Типы систем заземления


Люди каждый день в быту пользуются различными электрическими приборами, начиная от кофеварки и фена, заканчивая холодильником и стиральной машиной. Они живут в многоэтажных домах, ездят на работу в метро и даже не подозревают, сколько усилий сделано разработчиками этих приборов и устройств, чтобы они могли без страха за свою жизнь пользоваться этими дарами цивилизации. Сейчас любое устройство, здание, сооружение проверяется на электробезопасность. При проектировании любых электроустановок независимо от их назначения, главным условием является их безопасная и нормальная работа, что обеспечивается безупречным проектом и безошибочным устройством заземления. Существуют системы заземления tn, tt и другие. Основным документом, определяющим работу разработчиков систем заземления, являются Правила устройства электроустановок.

Категории

Наша земля является колоссальным поглотителем электроэнергии любого происхождения, и это ее качество используется человеком для обеспечения безопасности при использовании электрических приборов.


Типы систем заземления

Все заземлители делятся на две категории: естественные и искусственные. К первым относятся все металлические изделия, находящиеся в соприкосновении с землей. Это арматура в железобетонных конструкциях, в буронабивных сваях, канализационные, водопроводные трубы и прочие электропроводные предметы.

Но проводимость земли в разных местах сильно различается, зависит от типа почвы, места расположения, поэтому нормировать ее проводимость в местах растекания электрических зарядов от этих предметов не представляется возможным. Кроме этого, использование арматуры, труб, металлических ферм приводит к ускоренной коррозии и ухудшению их прочностных характеристик. В связи с этим, запрещается использовать естественное заземление при эксплуатации электроприборов и оборудования.

Государственными и международными стандартами разрешено применение только искусственного заземления. В этом случае оборудование через специальную шину присоединяется к заземлителю с допустимой нормированной проводимостью.

Виды искусственного заземления

Если рассматривать по функциональности, то существует защитное и рабочее заземления. Первое обеспечивает безопасность людей при использовании электроприборов, а второе – нормальную работу электроустановок. По типу заземления нулевого провода делятся на системы с изолированной (IT) и глухозаземленной (TN) нейтралью. На рисунке показаны все типы заземления.


В системе IT нулевой провод генератора электроэнергии не имеет гальванической связи с заземлением, а токопроводящие части намеренно заземляются. Допускается между заземлителем и нейтралью установка дугообразующего устройства или приборов с большим внутренним сопротивлением.

Система заземления TN самая распространенная. В ней нулевой провод генератора электроэнергии глухо заземлен, а токопроводящие части с помощью специальных шин присоединяются к нему.

Типы систем заземления

Она подразделяется еще на четыре подвида:

  • систему заземления TN-С, в ней рабочий и защитный нулевые провода представляют собой один проводник от источника до потребителя энергии;
  • систему TN-S, в ней рабочий и защитный нулевые провода представляют собой два проводника от источника до потребителя энергии;
  • систему заземления TN C S, в ней рабочий и защитный нулевые проводники представляют собой один проводник, начиная от генератора электроэнергии, затем на каком-то участке разделяются на два;
  • систему ТТ, в ней нулевой провод генератора электроэнергии глухо заземлен, а открытые токопроводящие части потребителя электроэнергии заземлены через собственное заземление, которое никак не связано с нулевым проводом генератора электроэнергии.

Первый символ аббревиатуры сообщает, в каком состоянии относительно земляного слоя находится нулевой провод производителя электроэнергии (генератора, трансформатора).

Т – заземленный нулевой проводник.

I — изолированный нулевой проводник.

Второй символ информирует о состоянии токопроводящих частей относительно заземления.

Типы систем заземления

Т — токопроводящие части заземлены, состояние нулевого провода генератора электроэнергии значения не имеет;

N — токопроводящие части присоединены к глухозаземленному нулевому проводнику источника электропитания.

Символ после N показывают, как соотносятся рабочий и защитный нулевые проводники.

S (separated)— разделены рабочий (N) и защитный (PE) нулевые проводники.
С (combined)— объединены в (PEN) проводе N и PE проводники.

Системы с глухозаземлённым нулевым проводом

Система зануления TN C впервые была применена компанией AEG в начале ХХ века. Классическим ее видом является обычная схема электроснабжения с тремя фазными и одним нулевым проводом. Он одновременно является функциональным (N) и защитным (PE) «нолем», наглухо заземленным. С ним соединяют все корпуса и доступные токопроводящие части устройств.


мая большая проблема у системы возникает при обрыве нулевого провода, на токоведущих частях корпусов устройств появляется линейное напряжение в 1,73 раза больше фазного. При нормальной работе, попадание фазного провода на корпус приведет к короткому замыканию, но, благодаря специальным устройствам, произойдет мгновенное отключение, что оградит людей от удара током. В странах СНГ схема заземления TN C используется в наружном освещении и в зданиях, построенных до девяностых годов ХХ века.

Система TN-S

Самая надежная и безопасная система заземления TN-S была создана перед Второй мировой войной. Главная ее особенность заключается в раздельном использовании рабочего и защитного нулевого проводников, начиная от генератора электроэнергии. При трехфазном электроснабжении используются пять проводов, однофазном — три. Электробезопасность обеспечивается за счет практического дублирования защитного проводника. Независимо от места обрыва N проводника, система оставалась относительно безопасной. Позже, благодаря этому способу заземления были разработаны дифференциальные автоматы.

Типы систем заземления

ГОСТ Р50571 и новая редакция ПУЭ предписывает при электроснабжении новых объектов, при капитальном ремонте зданий использовать систему зануления TN-S. Но ее распространению мешает высокая стоимость и то, что вся российская энергетика работает по четырехпроводной системе электроснабжения.


Система TN-C-S

Компромиссной стала система заземления TN-C-S, которая использовала преимущества TN-S, но по стоимости стала значительно дешевле. Все дело в том, что с трансформатора подача электроэнергии происходит с применением объединенного нуля «PEN», наглухо заземленного. При входе на объект PEN провод разделяется на защитный и рабочий нуль, но расщепление возможно и раньше ввода в сооружение. При обрыве провода PEN на участке генерирующая станция — здание, на корпусах электроустановок, появится опасное напряжение. Поэтому в системе заземления TN C S нормами предусмотрены особые меры защиты проводника PEN.

Система TT

Самый экономичный способ доставки электроэнергии на селе по воздушным линиям. Использование системы TN-S, как наиболее безопасной, обходится дорого, у систем заземления TN-C и TN-C-S сложно обеспечить надежную защиту нулевого проводника PEN. Поэтому часто используется система TT, с заземленным нулевым проводом у источника электропитания. При трехфазном электроснабжении система работает по четырехпроводной схеме с одним нулевым проводником.

Типы систем заземленияОколо приемника электроэнергии делается местное заземление, к которому присоединяют токоведущие части и корпуса устройств.


случае обрыва нулевого провода, а вне города это нередкое явление, на корпусе устройства не возникает опасного напряжения благодаря местному заземлению. В городской черте система заземления TT используется при электроснабжении временных сооружений, при этом обязательно должны быть установлены устройства защитного отключения и проведена грозозащита.

Система IT

Это система, в которой имеется полностью изолированный от земли нулевой провод или соединенный с ней через высокоомное сопротивление, а также наличие у потребителя электроэнергии собственного защитного заземления. Все токопроводящие части оборудования при этом надежно заземляются. Система IT применяется в электроустановках зданий с повышенными требованиями безопасности, например, в больницах для медицинского оборудования, в шахтах, карьерах. Мобильные электростанции тоже используют изолированную нейтраль, что позволяет использовать подключенные к ним электроприборы без заземления. Раньше система IT широко использовалась и в энергоснабжении деревянных домов. В Советском Союзе сети напряжения 127/220 В долгое время использовались с изолированным нулевым проводом, это было связано с отсутствием заземления в домах. С началом панельного строительства от нее отказались.


Сами заземляющие устройства прежде выглядели как набор трехметровых стальных стержней вкопанных в землю на расстоянии нескольких метров, вершины которых соединялись стальной полосой. Получившийся огромный контактный элемент проверялся на сопротивление, если превышал нормированную величину, то вкапывались дополнительные стержни, пока не получали необходимый результат. Недостатком его были большие занимаемые площади и недостаточная стойкость к коррозии. Современные заземляющие устройства лишены этих недостатков. Они строятся на основе омедненных стальных стержней, которые могут соединяться между собой при помощи латунных муфт и забиваться на глубину до 50 м. По верху соединяются медной полосой. За счет такой конструкции могут устанавливаться на любых грунтах, не требуют земляных работ и занимают мало площади.

Вот такими заземляющими устройствами и системами заземления обеспечивается электробезопасность людей.

evosnab.ru

Суть заземления

Для чего нужно заземление, если и без него всё прекрасно работает? Более того, в нормальном режиме по проводу защитного заземления ток вообще не протекает.

Тут ключевое слово – “защитное”. Кого и от чего защищает заземление? Оно защищает человеческие тела от воздействия электрического тока. А от чего защищает – от того, чтобы опасное напряжение ни в коем случае не появилось на теле человека, и через человека не пошёл ток.

Представим ситуацию. Есть некий электрический прибор, например утюг. Утюг подключается через вот такую вилку.

Читатели постарше отлично помнят такие, они постоянно раскручивались, а прикрутить к ним гибкий провод было мучением.


Корпус утюга частично металлический. Что будет, если вдруг фаза попадет на корпус? В принципе ничего, утюг даже может продолжать работать. Но его корпус будет находиться под потенциалом 220В относительно земли. А поскольку все мы ходим по земле, то притронувшись к металлическому корпусу такого утюга, через нас пойдёт ток.

А дальше – как повезёт. Если кожа и пол сухие – просто немного дёрнет…

Но если  корпус утюга будет заземлён, то когда фазный провод попадёт на корпус, он соединится с заземлением, и уйдёт в землю. При этом произойдёт фактически короткое замыкание, и выбьет защитный автомат данной линии. А корпус как был под нулевым потенциалом, так и останется.

Иными словами, если фаза вдруг попадёт на корпус прибора, это уже не проблема человека. Это проблема самого прибора и защитного автомата, который должен отключить этот прибор от фазного провода.

Почему защитный автомат отключится? Если фазный провод попадает на защитный (заземляющий) проводник,  это равносильно короткому замыканию, то есть максимально возможному току в схеме. И автомат сработает по электромагнитной защите.

Напоминаю, что есть время-токовая характеристика автоматического выключателя, и при КЗ автомат будет работать в правой зоне характеристики, где время отключения стремится к нулю. Подробнее – в моей статье про выбор защитного автомата.


То есть, ток в проводе защитного заземления течёт только в момент аварии, в остальное время он бесполезен. Поэтому раньше на нём экономили, и использовали двухпроводную систему питания, в которой есть только ноль и фаза.

 

 Обозначения и перевод названий систем заземления

Существуют TN, TT и IT системы заземления. Система TN, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Первая буква говорит о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя.

Буквы эти взялись из французского, и означают: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также из английского: «Combined» и «Separated» – комбинированный и раздельный.

  • T — провод подключен к земле .
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение рабочего и защитного нулевых проводов.
  • S — раздельное использование во всей сети рабочего и защитного нулевых проводов.

Также в схемах систем заземления используются следующие обозначения:

  • L – Line, Линия, на которой действует фазное напряжение по отношению к нулевому проводу.
  • N – Neutral, рабочий ноль, по которому протекает рабочий ток, равный току в проводе L (для однофазных систем).
  • PE – Protect Earth, защитная земля, провод защитного заземления.
  • PEN – совмещенный рабочий и защитный нулевой проводник.

 

Краткое описание работы систем заземления

Системы заземления отличаются прежде всего безопасностью. То есть, сколько шансов выжить даёт человеку такая система после того, как на корпусе появилась фаза.

Возникает путаница в терминологией – одну и ту же систему называю и занулением, и заземлением. Википедия предлагает системы TN называть занулением на том основании, что в них заземляющий проводник PEN соединен с нулевым (нейтральным) проводом источника питания. А уже этот провод в трансформаторе – заземлён. Заземляется для того, чтобы не было перекоса фаз.

А что там свежего в группе ВК СамЭлектрик.ру?

Подписывайся, и читай статью дальше:

Подробнее о перекосе фаз, чем он опасен, и как с ним бороться – в другой моей статье.

ПУЭ, Библия электрика, говорит, о том же самом, как о системах заземления.

Скачать ПУЭ у меня можно здесь, в разных вариантах.

Разница между этими понятиями, по моему мнению, очень зыбкая. По-моему, заземление нужно для поддержания напряжения на уровне потенциала земли на проводе PE и на всех нетоковедущих частях электроустановки, к которым он подключен. А зануление нужно для создания тока короткого замыкания при замыкании фазы на тех же частях электроустановки. В итоге, эффект может быть один – заземленные или зануленные части никогда не окажутся под фазным напряжением, и при этом должен сработать защитный автомат. Это если коротко и своими словами.

Вообще, заземление это более широкое понятие, чем зануление.

Можно сказать, система защиты безопасна настолько, насколько эта точка приближена к источнику напряжения. И опять же, что можно считать потребителем – электрочайник, квартиру, многоэтажный дом, или район города?

Ну а если фаза “прорвётся” на корпус – её должен уничтожить защитный автомат со 100% вероятностью.

Тут важными считаю две вещи:

  1. Весь металл, который не под фазой, должен быть под одним и тем же потенциалом. И желательно, чтобы этот потенциал был равен потенциалу земли. Это – “самый нулевой” потенциал.
  2. Опасное – недоступно. Доступное – безопасно. Бывает, смотришь в квартирные советские щитки или РП и волосы шевелятся.

И ещё, в который раз повторюсь. Всегда рассматривается вероятность обрыва нулевого рабочего проводника. Дело в том, что при таком обрыве на всей схеме прибора, вплоть до точки обрыва нуля, присутствует фазное напряжение.

Подробно пишу об этом в статье про обрыв нуля в однофазной и трехфазной цепях.

В случае прикосновения ток проходит через нагрузку и через тело человека. Не смотря на сопротивление нагрузки, этот ток остается таким же опасным, как и при прикосновении к фазному проводу. Ведь сопротивление нагрузки (например, электробытового прибора) всегда гораздо меньше сопротивления тела человека.

 

 

Схемы систем заземления

Система TN-C

TN-C – старая, советская система, когда земля просто бралась из нуля непосредственно в самой электроустановке.

 

Что мы видим на этой схеме? Первое и самое главное. Нейтральная точка генератора или трансформатора подключена к земле (глухо заземлена). Поэтому нейтральная точка трансформатора имеет потенциал земли. А поскольку человек имеет тоже потенциал земли, между телом и нейтральным проводником – нулевая разность потенциалов, и прикосновение к нему безопасно.

Однако, не всё так просто. Повторюсь, что вследствие перекоса фаз, а также падения напряжения на проводе PEN, на нём может присутствовать напряжение, отличное от нулевого. Поэтому провод PEN принудительно “притягивают” к земляному потенциалу через некоторые промежутки по ходу линии.

Земля (то, из чего состоит наша планета) – универсальный и абсолютный ноль по потенциалу. Но если человеку придать потенциал фазного провода, то прикосновение к земле будет смертельно. В то же время, прикосновение к проводу, на котором тот же потенциал, будет безопасным.

Видел документальный фильм, как человек спокойно спускается с вертолета на провод высоковольтной линии и работает там.

В общем всё относительно. Можно упасть с 5-этажного дома насмерть. А можно вообще не повредиться, упав с того же дома. С первой ступеньки первого этажа)

Система TN-C в настоящее время официально запрещена, и может использоваться только в трехфазных системах, где отсутствует перекос фаз, и ток по проводнику PEN (нулевой, он же защитный) в нормальном режиме не протекает. В результате, на этом проводе (а значит, и на корпусе прибора) будет потенциал нуля.

Однако, в старом жилом фонде используется повсеместно из-за своей дешевизны. Дешевизна системы TN-C – это её единственный плюс. Ведь сечение защитного провода PE в однофазной сети должно быть равно сечению фазного провода. А это – удорожание всей электропроводки минимум на треть.

Вообще говоря, в этой системе заземление напрочь отсутствует, и я не совсем понимаю, почему “это” называют системой заземления. Разве что, можно ноль кинуть на корпус, и прибор будет “типа” заземлён.

Да и раньше, когда всю проводку делали по этой системе, практически и не существовало домашних приборов, требующих заземления.

Первыми “ласточками” были стиральные машины, которые бились током. В лучшем случае к ним тянули провод от корпуса подъездного щитка, в худшем – цепляли корпус машины на трубу водопровода или к нулевому проводу.

Нужный эффект, конечно, достигается, но шансы попасть под фазное напряжение значительно возрастают. Основная опасность приходит от того, что возможен обрыв нулевого провода, и тогда все “зануленные” приборы, и также приборы, имеющие импульсные блоки питания, получат на корпусах потенциал фазы.

Как же защититься от поражения электрическим током в системе TN-C? Тут вспоминается УЗО (Устройство Защитного Отключения). Представим – человек коснулся фазного провода. Ток раздваивается – часть (надеюсь, бОльшая) уходит в нулевой проводник, а часть – через тело человека на корпус. Налицо дифференциальная разница (сорри, тавтология) в токах по фазе и нулю, на которую должно сработать УЗО.

Однако, ПУЭ прямо говорит – в системе TN-C применение УЗО запрещено. Почему?

Причина в том, что в данном случае может произойти то, о чем я писал выше. УЗО – это коммутационный аппарат, в котором может по какой-то причине нарушиться контакт PEN – проводника, и под фазное напряжение попадёт весь потребитель. В том числе и корпуса, если они занулены, а именно так и делается “заземление” в системе TN-C.

ПУЭ также говорит, что защитный проводник (в данном случае – PEN) ни при каких условиях не должен разрываться, и должен быть всегда подключен к заземляемому устройству.

Поэтому УЗО можно (и нужно!) применять во всех системах, кроме TN-C.

Вот хороший рисунок, иллюстрирующий ситуацию:

Я вас так напугал, что по любому возникнет вопрос – как теперь с этим жить?

Отвечаю. Для ухода от этой “нехорошей” системы применяют разделение проводника PEN на N и PE. Причем, это нужно делать как можно дальше от потребителя, и как можно ближе к источнику напряжения.

Таким образом, мы перейдём на гораздо более безопасную систему – TN-C-S, о которой я расскажу чуть ниже.

На практике совмещенный проводник PEN заземляют (повторное заземление) на вводе в здание, и там же разделяют на нейтральный N и защитный PE, которые далее НИГДЕ не должны соединяться.

Другой вариант – переход к системе ТТ, в которой защитный проводник PE делается на основе контура заземления, и нигде не подключен к приходящему PEN. В данном случае PEN превращается в N, поскольку защитный ток ни к коем случает по нему течь не будет.

Заземление в квартире с проводкой TN-C

В квартирах ноль и землю разделять сложнее. По этому поводу постоянно ведутся жаркие споры среди электриков.

Я думаю, что тут есть два приемлемых варианта.

1. Ноль оставить как есть, а провод PE взять с магистрального PEN проводника. Пусть не с самого проводника, а с места, куда он подсоединяется к корпусу этажного щитка. Главное, чтобы наши N и PE были подключены в разных точках. PE – на корпусе, N – на изолированной от корпуса шине, на которую ноли приходит после вводного рубильника или автомата (если они есть) и счетчика. Кстати, так и делали в советские времена при подключении в квартирах электропечей.

2. Провести трехпроводную систему (L, N, PE), но PE никуда не подключать. В результате мы не вносим изменения в этажный щиток (кстати, это запрещено!), а все нетоковедущие части электроприборов, металлических конструкций, труб и т.д. мы подключаем к этому проводнику. И в пределах квартиры у нас благодать! Только важное замечание – на группы розеток должны стоять УЗО на случай попадания фазы на корпус в пределах квартиры.

Всё, теперь по-быстрому пробежимся по другим системам, там всё проще.

Система TN-S

В названии буква третья S. Это значит, что проводники N и PE разделены (Separated) на всём протяжении от подстанции до потребителя.

Эта система заземления наиболее безопасна и предпочтительна, однако применяется только в самых новых электроустановках. Ну а в основном в реалити сейчас применяют систему TN-C-S. То есть старую систему стараются приблизить к новой, отдаляя точку подключения N и PE от потребителя и приближая к источнику питания.

 

Система TN-С-S

Последние буквы в названии означают, что проводники N и PE после подстанции соединены (Connected) в один провод PEN, а потом, на вводе в здание, разделены.

При попадании фазы на корпус должен сработать защитный автомат по КЗ. При касании токоведущих частей должен сработать УЗО.

 

Система TT

Terra – Terra. Я уже писал в статье про эту систему, в ней заземляющий провод PE подключается к контуру заземления, и больше никуда. Применяется в основном в частных домах и временных постройках и электроустановках.

Всё замечательно, если также применяются УЗО от прикосновения к токонесущим частям и защитные автоматы от КЗ.

Но есть один минус. Если в других системах своё заземление делать не обязательно, понадеявшись на заземление на подстанции или на столбах, то в данном случае его придётся делать. И делать очень качественно, чтобы в случае замыкания КЗ на землю ток короткого замыкания был достаточен для срабатывания автомата защиты.

То есть возможен вариант, когда при КЗ на корпус потенциал корпуса останется близким к нулю, всё замечательно. Но при этом автомат защиты не выбьет, хотя через него (и через проводку дома) будет идти ток, близкий к максимальному! И проблема может подкрасться с другой стороны…

 

Система IT

Напоследок расскажу про специфическую систему заземления IT. Во всех других системах используются источники питания (трансформаторы) с глухозаземленной нейтралью. Иначе говоря, нулевой проводник на стороне источника заземлён.

Однако, в системе IT источник питания полностью изолирован от земли – и ноль, и (естественно)) фаза.

В результате по отношению к земле потенциал отсутствует. И при замыкании на землю ничего не произойдёт, ведь ток не потечёт, либо будет пренебрежимо мал.

Я встречал такие системы для питания управляющих цепей в серьезном промышленном оборудовании. Ещё эта система применяется в переносных генераторах и других источниках питания, а также в медицинских учреждениях. Если один из выводов такого источника не заземлить и подключить к нагрузке, он будет работать по системе IT.

Подробнее я писал об этом в статье про подключение генератора Хутер.

Минус такой системы – при замыкании на землю она превратится в TN-C-S с плохим монтажом, и об этом даже можно не узнать, если не проконтролировать. И станет опасной.

 

На этом заканчиваю тему, спасибо за терпение, жду мнений и вопросов в комментариях.

P.S. Схемы взял из статьи Плакаты по технике безопасности.

samelectric.ru

Естественные и искусственные заземлители

Схема заземления считается естественной в том случае, если в земле постоянно находятся металлические части объектов заземления, такие как металлические трубы и сваи, разного диаметра арматура, другие предметы, имеющие способность проводить ток.

Исходя из того, что параметры растекания тока в земле от естественных заземлителей сложно контролировать, применение их в работе электрических установок запрещается. Во всей нормативной документации разрешается работать электроустановкам, имеющим искусственное заземление.

Созданное устройство заземления оборудования или зданий имеет основной параметр — это значение сопротивления, которое подлежит нормированию. В этом случае есть контроль над растеканием тока, поступающего по заземляющему устройству в землю.

Показатели сопротивления заземлителя зависят от таких факторов, как:

  • вид грунта и его состояние;
  • конструкция заземляющего устройства;
  • материал, применяемый для выполнения конструкции заземлителя;
  • площадь контакта устройства заземления с грунтом.

Естественные и искусственные заземлители:

Естественные и искусственные заземлители

Виды искусственных заземлителей:

Классификация систем заземления проводится Международной электротехнической компанией (МЭК), а документом по реализации схем заземлителей в РФ является ПУЭ, пункт №1.7. Он регламентирует и классифицирует системы заземляющих устройств. Все системы имеют сокращенное обозначение, по начальным буквам французских слов: Земля — «TERRE» (Т), Изолировать — «ISOLE» (I), Нейтраль — «NEUTER» (N) и слов английского происхождения: Комбинированный — «COMBINED» (С), Раздельный — «SEPARATED» (S).

Назначение принятой аббревиатуры МЭК следующее:

  • Т обозначает заземление;
  • N показывает подключение устройства к нейтрали;
  • I указывает на применение изолированных проводов;
  • C говорит о том, что в заземляющем устройстве объединяются функции защитного и функционального «нулевого» провода;
  • S указывает на то, что в заземляющей схеме применяется раздельное применение функционального «нулевого» провода и провода защитного заземления.

Заземляющие схемы, виды:

Схемы заземления

Во всех системах искусственного заземления первая буква показывает на то, как сделано заземляющее устройство на источнике энергии (трансформатор, генератор), а вторая — на способ заземления потребляющих электрическую энергию объектов. Специалисты выделяют три системы заземляющих устройств: ТТ, IT, TN. Кроме этого в заземляющей системе ТN есть три подсистемы, они обозначаются как TN-S, TN-C, TN-C-S.

Заземляющее устройство TN

Система заземления TN подразумевает совместную работу «нулевого» провода функционального назначения, а также защитного провода с «общей» глухо заземленной «нейтралью» от генератора или от понижающей трансформаторной подстанции. В этой схеме предусматривается подключение к «нулю», который соединен с «нейтралью», всех имеющих экран кабелей, а также токопроводящего корпуса оборудования. Нулевые провода в этой системе имеют обозначение по ГОСТу Р50571.2 – 94:

  • N обозначает функциональное назначение, «ноль»;
  • PE указывает на защитное назначение «нуля»;
  • PEN показывает совмещенное назначение функциональных и защитных проводов «нуля».

Системы TN строятся с применением глухо заземленной «нейтрали» и подключением «нулевых» проводов (N) на заземляющий контур. Он делается рядом с понижающей трансформаторной подстанцией. В этой заземляющей схеме не применяется дугогасящий реактор. В ней есть подвиды, которые разделяются по способу включения «нулевого» провода N и PE.

Система TN-C заземляющего устройства

Описание схемы TN-C заземляющего устройства необходимо начинать расшифровкой буквенных значений, которые говорят о совмещении функциональных «нулевых» проводов с защитными проводами. Четырехпроводная схема подключения оборудования, системы заземления электроустановок являются примером реализации этого заземляющего устройства, когда три фазы и «ноль» приходят на объект подключения. Заземляющей шиной является приходящий «ноль», на него надо подключить через защитные провода все электропроводящие элементы корпуса оборудования, устройств и приборов, системы освещения.

Что такое заземляющая система TN-C:

Заземляющая система TN-C

При реализации этой заземляющей оборудование схемы есть существенный недостаток — отсутствие защитной функции, когда в процессе работы установки «нулевой» провод потеряет контакт с оборудованием (отгорит, сломается). В этом случае на токопроводящих частях корпуса появится опасное для здоровья человека напряжение. На практике в квартире при реализации этой заземляющей схемы розетки остаются без земли, все оборудование «зануляется».

В этой заземляющей системе при попадании фазы на корпус оборудования срабатывает защитное отключающее устройство, и возможность попадания человека под напряжение исключается быстрым отключением. Важно! Предохранители и автоматы должны иметь рассчитанные номиналы, чтобы работала схема (C и TN). Необходимо также обратить внимание на тот фактор, что в этой заземляющей системе нельзя применять дополнительный защитный контур во влажных помещениях дома, квартиры (ванная комната, санузел). По этой системе подключены все жилые дома советской постройки, уличное освещение.

Система TN-S

Тип заземления по схеме TN-S считается прогрессивным вариантом заземляющих устройств TN, это безопасный вид заземления в котором функциональный «ноль» отделен от защитного провода. Система применяется с начала 30-х годов ХХ века, дает высокую степень защиты по электрической безопасности для здоровья человека, но как недостаток имеет высокую стоимость реализации схемы заземления. Схемой TN-S заземляющего устройства предусматривается на понижающей трансформаторной подстанции разделять РЕ и N провода и подключать для трехфазного напряжения объекты по пяти проводам, а для однофазных объектов — по трем.

Заземляющее устройство TN-S:

Заземляющее устройство TN-S

В правилах ПУЭ обращается внимание, что этот вид заземляющего устройства рекомендуется к установке на важных объектах с применением электропитания, а также на объектах энергоснабжения, что дает высокую степень защиты по электрической безопасности. Широко эта система не применяется: большие траты на материалы, ориентированность российских электрических систем на четырехпроводную схему доставки энергии к потребителю.

Система TN-C-S

Типы систем заземления по схеме TN имеют широкое применение, и для того чтобы стала чаще применяться схема TN-S, которая по деньгам будет немного дороже TN-C – это система TN-C-S, которая позволяет с понижающего трансформатора подавать электроэнергию с применением комбинированного «нуля» (PEN) имеющее подключение к нейтрали глухозаземленной. В этой схеме при входе на объект электроснабжения провод разделяется на PE — защитная функция, и N — функциональный (рабочий) «ноль».

Система TN-C-S:

Система TN-C-S

Недостатком этой заземляющей схемы является возможность полной утраты защиты на территории трансформатора (источника), и, как следствие, — объект электроснабжения остается без защиты от поражения электрическим током. По этой причине правилами указываются проведение мероприятий на стороне источника электропитания для полной защиты провода (PEN) от механических повреждений.

Заземляющее устройство (ТТ)

Данная схема заземляющего устройства применяется для потребителей электроэнергии через воздушную линию. Когда нет возможности обеспечить надежность комбинированного «нуля», применяется схема TT, когда нейтраль источника «глухо» заземлена, передача энергии проводится в четыре провода с функциональным «нулем» и тремя фазами. На объекте электропотребления по этой системе предусматривается местное устройство заземления по действующим правилам, а все токоведущие элементы и корпуса оборудования через проводники подключаются к местной схеме заземления.

Схема (TT):

Схема (TT)

Широкое применение этого способа реализации заземляющего устройства получило коттеджное строительство, в загородных домах его применяют для обеспечения электробезопасности. В городах этой схемой пользуются для снабжения временных точек электроэнергией (открытая концертная площадка, торговые лотки). Обязательно при использовании этого заземляющего устройства применение оборудования защитного отключения, наличие громоотвода и грозовой защиты.

Заземляющая схема (IT)

В организации заземляющего устройства по схеме IT важным элементом является изолированная нейтраль на стороне источника энергоснабжения (I), а на стороне объекта, получающего энергию, должен быть заземляющий контур (Т).

Заземляющее устройство (IT):

Заземляющее устройство (IT)

По этой схеме объект потребления получает электроэнергию по минимально необходимым для передачи проводам, а все оборудование на стороне потребителя должно иметь заземление через провода на местное заземляющее устройство.

Вывод

Необходимо понимать, что все заземляющие системы имеют одно назначение — обеспечить защиту здоровья человека по электрической безопасности, из чего следует надежная работа всего оборудования. В задачу проектировщиков при выборе схем заземляющих устройств входит нахождение компромиссного варианта, при котором возможность появления на токоведущих частях оборудования напряжения становится минимально возможным.

Выбранная система должна защитить человека от напряжения быстрым отключением фазного провода от сети или возможностью снятия напряжения с корпуса оборудования.

domelectrik.ru

Классификация систем заземления ↑

Международная электротехническая комиссия (МЭК) и Госстандарт РФ установили типы систем заземления. Все они указаны в ПУЭ (правилах устройства электроустановок). Различают:

  1. Систему TN (с подсистемами TN-C, также TN-S и, наконец, TN-C-S);
  2. Систему TT;
  3. Систему IT.

Различаются они по источнику электроэнергии и способу заземления электрооборудования. Тип системы заземления обозначается буквами:

1. По первой букве определяется, как заземлен источник питания:

  • если это Т – то имеется непосредственное соединение нулевого рабочего проводника (нейтрали) источника электроэнергии с землей;
  • если это I – то нейтраль источника энергии соединяется с землей исключительно через сопротивление.

2. По второй букве определяется заземление в проводящих открытых частях электроустановки здания:

  • буква Т обозначает местное (раздельное) заземление электрооборудования и источника электропитания;
  • буква N говорит о том, что источник электропитания заземлен, но заземление потребителей происходит лишь через PEN-проводник.

3. Следующие буквы за N определяют функциональный способ, по которому устроен нулевой рабочий и нулевой защитный проводник:

  • если стоит S – значит функции рабочего (N) как и защитного (РЕ) проводников обеспечены раздельными проводниками;
  • если стоит С – значит функции нулевого рабочего и защитного проводников обеспечены общим проводником (PEN).

Система TN и ее варианты ↑

Система TN отличается наличием глухозаземленной нейтрали: открытые проводящие части любой электроустановки присоединены к конкретной глухозаземленной нейтральной точке источника электропитания посредством специальных нулевых защитных проводников.

[include id=»1″ title=»Реклама в тексте»]

Термин «глухозаземленная нейтраль» означает, что нейтраль (ноль) на трансформаторной подстанции подключена прямо к заземляющему контуру (т.е. заземлен).

Основное условие электробезопасности TN заключается в следующем: значение тока между открытой проводящей частью и фазным проводником при коротком замыкании должно превышать величину электротока срабатывания устройства защиты за нормированное время.

Востребованная подсистема TN-C

Подсистемой TN-C является TN, в которой проводники (нулевой рабочий, а также защитный) на всем протяжении системы совмещены (в 1 проводник PEN), т.е. произведено защитное зануление. Это наиболее используемая разновидность TN со времен СССР. Однако эта система сейчас устарела. Из современных электроустановок, она встречается лишь в уличном освещении (в целях экономии, а также пониженного риска). Для нового жилья ее рекомендовать нельзя. Сейчас на смену ей пришли более современные системы.

Вариант заземления TN-S

Подсистемой TN-S является TN, в которой проводники (нулевой рабочий, а также защитный) на всем протяжении системы разделены. Это современная, самая безопасная, однако самая дорогая система. Она уже очень давно применяется в телекоммуникационных сетях (что примечательно, при ее использовании исключены помехи в слаботочной сети).

TN-C-S — специфика устройства

Подсистему TN-C-S – можно отнести к промежуточному варианту. В ней нулевой рабочий, а также защитный проводники совмещены лишь в какой-то одной ее части. Обычно — в главном щите здания (где защитное заземление дополнено защитным занулением). По всему зданию далее эти проводники разделены. Система оптимальна с позиции соотношения цена — качество. Данная схема является в настоящее время основной, которую можно реализовывать в отдельных частях электроустановок при реконструкции. Другие системы заземления электроустановок сделать этого не позволяют. Сечения проводников выбираются, исходя из значений токов (расчетных), протекающих через них. Площадь сечения (минимальная) PEN-проводника равна 4 мм2. Необходимо предусмотреть, чтобы в распределительном щите были отдельные зажимы на шине PEN (для каждого проводника — N и РЕ). При применении многожильного или одиночного провода в качестве PEN-проводника его цвет изоляции должен быть исключительно желто-зеленым.

Что представляет собой система ТТ ↑

Это система отличается тем, что ноль источника в ней заземлен, при этом открытые проводящие части любой электроустановки подсоединены к заземлению, которое является электрически независимым от заземленного нуля (нейтрали) источника питания. Иными словами, на объекте применяется свой контур заземления, который никак не связан с нулем. На сегодняшний день эту систему как основную применяют в мобильных сооружениях, например бытовках, домах-вагонах и т.д. (там, где не всегда удается монтировать заземлитель в соответствии с требуемыми нормами). Примечательно, что согласование ее применения проходит сложнее, чем TN. Обязательным становится применение УЗО, также необходимо качественное заземление (а именно 4 Ом на 380 В ), существует много особенностей при подборе необходимых защитных автоматов.

Система IT: отличительные особенности ↑

Это система отличается тем, что ноль источника в ней изолирован от земли либо заземлен через приборы, которые обладают большим сопротивлением, а проводящие открытые части электроустановок заземлены с использованием заземляющих устройств. IT применяется крайне редко. В основном — в электроустановках зданий специального назначения. Например, для аварийного освещения и электроснабжения в больницах. Вообщем, там где предъявляются повышенные требования безопасности и надежности.

Технологии устройства систем заземления ↑

Существуют несколько технологий установки контура заземления. Наиболее применяемые две: традиционная и модульно штыревая система заземления.

Традиционная технология и материалы ↑

Заземление выполняется из черного металлопроката: уголков, труб полос и т. п. Начинается установка с создания проекта, отражающем место, где будет устроен заземляющий контур, расположение технических коммуникаций в грунте. Затем, ориентируясь на объект, в почву на глубину в 3 м, на расстоянии около 5 м др. от друга вкапываются металлические изделия (электроды) определенного сечения (не < 3-х). После этого эти электроды они свариваются в общий контур по периметру при помощи металлической полосы.

[include id=»2″ title=»Реклама в тексте»]

Эта технология была основной в течение многих десятков лет. Однако она имеет ряд недостатков (например, коррозия металла, трудоемкость установки и т.п.), поэтому сейчас ее стараются заменять другой, более современной и совершенной технологией заземления.

Модульная система заземления ↑

Что входит в комплект?

  1. Состоит она из стержней, изготовленных из высококачественной стали и покрытых медью. Их располагают в грунте вертикально. Каждый из этих стержней достигает в длину порядка полутора метров, а в диаметре – 14 мм, масса 1-го элемента – не более 2-х кг. С двух сторон каждого стержня делается нарезка омедненной резьбы 30 мм в длину.
  2. Стальные элементы этой системы соединяются между собой при помощи латунных муфт.
  3. Комплект модульной системы заземления включает также латунный зажим, используемый для соединения горизонтальных (особые стальные полосы или медный провод, проходящий от щитка-распределителя прямо к заземлительному контуру этой системы) и вертикальных (омедненные стальные стержни) элементов заземления.
  4. Также в комплект входит два стальных наконечника, которые будут крепиться к стержню путем навинчивания на омедненную резьбу. Выбирать наконечники придется в зависимости от грунта (особо твердый или обычный). В нем будет проходить все устройство этой системы заземления здания.
  5. Для антикоррозийной защиты всех элементов заземления обычно прилагается защитная паста, которой обрабатываются элементы всей будущей заземлительной системы.
  6. Для более безопасного и надежного соединения горизонтальных и вертикальных составляющих используют защитную ленту (например, PREMTAPE).

Как происходит монтаж?

Монтаж модульной штыревой системы заземления проходит в несколько этапов:

  1. Устанавливается 1-ый вертикальный стальной штырь.
  2. Проводится замер промежуточного сопротивления.
  3. Монтируются остальные вертикальные штыри.
  4. Укладывается горизонтальный заземлитель.
  5. Затем элементы соединяются и обрабатываются защитной лентой.

Преимущества модульно штыревой системы заземления

  1. Позволяет сэкономить площадь (может обустраиваться на 1 м2 площади).
  2. Простая, не требует трудоемких земляных работ.
  3. Не требуется сварка.
  4. Применять такое заземление можно при любом виде грунта
  5. Достигается большая глубина – до 50 м.
  6. Используются проводники из нержавеющей стали.
  7. Нет необходимости в специальном оборудовании.
  8. Длительный срок эксплуатации.

Видео: прогрессивный защитный контур ↑

Из всего вышеизложенного можно сделать вывод, что на сегодняшний день наиболее рациональным является применение системы TN-C-S и модульно-штыревой технологии ее монтажа. Все факты говорят о том, что технологии устройства заземления последнего поколения по многим параметрам превосходят традиционные. Их применением сокращает срок проведения работ, уменьшает финансовые затраты, увеличивают срок службы заземляющих элементов.

strmnt.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.