвешенных частиц, предотвращая засорение капельниц. Рекомендуется применять даже если вода из чистейшей скважины. Однако, его стоимость аналогична стоимости 100 метров ленты. Следовательно, каждый фермер/садовод/дачник сам должен решить, что целесообразнее.

  6. Штуцеры (фитинги, стартконнекторы)

    Служат для соединения элементов системы воедино. Фитинг – пластиковая деталь с резиновым уплотнителем для соединения с разводящей трубой и с резьбой с гайкой с другой – для зажима ленты.
    Существуют фитинги с краном для перекрытия определенных участков. Они нужны, если рядом произрастают культуры с разной водопотребностью.
    Краны, заглушки, хомуты, уплотнители и другая периферия нужны для удобства монтажа и эксплуатации.

Выбор состава систем

Оборудование ЗА ПРОТИВ Где лучше использовать
Саморегулирующаяся капельница
  • Равномерно распределяет воду на склонах и в больших садах

  • Препятствует засорению

  • Стоимость немного дороже других типов
  • Склоны и большие сады

  • Кусты, деревья и многолетние травы

Шланги
  • Недорого

  • Доступно везде

  • Легко устанавливаются

  • Скорость увлажнения различается, особенно на наклонных участках

  • Потеря воды на не засаженных участках

  • Может содержать токсические примеси

  • Густые круглогодичные, а также многолетние грядки

  • Небольшие сады

  • Необходимо надежное соединение

Отдельные капельницы
  • Вода подается только туда, куда необходимо
  • Установка большого количества выпусков требует времени

  • По мере роста растений требуется установка дополнительных водовыпусков

  • Молодые кусты и деревья, которые требуют орошения только в первые годы
Ряд капельниц
  • Легко устанавливать на больших участках

  • Устойчивы к повреждениям

  • Обеспечивают равномерность распределения воды

  • Более эффективны, если правильно установлены

  • Не эффективны для редкой растительности, если неправильно установлены
  • Густые многолетние растения, деревья, кустарники

  • Редкие растения, если выпуски установлены правильно

Капельная лента
  • Недорого

  • Легко прокладывать на больших площадях

  • Равномерный полив

  • Можно укладывать только прямо

  • Недолговечна по сравнению с другими типами

  • Круглогодичные, многолетние и овощные культуры

  • Временные системы для засухостойких культур

Микрокапельницы
  • Микро-точечная подача воды
  • Уровень увлажнения варьируется в зависимости от распыления воды

  • Распыляемая вода может относиться ветром

  • Увлажнение листвы

  • Стелющиеся растения, всходы и густые овощные грядки

  • Некоторые фруктовые деревья, требующие опрыскивания листвы

  • Торфяные почвы

Установка системы

Один из плюсов – простота монтажа. Собрать капельное орошение своими руками из подобранных компонентов сможет любой неквалифицированный работник.

Планирование

Необходимо разделить участок по степени водопотребления путем наброска примерной схемы. Карта должна быть разделена на несколько частей разными цветами по следующим признакам:

  • Нормы водопотребления
    Нужно отметить растения с высокой, средней, малой потребностью.
  • Инсоляция
    Следует обозначить участки с прямыми солнечными лучами и тенью. При одинаковой потребности в поливе одного вида растений следует учитывать уровень испарения.
  • Типы почвы, если участок располагается на почвах разных типов.

Проектирование

На схему наносится расположение труб: раздаточная может быть длиной 60 м. Если вода подается в центр магистральной трубы, то возможна длина до 200 м. К ней подсоединяются боковые трубы.

Если нужно нескольких раздаточных линий, они подсоединяются к боковым трубам с помощью фитингов.

Магистральная линия идет вдоль длины участка, либо по всему периметру.

Для больших полей, где длина магистральной части системы превышает указанный метраж, необходимо использовать напорное давление.

Выбор капельниц осуществляется по таблице, приведенной выше. Помимо их типа, учитывается расстояние между ними и тип почвы:

  • Песчаная почва
    Расстояние между водовыпусками примерно 28 см. Водовыпуски выбираются из расчета 3,8-7,6 л/час.
  • Суглинистая почва
    Расстояние – примерно 43 см. Водовыпуски выбираются из расчета 1,9-3,8 л/час.
  • Глинистая почва
    Расстояние – примерно 51 см. Водовыпуски выбираются из расчета 1,9 л/час.

При использовании микрокапельниц расстояние между ними должно быть на 5-7,5 см. больше, чем описано выше.

Для деревьев в саду и растений с более высокими потребностями в воде, нужно устанавливать по два водовыпуска рядом.

Нельзя смешивать и комбинировать капельницы с разной скоростью подачи в одной линии.

Все это отмечается на плане с указанием длины труб, размеров и количества капельниц, также отмечаются все необходимые фитинги, сгоны, концевые заглушки. По этому плану осуществляется закупка оборудования.

Монтаж системы от водопровода

  1. Установка магистральной трубы
    Отключить подачу воды в водопровод, открутить кран, соединить водопровод и трубу оросительной системы через сгонную муфту. Подсоединить капельные линии по плану. Обмотать все соединения тефлоновой лентой для предотвращения протеканий.
  2. Установка тройника (по желанию)
    С помощью тройника можно использовать один выход даже после завершения монтажа системы полива. Все оборудование подсоединяется через один выход тройникового соединителя, в то время, когда другой может использоваться для подсоединения шланга или для крана для других нужд.
  3. Установка таймера (по желанию)
    Таймер необходим для автоматического полива, позволяет включать подачу воды в определенное время.
  4. Установка обратного клапана для предотвращения попадания загрязненной воды в питьевую.
  5. Антисифонные клапаны не будут работать, если будут установлены выше других клапанов по течению воды, что делает их непригодными для большинства капельных систем.
  6. Установка фильтра. Распределительный трубопровод легко засоряется ржавчиной, минералами, взвешенными частицами. Тщательность фильтрации должна быть от 100 микрон.

Отправными точками являются изучение геометрии участка и расположения на нем растений, а также местоположение и давление источника орошения.

Подсоединение

  1. Монтаж капельных линий.
    С помощью специального инструмента нарезать трубы необходимой длины. С помощью коннекторов соединить с регулятором давления или с боковыми линиями, уложить на поверхность участка.
  2. Добавить регулировочный вентиль перед каждой капельной линией для возможности регулировать напор, отключать определенную линию.
  3. Зафиксировать капельные линии скобами, воткнутыми в землю.
  4. Проделать отверстия в трубе так, чтобы капельница сидела плотно без протечек из отверстия, и установить их.
  5. Установить концевую заглушку или регулировочный вентиль в конце каждой капельной линии. Если будет позже необходимость, вентиль позволит расширить капельную систему.
  6. Включить воду, проверить работу системы.

Готовые наборы для капельного полива

Можно купить готовый комплект, который включает в себя все вышеперечисленные компоненты. Конечно, это имеет смысл делать только для первоначального знакомства с принципами работы.

Практический пример расчета

Чтобы не быть голословными, приведем конкретный пример работающей конфигурации.

На участке размером 3 га (100м х 300м). планируются выращивать томаты, огурцы и капуста. Значит, система капельного орошения на нашем поле условно делится на три подсистемы (по количеству видов выращиваемых растений).

  • Капельное орошение грядок с томатами

    Для двух двойных рядов длиной 100 метров необходимы две ленты длиной по 100 м. каждая. Расстояние между капельницами – 30 см. Каждому кусту будет выделено 1,5 литров в сутки. Расчетная скорость расхода воды из каждой капельницы равна 1,14 л/час. Следовательно, воду сюда нужно подавать в течение 1 часа 20 минут, из расчета (1,5л:1,14 л/час). Общий расход подсистемы за час равен 760 литров (2×100:0,3×1,14).

  • Грядки с огурцами

    Орошение будет осуществляться для четырех рядов длиной по 100 метров каждый. В качестве допущения, пусть расстояние между растениями составляет 20 см., а водопотребность составляет 2 литра в сутки. Расстояние между капельницами на ленте равно 20 см. В результате подсчета расход для данной подсистемы должен составлять 2280 л/час по формуле 4×100:0,2×1,14. Время работы подсистемы — 1 час 45 минут в сутки.

  • Полив белокочанной капусты

    Капуста выращивается на шести стометровых рядах. Расстояние между растениями — 40 см. Предположим, что каждое отдельное растение потребляет 2,5 литров в сутки. В данном случае нужно использовать ленту с расстоянием между капельницами 40 см. Расход воды в данной подсистеме будет составлять 1710 л/час (6×100:0,4×1,14). Срок подачи воды в эту часть должен быть 2 часа 10 минут в сутки.

Внимание: нормы водопотребления каждой культуры в данном примере носят примерный характер! Они должны быть уточнены для каждой конкретной культуры и каждого региона.

В результате этих расчетов выходит, что общий расход воды для всей системы должен быть 4750 л/час. Теперь необходимо проверить скорость подачи воды из источника. Это можно сделать с помощью 10-литрового ведра и секундомера. Подсчитанная таким образом скорость водоподачи позволит понять, нужен ли насос или достаточно имеющейся производительности источника.

Отличные результаты капельный полив дает при работе с такими полевыми культурами, как картофель, лук, арбуз. Прекрасно зарекомендовал себя в теплицах и при выращивании  винограда.

Напоследок советуем посмотреть интересное видео монтажа системы капельного полива на кукурузном поле 8 га. Это забавный рекламный ролик украинской фирмы Архифлора:

webferma.com

Новизна, приоритеты и перспективы овощеводства

О преимуществах использования капельного орошения в сельском хозяйстве известно давно. В России капельное орошение начали использовать более 20 лет назад. Сегодня наблюдается тенденция увеличения площадей где используется капельный полив.

Основные термины и определения

Капельное орошение применяется в овощеводстве в промышленных масштабах с 1997 года. Положительные результаты на всех сельскохозяйственных культурах и на всех типах почв способствовали динамичному развитию этого способа орошения. Успех в применении капельного орошения радикально изменил современный подход к комплексу вода – почва – растение, на фоне дозированного режима питания, и способствовал новому подходу в области орошения вообще.

Как любая система, капельное орошение имеет свою терминологию, которую необходимо знать: 

  • Источник водоснабжения — канал, бассейн или скважина, откуда производится забор воды.
  • Насосная станция и водозабор предназначены для забора воды из источника.
  • Фильтрационная станция  предназначена для доведения качества воды до установленных параметров. В зависимости от наличия в воде определенных примесей и величины орошаемой площади, фильтрационная станция может включать сетчатые, дисковые, гравийные, гидроциклонные фильтры или их комбинации.
  • Узел внесения удобрений — предназначен для дозированно го внесения, совместно с поливной водой, удобрений и СЗР. Может состоять из удобрительной головки и инжектора или дозатрона, а также емкости для приготовления раствора удобрений.
  • Контроллер — устройство для автоматического контроля и управления работой системы капельного орошения.
  • Регулятор давления — устройство для поддержания постоянного давления в системе, согласно паспортных данных.
  • Оросительные трубки или ленты — капельные линии, укладываемые параллельно друг другу, согласно технологии, и соединенные с поперечной магистралью трубопровода.
  • Эмиттеры — капельные увлажнители (капельницы) скрепленные с трубопроводом или составляющие с ним единое целое, в зависимости от конструкции. Их назначение – дозированный выпуск воды из трубопровода в небольших количествах.

Классификация и типы оросительных трубок

Трубки классифицируются:

  • По типу трубки  лента или шланги.
  • По типу капельницы — с жесткой капельницей и мягкой. Компенсированные и не компенсированные.
  • По жесткости — мягкие (тонкие, однолетние) и жесткие (прочные).

Комплектация систем капельного орошения. Основные составляющие системы капельного орошения.
 
В настоящее время базовая комплектация системы капельного орошения состоит из:

  • Источника водоснабжения.
  • Узла подготовки и внесения удобрений.
  • Фильтростанции.
  • Магистральных трубопроводов.
  • Регуляторов давления.
  • Разводящих трубопроводов.
  • Соединительной фурнитуры.
  • Запорной фурнитуры.

Дополнительно система может содержать узлы автоматического контроля и управления системой, а также учета расхода воды.

Фильтрационная станция — один из важнейших элементов системы. В зависимости от наличия в поливной воде определенных примесей и величины орошаемой площади, фильтрационная станция может включать сетчатые, дисковые, гравийные и гидроциклонные фильтры. Сетчатые фильтры устанавливаются не только с очистительной целью, но и с предупредительной, после гравийного. Состоят из корпуса и фильтрующего элемента в виде мелкоячеистой сетки. Применяют для фильтрования воды при невысоком содержании неорганических частиц. Степень очистки воды зависит от размеров ячейки фильтрующей сетки, а пропускная способность от площади. При засорении фильтрующий элемент промывается обратным потоком воды.

Дисковые фильтры разработаны для более глубокого фильтрования. Состоят из корпуса и фильтрующего элемента в виде набора плотно сжатых тонких дисков с радиальными канавками. Они сочетают надежность и наименьшую себестоимость обслуживания. Используются для удаления неорганических и органических частиц. Обычно используются при заборе воды из скважин. При засорении могут промываться обратным потоком воды.

Гравийные фильтры используются для удаления органических и неорганических частиц. Применяемый в качестве фильтрующего элемента песок, за счет своей высокой удельной фильтрационной поверхности, позволяет удерживать большие количества взвешенных частиц. Используются при заборе воды из открытых водоемов. Промывка производится обратным потоком воды. Засыпаемая гравийно-песчаная смесь используется двух фракций: крупная (1,2-2,4 мм) засыпается снизу, а мелкая (0,5-0,8) засыпается сверху. Гидроциклоны используются для разделения и удаления тяжелых частиц из воды (в основном песка). Используются при большом загрязнении воды тяжелыми частицами, для предварительной очистки.

Методика расчета систем капельного орошения

Определение потребности в воде, на заданную площадь, и количества оросительной трубки
 
Агрономия не является точной наукой, как, например математика. И не смотря на то, что, на протяжении нескольких веков в этой области проводились масштабные исследования, получен значительный объем ин формации о влиянии орошения, удобрений и т. д. на развитие растений, мы не можем говорить о полном прогнозировании и планировании процессов в с/х производстве. Тем не менее, даже при отсутствии четких зависимостей, мы можем, исходя из имеющейся информации, оказывать значительное влияние на урожайность с/х культур путем корректировки определенных факторов. Одним из таких факторов является орошение. А если речь идет об орошении в овощеводстве, то на сегодняшний день можно с уверенностью говорить о том, что наиболее эффективным является капельное орошение.
 
Выбрав на основе почвенных, водных, маркетинговых исследований набор культур, их площади и фирму-производителя оборудования переходят непосредственно к расчету самой системы, используя следующий порядок проектирования:

  • Предварительный расчет водопотребления.
  • Расчет количества оросительной трубки на участок, согласно схеме посадки.
  • Деление участка на поливные блоки (учитывается длина рядов, мощность насоса, дебет скважины).
  • Подбор фильтростанции (учитывается расход воды по блокам, желаемое время полива участка).
  • Подбор материалов магистральных и разводящих трубопроводов.
     

Для начала определяют максимальную ежедневную потребность в воде с целью проверки возможностей водоисточника, выбора фильтростанции и остальной фурнитуры. На юге за максимальную ежедневную оросительную норму принимают 60-70 м3/га. Исходя из этого, и производят предварительный расчет пропускной возможности фильтростанции по формуле:

 

Где: Q — пропускная способность фильтростанции, м3/ч; S — планируемая площадь орошения, га; Т — планируемое время работы системы в сутки, 16-20 ч.

Если источник водоснабжения позволяет расчетный расход воды, следует переходить к следующему этапу расчета проекта. Расчет количества оросительной трубки ведется, с учетом перечня возделываемых культур.

Для каждой культуры, с учетом возделываемой площади и схемы посадки, рассчитывается потребность в оросительной трубке: 
  

 

Где: Lt — потребность в оросительной трубке, м; Sк — площадь возделываемой культуры; L — расстояние между оросительными трубками (схема посадки).

Разбивка участка на поливочные блоки или зоны.

При разбивке участка на поливочные блоки необходимо знать, что максимальная пропускная способность магистрального рукава LAY FLAT 4″ составляет 80м3/ч, а пропускная способность – LAY FLAT 3″ – 40м3/ч. В особых случаях возможно повышение пропускной способности на 10-15%. Следовательно, водопотребление одного поливного блока, не должно превышать пропускной возможности трубопровода. Поскольку, в качестве отводного трубопровода используются, помимо гибких рукавов, и жесткие трубопроводы из труб ПНД, то за контрольные показатели для разбивки на блоки, следует брать значения пропускной способности трубопроводов (табл. 1).

Таблица 1. Максимальная пропускная способность трубопроводов. Пример.

Культура

Томаты

Расстояние между оросительными лентами

1,8 м

Магистральный трубопровод

LAY FLAT – 4″

Расстояние между эмиттерами

0,3 м

Расход воды на один эмиттер

1,1 л/ч

Зависимость для расчета размеров поливочного блока,  Га: 

 

где: Qt — Пропускная способность разводного трубопровода, м3/ч;
L — Расстояние между оросительными трубками (схема посадки), м;
х — Расстояние между эмиттерами оросительной трубки, м.
q — норма вылива одного эмиттера л/ч.

Далее определяется предварительное количество поливочных блоков. Для этого общую площадь возделываемой культуры делят на расчетную площадь блока и округляют в сторону увеличения. При невозможности размещения или экономической нецелесообразности расчетного количества поливочных блоков идут на увеличение их количества. 

Для определения расхода воды на гектар пользуются следующей зависимостью, м3/ч:

Следующий этап — определение геометрических размеров поливочных блоков. Магистральный трубопровод, может проходить через поливной блок по середине (или со смещением), или по границе поливного блока. Более выгодно, в большинстве случаев, разводной трубопровод располагать по середине орошаемого блока с двусторонней разводкой оросительных трубок, из-за высокой стоимости трубопровода. Однако, нельзя забывать, что у капельной ленты есть ограничение максимальной длины. В отдельных случаях экономически более целесообразно одностороннее расположение оросительных трубок относительно разводного трубопровода при неудобной конфигурации поля и высоких затратах на магистральные трубопроводы.

Второй фактор, влияющий на геометрические размеры поливных блоков – это техническая характеристика оросительной трубки. Можно задавать 5-15% неравномерностью полива. Для самой массовой, оросительной трубки (диаметром 16 мм, норме вылива на эмиттер 1,2 л/ч и расстоянием между эмиттерами 0,3 м) при неравномерности 10% максимальная длина поливных линий составляет около 150 м. Таким образом, необходимо изучить технические характеристики предлагаемой оросительной трубки. Разбивая поле на поливочные блоки, экономически целесообразно использовать поливочные линии длиной 70-90% от максимальной. Определив длину поливочных блоков, рассчитывают длины магистральных трубопроводов.
  
Следует не допускать выращивания в одном блоке разных культур, особенно с разными нормами полива и нормами удобрений. Если возникает такая необходимость, используют соединительные фитинги с кранами. Также нельзя использовать различные схемы посадки с разных сторон одного разводного трубопровода.

Уточнение потребности в воде и составление схемы полива

После определения количества и размеров поливочных блоков уточняют расход воды на каждый поливочный блок, м3/ч:

 

где Wi — расход воды конкретного поливочного блока;
W — расход воды на гектар используемой схемы посадки;
Sб — площадь конкретного поливочного блока.

Следующий этап составление схемы полива. Для этого максимальная поливная норма (60-70 м3/га) делится на гектарный расход воды (м3/га в час), используемой схемы посадки и определяется максимальное время полива конкретного блока. Для рассматриваемого примера (томаты) гектарный расход воды (за один час работы системы) составляет 26 м3, а максимальное время полива (при максимальной дневной норме 70 м3/га) около 3 часов.

Выбор установки фильтростанции

При выборе фильтростанции необходимо учитывать источник водоснабжения (открытый водоем или скважина), степень загрязненности воды и вид загрязнителя, часовую потребность в воде (пропускную способность), а также производительность насосной станции и количество других потребителей. Следует иметь ввиду наличия необходимости проведения анализов воды на химический состав, наличие биологических и механических загрязнителей с целью определения пригодности для орошения и подбора фильтростанции. При использовании поливной воды из открытых водоемов, следовательно, имеющей большое количество биологических загрязнителей, необходимо включать в состав фильтростанции песчано-гравийный фильтр, а при большом количестве взвешенных песчаных частиц целесообразно использование гидроциклонов. Также, помимо песчано-гравийного, в состав фильтростанции (при заборе воды с открытых водоемов) входит страхующий сетчатый или дисковый фильтр.

Если используется вода со скважины то, обычно достаточно одного дискового или сетчатого фильтра. При большом количестве взвешенных песчаных частиц целесообразно использование гидроциклонов. Определившись с типом фильтростанции, на основании анализа источника водоснабжения, переходят к выбору типа фильтров и расчета их количества.

Перед выбором пропускной способности фильтростанции, необходимо уточнить производительность (при наличии) насосной станции и наличие других потребителей воды. При избыточной мощности насосной станции возможна ситуация когда дополнительные затраты на подачу воды превысят стоимость дополнительных фильтров. Поэтому необходимо также экономическое обоснование пропускной способности фильтростанции.

Определившись с максимально необходимой пропускной способностью фильтростанции и ее типом, начинают комплектацию. По пропускной способности подбирают марку фильтра и их количество. Также выбирается удобрительный узел. Удобрительный узел обычно состоит из задвижки, инжектора и соединительно-запорной арматуры. В зависимости от пропускной способности фильтростанции инжектор может быть от 0,5″ до 1,5″.

 Расчет магистральных трубопроводов

Гидравлический расчет водопроводной сети заключается в определении диаметров трубопроводов по известному расходу воды и потерь напора на всех ее участках, а также определения минимального давления на входе системы.

Диаметр трубопроводов D, определяется по формуле, м:

 

где: 1,13— коэффициент, получаемый при переходе от живого сечения потока к диаметру трубопровода;
Wi — Расчетный поток воды, протекающий по данному участку трубопровода, м3/ч;
V — Экономически целесообразная скорость движения воды в трубопроводе – 0,9…1,9 м/с. 
 

Полученные фактические значения диаметров труб округляем до ближайшего большего стандартного значения.

После определения диаметров трубопроводов определяем фактическую скорость движения воды в трубопроводах Vf, м/с:

 

w — площадь живого сечения трубопровода м2
Df — принятый диаметр трубопровода, м.

Потери напора hn, м (примерно 0,1 бар), определяются по формуле:

 

где: А — удельное сопротивление труб, (с/м2);
Lт — расчетная длина трубопровода, м;
b — поправочный коэффициент.
 

Порядок расчета трубопроводов:

  • Определяются диаметры трубопроводов по расходу воды и скорости потока для каждого участка.
  • Определяются потери напора по участкам.
  • Определяется максимальная потеря напора.
  • Определяется минимальное входное давление.
  • Сравниваются возможности источника водоснабжения с потребностями системы.

Порядок и основные требования к монтажу
 
На участке, предназначенном для размещения системы капельного орошения, предварительно проводится предпосевная обработка почвы и, при необходимости, внесение почвенных гербицидов. Монтаж производится в следующей последовательности:

  • Монтируется фильтростанции и магистральные трубопроводы, согласно проекту.
  • Производится посев и укладка оросительной трубки при сеяной культуре, или укладка трубки при рассадной культуре (производится вручную или с помощью укладчиков расположенных на раме сеялки или культиватора).
  • Укладывается распределительный трубопровод и подсоединяется к магистральному трубопроводу.
  • Оросительные трубки, через фитинги, подсоединяются к распределительному трубопроводу. Для этого в трубопроводе, с помощью перфоратора, делаются отверстия под фитинг.
  • Промывают систему водой в течение 10-15 минут. Для этого в начале промывают фильтростанцию до появления чистой воды, а затем промывают оросительные трубки.
  • По окончании промывки закрывают концы оросительных трубок.
  • Производят регулировку давления согласно паспортным данным.

Эксплуатация системы

Стоимость систем капельного орошения довольно высокая, поэтому очень важно правильно спланировать все работы по эксплуатации системы. Если планирование будет осуществлено неверно, что повлечет за собой неправильную эксплуатацию системы, затраты не окупятся, так как прибыль будет низкой. Выращивание овощей на капельном орошении предполагает применение самых передовых технологий, поэтому получение высоких урожаев возможно только при обязательном выполнении всех агротехнических мероприятий по защите растений, внесению удобрений, уходу за растениями. Система капельного орошения не защищена от неправильной обработки почвы и ухода за растениями, поэтому все работы необходимо выполнять своевременно и качественно.

Качество каждой из систем зависит от толщины (плотности) трубки или ленты. Трубка или лента с высокой плотностью может использоваться несколько лет. Срок использования наиболее тонкой ленты составляет один год. Лента с наименьшей плотностью закладывается в почву на глубину 5 см. Более плотная трубка или лента может использоваться на поверхности почвы. При эксплуатации самой тонкой ленты важно проследить, чтобы она была уложена в почву точно на глубину 5 см. К сожалению, ещё нет техники для точной укладки ленты в почву, различия в глубине составляют ± 5 см. Если лента расположена слишком глубоко, есть риск изменения давления и объема воды в ленте, так как после сильных дождей почва существенно уплотняется. Так же будет трудно убрать ленту из почвы после окончания сезона, если она находится слишком глубоко в почве.

Если лента с наименьшей плотностью расположена слишком мелко, могут возникнуть проблемы с почвенными вредителями (проволочник, медведка). Очень важно сразу же после укладки ленты внести в почву с поливной водой инсектициды в следующей пропорции: 

Децис форте — 0,1 л/га. 
Базудин — 1,5 л/га. 
Золон — 1,5л/га.

К сожалению достаточно эффективных препаратов по борьбе с почвенными вредителями ещё нет. Наряду с этим тонкая лента может повреждаться воронами. Обслуживание системы проводится как в дневное, так и в ночное время, поэтому важно организовать работу операторов в несколько смен. Необходимо регулярно осуществлять промывку фильтростанции и постоянно контролировать давление в системе, устранять возможные утечки.

По завершению поливного сезона проводится демонтаж и закладка всех элементов на хранение. При использовании однолетней капельной трубки или ленты, она демонтируется и убирается с поля с дальнейшей утилизацией. Предварительно необходимо извлечь ремонтную фурнитуру, которая применялась в течение сезона для текущего ремонта, с целью дальнейшего использования. Важным экологическим фактором является зачистка поля от остатков капельной ленты и других полимерных отходов. Пластик в почве не разлагается, поэтому у многих фермеров поля, где применялось капельное орошение, загрязнены остатками этой системы. Для нормальной эксплуатации таких почв в будущем, крайне важно очищать поля от пластика любого вида.

Если использовалась многолетняя трубка её необходимо промыть, чтобы удалить все микро и макро частицы, накопившиеся за период эксплуатации. Для этого, на концах трубки открываются заглушки, и потоком воды промывается система до тех пор, пока не пойдет чистая вода. Эта работа проводится по поливным блокам операторами. Если для полива использовалась вода из открытых водоёмов, возникает угроза распространения сине-зеленых и других водорослей и бактерий, которые образуют слизь, забивающую капельницы. Поэтому на таких системах необходимо ввести в поливную воду хлор в концентрации 20 мг/л. Такая промывка производится через инжектор в течение 30-60 минут. 

Так как в течение сезона для подкормки растений применяются удобрения, содержащие соли кальция и магния, может произойти блокировка капельниц этими солевыми остатками. Для удаления этих солей в конце сезона применяют техническую азотную, ортофосфорную или хлорную кислоту в концентрации 0,6 % по действующему веществу. Продолжительность кислотной ирригации около одного часа.

Методика проведения кислования оросительной трубки

 Первый метод:

  • определение количества кислоты по расходу воды и времени кислования; 
  • подготовка маточного раствора; 
  • закачка маточного раствора в систему в течение 30 минут;
  • промывка системы орошения в течение 30 минут.

 Второй метод:

  • определение количества воды под заданное количество кислоты; 
  • определение производительности оросительной трубки в зависимости от рабочего давления; 
  • определение рабочего давления в трубке для достижения заданной производительности; 
  • подготовка маточного раствора; 
  • настройка расчетного давления в системе; 
  • проведение кислования по первому методу.  

 

polivrostov.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.