Защитное заземление зануление


Чем отличаются заземление и зануление? Защитное заземление и зануление имеют одинаковое назначение — защитить от поражения электрическим током человека, прикасающегося к корпусу элекроустановки, который из-за нарушения изоляции оказался под напряжением. Заземление и зануление сегодня распространены практически в одинаковой степени.

Особенности заземления

Защитное заземление занулениеРисунок 1. Схема заземления розетки Защитное заземление — это соединение электроустановки с заземляющим контуром для обеспечения электробезопасности. Чем ниже будет сопротивление заземляющего контура, тем надежнее защита. Распространены схемы заземления TN-C-S и TN-S, которые широко используются в жилых домах. Для того чтобы выполнить заземление, нужно купить розетки, оборудованные заземляющим контактом. В этом кроется отличие заземления от зануления, поскольку при занулении можно обойтись обычными розетками с двумя контактами.

Еще одно отличие заземления от зануления кроется в самой схеме, поскольку чтобы выполнить заземление, необходимо от заземляющего контура протянуть провод к электрощиту, от которого уже расходятся заземляющие провода к розеткам.

Особенности зануления


Защитное заземление занулениеРисунок 2. Схема зануления розетки Зануление — это электрическое соединение частей электроустановки, не находящихся под напряжением с заземленным нулем. Благодаря применению данной схемы замыкание фазы на корпус трансформируется в короткое замыкание фазы и нулевого провода. В этом случае возникает гораздо больший ток, чем при применении защитного заземления. Основное назначение зануления — это быстрое отключение поврежденного оборудования. Именно с этой целью применяется зануление вместо заземления.

Заземление и зануление электроустановок применяются в различных случаях. При этом заземление широко распространено в бытовом электрическом хозяйстве, а зануление — в промышленном.

В целом заземление и зануление электроустановок является необходимой процедурой, помогающей повысить безопасность их эксплуатации. Хоть заземление и зануление на первый взгляд преследуют одни и те же цели, на самом деле их назначение немного различается. Заземление ориентировано на защиту пользователя электроприбора от удара тока через корпус, тогда как зануление — мера, больше направленная на защиту самих электроприборов посредством их отключения при повреждении.

Стоит отметить, что комбинировать заземление и зануление нельзя — применяется или одна, или другая схема.

Источник: cable.ru

Заземление


Суть защитного заземления в обеспечении безопасной эксплуатации электрооборудования путём соединения его защищаемой части с соответствующим устройством – “землёй”. Если на внешнем кожухе установки или любой другой её детали внезапно окажется электрический потенциал, вред для человека будет сведён к минимуму. Главная характеристика заземляющего устройства – его сопротивление, качество защиты улучшается с его понижением. Заземление можно разделить на две основные детали – заземлитель и проводящие соединители, обеспечивающие контакт с заземляемой деталью. Областью использования защитного заземления являются трёхфазные сети, нейтраль в которых изолирована.

Защитное заземление действует на основе серьёзного уменьшения разности потенциалов между деталью, на которую пробило напряжение (корпус и т.д.), и землёй, вплоть до безопасного для человека уровня. Если заземление отсутствует, контакт с опасным местом электроустановки является непосредственным контактом с фазой. У возникающего электрического тока нет иных путей, кроме тела человека. При низком электрическом сопротивлении надетой обуви, самого пола и наличии изолированности проводов от “земли” величина тока окажется недопустимой для пострадавшего.


ли организация работы по охране труда была выполнена грамотно и проблемная деталь имеет защитное заземление, то даже в случае больших значений воздействующего напряжения, оно не вызовет серьёзных последствий для организма. Согласно закону Ома, сила тока будет обратно пропорциональна сопротивлению. При наличии двух параллельных цепей – человеческого тела и заземляющего контура, при равном значении исходного напряжения (фаза), сила проходящего тока будет тем выше, чем меньше сопротивление цепи. Сконструированное с учётом обеспечения минимального сопротивления защитное заземление примет на себя основной электрический ток, обезопасив имеющего значительно более высокое сопротивление человека.

Два типа заземления

Заземлители делятся на два типа – естественные и искусственные. Если для заземления используются уже существовавшие при постройке здания металлические конструкции (трубы, арматура и т.п.), заземлитель называют естественным. Когда стальные стержни, уголки или трубы специально забивают или закапывают в землю, конструкция является искусственной. В целях повышения безопасности длина искусственного заземлителя не может быть меньше 2.5 м., а улучшая защиту, металлические фрагменты комбинируют путём сварки стальными накладками или проволокой. Чтобы обеспечить электрический контакт между заземляемым прибором и заземлителем, принято использовать шины, выполненные из меди или стали. Заземляющие проводники крепят к корпусу оборудования при помощи сварки или с использованием надёжного резьбового соединения. Обязательная защита с использованием технологии заземления требуется для трансформаторов, электрических шкафов и щитов, а также большинства промышленных и некоторых бытовых приборов и механизмов.


Хотя защитное заземление в большой степени уменьшает риск для человека, оно не ликвидирует его полностью. Потенциальная проблема в наличии своего собственного сопротивления у заземлителя, соединительных проводов и даже земли. Если изоляция нарушена, замыкающий ток проделает путь от заземляемой детали до земли, и на каждом этапе имеющееся сопротивление создаст дополнительную разность потенциалов. Итоговое суммарное напряжение будет значительно ниже общепринятых в России 220 В, однако всё ещё может составлять небезопасные для человека значения. Чтобы снизить суммарное напряжение надо уменьшить сопротивление заземлителя относительно финальной точки – земли. Общепринятой практикой является увеличение количества искусственных заземлителей.

Зануление

Вторым видом защиты от удара током при пробое на корпус является защитное зануление. Оно заключается в целенаправленном соединении частей электрического прибора, потенциально могущих оказаться под фазой, с заземленным выводом источника переменного или с аналогичной средней точкой в сетях постоянного тока. Тем самым пробой любой фазы на корпус оборудования переводится в короткое замыкание с заземлённым нулём. Протекающий при защитном занулении ток в разы больше, чем в случае заземления. Поэтому основной целью создания защитного зануления является быстрое прекращение работы и полное обесточивание сломанного устройства в принципе.


Нулевой проводник бывает рабочим и защитным. Рабочий проводник предназначен для полноценного питания электроустановки, поэтому не отличается от других носителей по толщине и качеству изоляции, материалу и сечению провода. Защитный проводник имеет целью всего лишь создание в краткий период времени короткого замыкания очень высокого тока, который позволит сработать защите и оперативно обесточить неисправное устройство. В качестве нулевого защитного провода часто выступают используемые при прокладывании проводки стальные трубы или нулевые провода без дополнительных деталей (выключателей и предохранителей). Равно как и заземление, зануление не может полностью защитить человека от воздействия электричества при непосредственном контакте с находящимся под фазой элементом конструкции. Если обеспечение электробезопасности в помещении требует повышенного внимания, строго необходимо комбинировать зануление с другими мерами защиты – выравниванием потенциала и защитным отключением.


Источник: www.novation.by

Условия включения трансформаторов на параллельную работу.

При параллельном включении трансформаторов их первичные и вторичные обмотки раздельно присоединяются параллельно к общим шинам (рис. 12). На схеме изображены два трансформатора, включенные на параллельную работу, но их число может быть и большим.

[ttp://www.voasw.ru/index.php?show_aux_page=28]

Для нормальной работы трансформаторов должны быть выполнены условия:

1.равенство номинальных первичных и вторичных напряжений

трансформаторов;

2.принадлежность трансформаторов к одинаковым группам;

3.равенство напряжений коротких замыканий, их активных и реактивных

составляющих

На основании исследований различных режимов работы трансформаторов разработан ГОСТ 14209-85, регламентирующий допустимые систематические нагрузки и аварийные перегрузки силовых масляных трансформаторов общего назначения мощностью до 100 мВ·А включительно с видами охлаждения М, Д, ДЦ и с учетом температуры охлаждения среды.

[http://electricalschool.info/main/elsnabg/368-transformatornye-podstancii-v-sistemakh.html] – школа для электрика

Лекция № 17 (Нужно 2,5 часа)

Защитное заземление (сети с ИН)– преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам (индуктивное влияние соседних токоведущих частей, вынос потенциала, разряд молнии и т. п.).


Назначение защитного заземления – устранение опасности поражения током в случае прикосновения к корпусу электроустановки и другим нетоковедущим металлическим частям, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам.

Принцип действия защитного заземления – снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус и другими причинами. Это достигается путем уменьшения потенциала заземленного оборудования (уменьшением сопротивления заземлителя), а также путем выравнивания потенциалов основания, на котором стоит человек, и заземленного оборудования (подъемом потенциала основания, на котором стоит человек, до значения, близкого к значению потенциала заземленного оборудования).

Рассмотрим два случая.

– Корпус электроустановки не заземлен. В этом случае прикосновение к корпусу электроустановки также опасно, как и прикосновение к фазному проводу сети.

– Корпус электроустановки заземлен. В этом случае напряжение корпуса электроустановки относительно земли уменьшится и станет равным:

Uз = Rз·Iз

Напряжение прикосновения и ток через тело человека в этом случае будут определяться по формулам:

Uh = Rh · Ih

Ih = Iз·


Защитное заземление зануление

Уменьшая значение сопротивления заземлителя растеканию тока RЗ, можно уменьшить напряжение корпуса электроустановки относительно земли, в результате чего уменьшаются напряжение прикосновения и ток через тело человека.

Заземление будет эффективным лишь в том случае, если ток замыкания на землю IЗ практически не увеличивается с уменьшением сопротивления заземлителя. Такое условие выполняется в сетях с изолированной нейтралью (типа IT) напряжением до 1 кВ, т.к. в них ток замыкания на землю в основном определяется сопротивлением изоляции проводов относительно земли, которое значительно больше сопротивления заземлителя.

В сетях переменного тока с заземленной нейтралью напряжением до 1 кВ защитное заземление в качестве основной защиты от поражения электрическим током при косвенном прикосновении не применяется, т.к. оно не эффективно

Область применения защитного заземления:

– электроустановки напряжением до 1 кВ в трехфазных трехпроводных сетях переменного тока с изолированной нейтралью (система IT);

– электроустановки напряжением до 1 кВ в однофазных двухпроводных сетях переменного тока изолированных от земли;


– электроустановки напряжением до 1 кВ в двухпроводных сетях постоянного тока с изолированной средней точкой обмоток источника тока (система IT);

электроустановки в сетях напряжением выше 1 кВ переменного и постоянного тока с любым режимом нейтрали или средней точки обмоток источников тока.

Зануление – это преднамеренное электрическое соединение открытых проводящих частей электроустановок с глухозаземленной нейтральной точкой генератора или трансформатора в электрических сетях сетях трехфазного тока…, с глухо заземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.

Для соединения открытых проводящих частей потребителя электроэнергии с глухозаземленной нейтральной точкой источника используется нулевой защитный проводник (PE – проводник в системе TN – S).

Нулевым защитным проводником (PE – проводник в системе TN – S) называется проводник, соединяющий зануляемые части (открытые проводящие части) с глухозаземленной нейтральной точкой источника питания трехфазного тока или с заземленным выводом источника питания однофазного тока, … или с заземленной средней точкой источника питания в сетях постоянного тока.

Нулевой защитный проводник следует отличать от нулевого рабочего и PEN – проводников.

Нулевой рабочий проводник (N – проводник в системе TN – S) – проводник в электроустановках напряжением до 1 кВ, предназначенный для питания электроприемников соединенный с глухозаземленной нейтральной точкой генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в сетях постоянного тока.


Совмещенный (PEN – проводник в системе TN– C) нулевой защитный и нулевой рабочий проводник – проводник в электроустановках напряжением до 1 кВ, совмещающий функции нулевого защитного и нулевого рабочего проводника.

Зануление необходимо для обеспечения защиты от поражения электрическим током при косвенном прикосновении за счет снижения напряжения корпуса относительно земли и быстрого отключения электроустановки от сети.

Область применения зануления:

электроустановки напряжением до 1 кВ в трехфазных сетях переменного тока с заземленной нейтралью (система TN – S; обычно это сети 220/127, 380/220, 660/380 В);

электроустановки напряжением до 1 кВ в однофазных сетях переменного тока с заземленным выводом;

электроустановки напряжением до 1 кВ в сетях постоянного тока с заземленной средней точкой источника.

Принцип действия зануления. При замыкании фазного провода на зануленный корпус электропотребителя [1, c. 256 а] образуется цепь тока однофазного короткого замыкания (т.е. есть замыкания между фазным и нулевым защитным проводниками). Ток однофазного короткого замыкания вызывает срабатывание максимальной токовой защиты, в результате чего происходит отключение поврежденной электроустановки от питающей сети. Кроме того, до срабатывания максимальной токовой защиты происходит снижение напряжения поврежденного корпуса относительно земли, что связано с защитным действием повторного заземления нулевого защитного проводника и перераспределением напряжений в сети при протекании тока КЗ.

Следовательно, зануление обеспечивает защиту от поражения электрическим током при замыкании на корпус за счет ограничения времени прохождения тока через тело человека и за счет снижения напряжения прикосновения.

Заземляющим устройством называется совокупность заземлителя и заземляющих проводников.

В зависимости от места размещения заземлителя относительно заземляемого оборудования различают два типа заземляющих устройств: выносное и контурное.

Выносное заземляющее устройство характеризуется тем, что заземлитель вынесен за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточен на некоторой части этой площадки. Поэтому выносное заземляющее устройство называют также сосредоточенным.

Существенный недостаток выносного заземляющего устройства – отдаленность заземлителя от защищаемого оборудования. Поэтому выносные заземляющие устройства применяются лишь при малых токах замыкания на землю, в частности в установках до 1000 В, где потенциал заземлителя не превышает значения допустимого напряжения прикосновения.

Кроме того, при большом расстоянии до заземлителя может значительно возрасти сопротивление заземляющего устройства в целом за счет сопротивления заземляющего проводника.

Достоинством выносного заземляющего устройства является возможность выбора места размещения электродов заземлителя с наименьшим сопротивлением грунта (сырой, глинистый, в низинах и т. п.).

Необходимость в устройстве выносного заземления может возникнуть в следующих случаях:

– при невозможности по каким-либо причинам разместить заземлитель на защищаемой территории;

– при высоком сопротивлении земли на данной территории (например, песчаный или скалистый грунт) и наличии вне этой территории мест со значительно лучшей проводимостью земли;

– при рассредоточенном расположении заземляемого оборудования (например, в горных выработках) и т. п.

Контурное заземляющее устройство характеризуется тем, что электроды его заземлителя размещаются по контуру (периметру) площадки, на которой находится заземляемое оборудование, а также внутри этой площадки. Часто электроды распределяются на площадке по возможности равномерно, и поэтому контурное заземляющее устройство называется также распределенным.

Безопасность при распределенном заземляющем устройстве может быть обеспечена не только уменьшением потенциала заземлителя, но и выравниванием потенциалов на защищаемой территории до таких значений, чтобы максимальные напряжения прикосновения и шага не превышали допустимых. Это достигается за счет соответствующего размещения одиночных заземлителей на защищаемой территории.

Защитным отключением называется автоматическое отключение электроустановок при однофазном (однополюсном) прикосновении к частям, находящимся под напряжением, недопустимым для человека, и (или) при возникновении в электроустановке тока утечки (замыкания), превышающего заданные значения. Оно предназначено для обеспечения электробезопасности, что достигается за счет ограничения времени воздействия опасного тока на человека. Защита осуществляется специальным устройством защитного отключения (УЗО), которое, работая в дежурном режиме, постоянно контролирует условия поражения человека электрическим током.

УЗО применяется в электроустановках в сетях с любым напряжением и любым режимом нейтрали.

Наибольшее распространение защитное отключение получило в электроустановках, используемых в сетях напряжением до 1 кВ с заземленной или изолированной нейтралью.

Принцип работы УЗО состоит в том, что оно постоянно контролирует входной сигнал и сравнивает его с наперед заданной величиной (уставкой). Если входной сигнал превышает уставку, то устройство срабатывает и отключает защищенную электроустановку от сети. В качестве входных сигналов устройств защитного отключения используют различные параметры электрических сетей, которые несут в себе информацию об условиях поражения человека электрическим током.

Расчет заземляющего устройства подстанции будет рассмотрен в практической работе.

Требования безопасности по защите от поражения электрическим током изложены в ГОСТ Р 50571.3 – 94

Принцип работы УЗО

Рассмотрим такое устройство: ферромагнитный сердечник с тремя обмотками. Через первую обмотку проходит ток, уходящий потребителям (фазный провод), по второй обмотке проходит обратный ток (нулевой провод). Если утечек нет, то токи в обоих обмотках равны по значению и различны по направлению, соответственно наведенные этими токами магнитные потоки в сердечнике компенсируют друг друга и суммарный поток равен нулю. Если имеется утечка, то отходящий и обратный токи не будут равны, и суммарный магнитный поток в сердечнике будет отличен от нуля. Магнитный поток будет воздействовать на третью обмотку – управляющую, в которой появится наведенная ЭДС, под воздействием этой ЭДС срабатывает реле, разрывающее цепи.

Конечно, УЗО содержит еще множество элементов – фильтры, для защиты от помех и ложных срабатываний и еще некоторые электронные компоненты, но описанный принцип действия является основным для устройств защитного отключения.

УЗО бывают однофазными и трехфазными. Кроме того, сейчас на рынке присутствуют два различных вида УЗО, отличающихся как по цене, так и по надежности – электромеханические и электронные УЗО.

Защитное заземление зануление

Лекция № 18 (Нужно 4 часа)

Источник: studopedia.ru

Для обеспечения защиты людей при прикосновении к металлическим нетоковедущим частям, которые могут по каким-либо причинам оказаться под напряжением, наряду с другими средствами применяются защитное заземление и зануление.

Согласно ГОСТ 12.1.009-76 «Система стандартов безопасности труда. Электробезопасность. Термины и определения» защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Назначение защитного заземления – устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т. е. при замыкании на корпус.

Защитному заземлению подлежат металлические нетоковедущие части электрооборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей и животных.

Принцип действия защитного заземления – снижение напряжения между корпусом, оказавшимся под напряжением, и землей до безопасного значения.

Следует отметить, что в техническом кодексе установившейся практики «Электроустановки на напряжение до 750 кВ. Линии электропередачи воздушные и токопроводы, устройства распределительные и трансформаторные подстанции, установки электросиловые и аккумуляторные, электроустановки жилых и общественных зданий. Правила устройства и защитные меры электробезопасности. Учет электроэнергии. Нормы приемо-сдаточных испытаний», утвержденном постановлением Министерства энергетики Республики Беларусь от 23 августа 2011 г. № 44, дается определение не только термину «заземление», но и производным от него терминам:

заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством;

заземление защитное – заземление, выполненное в целях электробезопасности;

заземление функциональное (рабочее, технологическое) – заземление точки или точек системы, или установки, или электрооборудования в целях, отличных от целей электробезопасности.

Согласно ГОСТ 12.1.009-76 «Система стандартов безопасности труда. Электробезопасность. Термины и определения» зануление – преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Назначение зануления – устранение опасности поражения людей током при пробое на корпус.

Принцип действия зануления – превращение замыкания на корпус в однофазное короткое замыкание (т. е. замыкание между фазным и нулевым проводами) с целью вызвать большой ток, способный обеспечить срабатывание защиты и тем самым автоматически отключить поврежденную установку от питающей сети. Такой защитой могут быть плавкие предохранители, магнитные пускатели со встроенной тепловой защитой, контакторы в сочетании с тепловыми реле, автоматы, осуществляющие защиту одновременно от токов короткого замыкания и от перегрузки.

Занулению подлежат металлические конструктивные нетоковедущие части электрооборудования, которые должны быть заземлены: корпуса машин, аппаратов и др. В сети с занулением корпус приемника нельзя заземлять, не присоединив его к нулевому защитному проводу.

Источник: ohranatruda.of.by

Разница между занулением и заземлением

Между занулением и заземлением имеются отличия:

  1. В случае заземления лишний ток и появившееся на корпусе напряжение перенаправляются в грунт. Принцип действия зануления основан на обнулении на щитке.
  2. Заземление более эффективно с точки зрения защиты человека от удара током.
  3. Заземление основано на быстром и значительном уменьшении напряжения. Тем не менее, какое-то (уже неопасное) напряжение остается.
  4. Зануление заключается в создании соединения между металлическими деталями, в которых отсутствует напряжение. Принцип зануления основан на умышленном создании короткого замыкания при пробое изоляции или попадании тока на нетоковедущие части электроустановок. Как только происходит замыкание, в дело вступает автоматический выключатель, перегорают предохранители или срабатывают иные средства защиты.
  5. Заземление чаще всего используют на линиях с изолированной нейтралью в системах типа IT и TT в трехфазных сетях, где напряжение не превышает тысячи вольт. Заземление применяют при напряжении более тысячи вольт с нейтралью в любом режиме. Зануление используют в глухозаземленных нейтралях.
  6. При занулении все элементы электроприборов, не находящиеся в стандартном режиме под напряжением, соединяются с нулем. Если фаза случайно коснется зануленных элементов, резко увеличивается ток и отключается электрооборудование.
  7. Заземление не зависит от фаз электроприборов. Для организации зануления требуется соблюдение жестких условий подключения.
  8. В современных домах зануление применяется редко. Однако этот способ защиты все еще встречается в многоэтажных домах, где по каким-либо причинам нет возможности организовать надежное заземление. На предприятиях, где имеются повышенные нормативы по электробезопасности, основной способ защиты — зануление.

Защитное заземление зануление

Обратите внимание! Для правильного определения нулевых точек и выбора способа защиты понадобится помощь квалифицированного электрика. Сделать заземление, собрать элементы контура и установить его в грунт можно и своими руками.

Схема работы

Как было сказано выше, зануление основано на провоцировании короткого замыкания после попадания фазы на металлический корпус электроустановки, соединенной с нулем. Так как сила тока возрастает, подключается защитный механизм, отключающий электропитание.

По нормативам Правил установки электроустановок в случае нарушения целостности линии она должна отключаться автоматически. Регламентируется время на отключение — 0,4 секунды (для сетей 380/220В). Для отключения используются специальные проводники. Например, в случае однофазной проводки задействуется третья жила кабеля.

Для правильного зануления важно, чтобы петля фазы-нуля характеризовалась невысоким сопротивлением. Так обеспечивается срабатывание защиты за нужный промежуток времени.

Организация зануления требует высокой квалификации, поэтому такие работы должны выполнять только квалифицированные электрики.

На схеме ниже показан принцип работы системы:

Защитное заземление зануление

Область применения

Защитное зануление используют в электроустановках с четырехпроводными электросетями и напряжением до 1 кВт в следующих случаях:

  • в электроустановках с глухозаземленной нейтралью в сетях TN-C-S, TN-C, TN-S с проводниками типов N, PE, PEN;
  • в сетях с постоянным током и заземленной средней точкой источника;
  • в сетях с переменным током и тремя фазами с заземленным нулем (220/127, 660/380, 380/220).

Сети 380/220 допускаются в любых сооружениях, где зануление электроустановок обязательно. Для жилых помещений с сухими полами зануление обустраивать не нужно.Защитное заземление зануление

Электрооборудование 220/127 используются в специализированных помещениях, где отмечается повышенный риск поражения током. Такая защита необходима в условиях улицы, где занулению подлежат металлические конструкции, к которым прикасаются работники.

Проверка эффективности зануления

Чтобы проверить, насколько действенно зануление, нужно сделать замер сопротивления петли фаза-ноль в наиболее отдаленной от источника электропитания точке. Это даст возможность проверить защищенность в случае воздействия тока на корпус.

Сопротивление измеряется с использованием специализированной аппаратуры. Измерительные приборы оснащены двумя щупами. Один щуп направляют на фазу, второй — на зануленную электроустановку.

По результатам измерений устанавливают уровень сопротивления на петле фазы и нуля. С полученным результатом рассчитывают ток однофазного замыкания, применяя закон Ома. Расчетное значение тока однофазного замыкания должно быть равно или превышать ток срабатывания защитного оборудования.

Предположим, что для предохранения электроцепи от перегрузок и коротких замыканий подключен автомат-выключатель. Ток срабатывания составляет 100 Ампер. По результатам измерений сопротивление петли фазы и нуля равно 2 Ом, а фазовое напряжение в сети — 220 Вольт. Делаем расчет тока однофазного замыкания на основе закона Ома:

I = U/R = 220 Вольт/2 Ом = 110 Ампер.

Поскольку расчетный ток короткого замыкания превышает ток мгновенного срабатывания автомата-выключателя, делаем вывод об эффективности защитного зануления. В противном случае понадобилась бы замена автомата-выключателя на прибор с меньшим током срабатывания. Другой вариант решения проблемы — сокращение сопротивления петли фаза-ноль.

Защитное заземление зануление

Нередко при проведении расчетов ток срабатывания автомата умножают на коэффициент надежности (Кн) или коэффициент запаса. Причина в том, что отсечка не всегда равна указанному показателю, то есть возможна определенная погрешность. Поэтому использование коэффициента позволяет получить более надежный результат. Для старого оборудования Кн составляет от 1,25 до 1,4. Для новой техники применяется коэффициент 1,1, так как такие автоматы работают с большей точностью.

Опасность зануления в квартире

Скачки напряжения опасны как для людей, так и для бытовой техники в квартирах. В многоквартирных домах одной из квартир достанется низкое напряжение, а другой — высокое. Если в розетке квартиры случится обрыв нулевого проводника, при следующем включении электроустановки (например, бойлера) человека ударит током.

Особенно зануление опасно в двухпроводной системе. К примеру, при проведении электромонтажных работ электрик может заменить нулевой проводник на фазный. В электрощитах эти жилы далеко не всегда обозначены определенным цветом. Если замена произойдет, электрическое оборудование окажется под напряжением.

По нормативам Правил установки электроустановок на бытовом уровне зануление не разрешается для использования в бытовых целях именно по причине его небезопасности. Зануление эффективно только для защиты больших объектов производственного назначения. Однако, несмотря на запрет, некоторые люди решаются на установку зануления в собственном жилье. Происходит это либо по причине отсутствия иных методов решения проблемы, либо из-за недостаточности знаний по данному предмету.

Защитное заземление зануление

Зануление в квартире технически осуществимо, но эффективность такой защиты непредсказуема, как и возможные негативные последствия. Далее рассмотрим ряд ситуаций, которые возникают при наличии зануления квартире.

Зануление в розетках

В некоторых случаях защиту электроприборов предлагают выполнить путем перемычки клеммы розеточного рабочего нуля на защитный контакт. Такие действия противоречат пункту 1.7.132 ПУЭ, поскольку предполагают задействование нулевого провода двухпроводной электросети в качестве как рабочего, так и защитного нуля одновременно.

На вводе в жилое помещение чаще всего расположено устройство, предназначенное для коммутации фазы и нуля (двухполюсный прибор или так называемый пакетник). Коммутация нуля, используемого как защитный проводник, не допускается. Иными словами, запрещено использовать в качестве защиты проводник, электроцепь которого включает коммутационный аппарат.

Опасность защиты с применением перемычки в розетке состоит в том, что корпуса электроустановок в случае повреждения нуля (независимо от участка) попадают под фазное напряжение. Если нулевой проводник обрывается, электроприемник перестает функционировать. В этом случае провод кажется обесточенным, что провоцирует на необдуманные действия со всеми вытекающими последствиями.

Обратите внимание! При обрыве нуля источником опасности становится любая техника в квартире или в частном доме.

Защитное заземление зануление

Перепутаны местами фаза и ноль

При проведении электромонтажных работ в двухпроводном стояке своими руками существует немалая вероятность путаницы между нулем и фазой.

В домах с двухпроводной системой жилы кабелей лишены отличительных признаков. При работе с проводами в этажном щитке электрик может попросту ошибиться, перепутав фазу и ноль местами. В результате корпуса электроустановок попадут под фазное напряжение.

Отгорание нуля

Обрыв нуля (отгорание нуля) часто случается в зданиях с плохой проводкой. Чаще всего проводка в таких домах проектировалась, исходя из 2 киловатт на единицу жилья. На сегодняшний день электропроводка в домах старого типа не только износилась физически, но и не способна удовлетворить возросшее количество бытовой техники.

При обрыве нуля дисбаланс возникает на трансформаторной подстанции, от которой питается многоквартирное здание. Перекос возможен в общем электрическом щите здания или в этажном щитке дома. Следствием этого станет беспорядочное понижение напряжения в одних квартирах и повышение — в других.

Защитное заземление зануление

Низкое напряжение губительно для некоторых видов электробытовой техники, в том числе кондиционеров, холодильников, вытяжек и прочих аппаратов, оснащенных электрическими двигателями. Высокое напряжение представляет опасность для всех видов электроустановок.

Альтернатива занулению

В подсистеме TN-S зануление защитного проводника PE осуществляется лишь на одном участке — на контуре заземления трансформаторной подстанции или электрогенератора. В этой точке разделяется PEN-проводник, и далее защита и рабочий ноль нигде не встречаются.

В такой схеме энергоснабжения заземление и зануление органично взаимодействуют, создавая условия для высокой электробезопасности. Однако в системах, где нейтраль изолирована (IT, TT), зануление не используется. Электрическое оборудование, работающее в рамках системы TT и IT, заземляется за счет собственных контуров. Так как система IT предполагает подачу питания только специфическим потребителям, рассматривать такой способ организации защиты в жилых домах не имеет смысла. Единственная альтернатива неправильному, а потому опасному занулению шины PE — система TT. Особенно актуальна такая система, потому что переход на технически прогрессивные системы TN-S, TN-C-S технически и финансово затруднен для домов, чей возраст превышает 20 – 25 лет.

Электрическая сеть, построенная по стандарту TT, призвана обеспечивать качественную защиту от попадания под напряжение нетоковедущих частей. Все работы по организации зануления должны осуществляться в соответствии с нормами, указанными в пункте 1.7.39 Правил установки электроустановок.

Источник: 220.guru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.