Гидравлический расчет трубопроводов


Трубы, соединяющие между собой различные аппараты химических установок. С помощью них происходит передача веществ между отдельными аппаратами. Как правило, несколько отдельных труб с помощью соединений создают единую трубопроводную систему.

Трубопровод – это система труб, объединенных вместе с помощью соединительных элементов, применяемая для транспортировки химических веществ и иных материалов. В химических установках для перемещения веществ, как правило, используются закрытые трубопроводы. Если речь идет о замкнутых и изолированных деталях установки, то они также относится к трубопроводной системе или сети.

В состав замкнутой трубопроводной системы могут входить:

  1. Трубы.
  2. Соединительные элементы труб.
  3. Герметизирующие уплотнения, соединяющие два разъемных участка трубопровода.

Все вышеперечисленные элементы изготавливаются отдельно, после чего соединяются в единую трубопроводную систему. Помимо этого трубопроводы могут быть оснащены обогревом и необходимой изоляцией, изготовленной из различных материалов.


Выборе размера труб и материалов для из изготовления осуществляется на основе технологических и конструктивных требований, предъявляемых в каждом конкретном случае. Но для стандартизации размеров труб была проведена их классификация и унификация. Основным критерием стало допустимое давление при котором возможна эксплуатация трубы.

Условный проход DN

Условный проход DN (номинальный диаметр) – это параметр, который используется в системах трубопровода как характеризующий признак, с помощью которого происходит подгонка деталей трубопровода, таких как трубы, арматура, фитинги и другие.

Номинальный диаметр является безразмерной величиной, однако численно приблизительно равен внутреннему диаметру трубы. Пример обозначения условного прохода: DN 125.

Так же условный проход не обозначается на чертежах и не заменяет собой реальные диаметры труб. Он примерно соответствует диаметру в свету у определенных частей трубопровода (рис. 1.1). Если говорить о числовых значениях условных переходах, то они выбраны таким образом, что пропускная способность трубопровода увеличивается в диапазоне от 60 до 100% при переходе от одного условного прохода к последующему.

Рис. 1.1 Условный диаметр

Гидравлический расчет трубопроводов

Общепринятые номинальные диаметры:


3, 4, 5, 6, 8, 10, 15, 20, 25, 32, 40, 50, 65, 80, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000.

Размеры этих условных проходов установлены с расчетом на то, чтобы не возникало проблем с припасовкой деталей друг к другу. Определения номинальный диаметр на основе значения внутреннего диаметра трубопровода, выбирается то значение условного прохода, которое ближе всего находится к диаметру трубы в свету.

Номинальное давление PN

Номинальное давление PN – величина, соответствующая максимальному давлению перекачиваемой среды при 20 °C, при котором возможна длительная эксплуатация трубопровода, имеющего заданные размеры.

Номинальное давление является безразмерной величиной.

Как и номинальный диаметр, номинальное давление было градуировано на основе практики эксплуатации накопленного опыта (табл. 1.1).

Номинальное давление для конкретного трубопровода выбирается на основе реально создаваемого в нем давления, путем выбора ближайшего большего значения. При этом фитинги и арматура в этом трубопроводе также должны соответствовать такой же ступени давления. Толщина стенок трубы рассчитывается исходя из номинального давления и должна обеспечивать работоспособность трубы при значении давления равном номинальному (табл. 1.1).

Допустимое избыточное рабочее давление pe,zul

Номинальное давление используется только для рабочей температуры 20°C. С повышением температуры нагрузочные способности трубы снижаются. Вместе с этим соответственно снижается и допустимое избыточное давление. Значение pe,zul показывает максимальное избыточное давление, которое может быть в трубопроводной системе при повышении значения рабочей температуры (рис. 1.2).


Рис. 1.2 График допустимых избыточных давлений

Гидравлический расчет трубопроводов

Материалы для трубопроводов

При выборе материалов, которые будут использоваться для изготовления трубопроводов, берутся в расчет такие показатели, как характеристики среды, которая будет транспортироваться по трубопроводу и рабочее давление, предполагаемое в данной системе. Стоит так же учитывать возможность корродирующего воздействия со стороны перекачиваемой среды на материал стенок трубы.

Практически все трубопроводные системы и химические установки производятся из стали. Для общего применения в случае отсутствия высоких механических нагрузок и корродирующего действия для изготовления трубопроводом используется серый чугун или нелегированные конструкционные стали.

В случае более высокого рабочего давления и отсутствия нагрузок с коррозионно активным действием применяется трубопровод из улучшенной стали или с использованием стального литья.


Если корродирующее воздействие среды велико или к чистоте продукта предъявлены высокие требования, то трубопровод изготавливается из нержавеющей стали.

Если трубопровод должен быть устойчив к воздействию морской воды, то для его изготовления используются медно-никелевые сплавы. Также могут применяться алюминиевые сплавы и такие металлы как тантал или цирконий.

Все большее распространение в качестве материала трубопровода получают различные виды пластмасс, что обуславливается их высокой стойкостью к коррозии, малому весу и легкости в обработке. Такой материал подходит для трубопровода со сточными водами.

Фасонные части трубопровода

Трубопроводы, изготовленные из пластичных материалов пригодных для сварки, собираются на месте монтажа. К таким материалам можно отнести сталь, алюминий, термопласты, медь и т.д.. Для соединения прямых участков труб используются специально изготовленные фасонные элементы, например, колена, отводы, затворы и уменьшения диаметров (рис. 1.3). Эти фитинги могут быть частью любого трубопровода.

Рис. 1.3 Фасонные элементы трубопровода

Гидравлический расчет трубопроводов

Соединения труб

Для монтирования отдельных частей трубопровода и фитингов используются специальные соединения. Также используются для присоединения к трубопроводу необходимой арматуры и аппаратов.

Соединения выбираются (рис. 1.4) в зависимости от:

  1. материалов, которые используются для изготовления труб и фасонных элементов. Основной критерий выбора – возможность сварки.
  2. условий работы: низкого или высокого давления, а также низкой или высокой температуры.
  3. производственных требований, которые предъявляются к трубопроводной системе.
  4. наличия разъемных или неразъемных соединений в трубопроводной системе.

Рис. 1.4 Типы соединения труб

Гидравлический расчет трубопроводов

Линейное расширение труб и его комплектация

Геометрическая форма предметов может быть изменена как путем силового воздействия на них, так и при изменении их температуры. Данные физические явления приводят к тому, что трубопровод, который монтируется в ненагруженном состоянии и без температурного воздействия, в процессе эксплуатации под давлением или воздействием температур претерпевает некоторые линейные расширения или сжатия, которые негативно сказываются на его эксплуатационных качествах.

В случае, когда нет возможности компенсировать расширение, происходит деформация трубопроводной системы. При этом могут возникнуть повреждения фланцевых уплотнений и тех мест соединения труб между собой.

Тепловое линейное расширение

При компоновке трубопроводов важно учитывать возможное изменение длины в результате повышения температуры или так называемого теплового линейного расширения, обозначаемого ΔL. Данное значение зависит от длины трубы, которая обозначается Lo и разности температур Δϑ =ϑ2-ϑ1 (рис. 1.5).


Гидравлический расчет трубопроводов

В вышеприведенной формуле а – это коэффициент теплового линейного расширения данного материала. Этот показатель равен величине линейного расширения трубы длиной 1 м при повышении температуры на 1°C.

Элементы компенсации расширения труб

Благодаря специальным отводам, которые ввариваются в трубопровод, можно компенсировать естественное линейное расширение труб. Для этого используются компенсирующие U-образные, Z-образные и угловые отводы, а также лирные компенсаторы (рис. 1.6).

Рис. 1.6 Компенсирующие трубные отводы

Гидравлический расчет трубопроводов

Они воспринимают линейное расширение труб за счет собственной деформации. Однако такой способ возможен только с некоторыми ограничениями. В трубопроводах с высоким давлением для компенсации расширения используются колени под разными углами. Из-за давления, которое действует в таких отводах, возможно усиление коррозии.

Волнистые трубные компенсаторы

Данное устройство состоит из тонкостенной металлической гофрированной трубы, которая называется сильфоном и растягивается в направлении трубопровода (рис. 1.7).

Данные устройства устанавливаются в трубопровод. Предварительный натяг используется в качестве специального компенсатора расширения.

Рис. 1.7 Волнистый трубный компенсатор

Гидравлический расчет трубопроводов

Если говорить про осевые компенсаторы, то они способны компенсировать только те линейные расширения, которые происходят вдоль оси трубы. Чтобы избежать бокового смещения и внутреннего загрязнения используется внутреннее направляющее кольцо. Для того чтобы защитить трубопровод от внешних повреждений, как правило, используется специальная облицовка. Компенсаторы, которые не содержат внутреннее направляющее кольцо, поглощают боковые сдвиги, а также вибрацию, которая может исходить от насосов.

Источник: ence-pumps.ru

Что рассчитывается

Выполняется данная процедура в отношении нижеперечисленных рабочих параметров инженерной коммуникации.

  1. Расход жидкости на отдельных сегментах водопровода.
  2. Скорость потока рабочей среды в трубах.
  3. Оптимальный диаметр водопровода, который обеспечивает приемлемое падение напора.

Рассмотрим методику расчёта этих показателей подробно.

Расход воды

Данные по нормативному расходу воды отдельными сантехническими приборами указаны в приложении к СНиП 2.04.01-85. Этот документ регламентирует сооружение канализационных сетей и внутренних водопроводов. Ниже приведена часть соответствующей таблицы.

Таблица 1



Сантехнический прибор Общий расход (ГВС и ХВС), литр/секунда Расход ХВС, литр/секунда
Унитаз с вентилем прямой подачи воды 1,4 1,4
Унитаз с бачком для слива воды 0,10 0,10
Душевая кабинка (смеситель) 0,12 0,08
Ванна (смеситель) 0,25 0,17
Мойка (смеситель) 0,12 0,08
Умывальник (смеситель) 0,12 0,08
Умывальник (водоразборный кран) 0,10 0,10
Кран для полива 0,3 0,3

Если предполагается использовать одновременно несколько приборов, расход суммируется. Так, в случае, когда работает душевая кабинка на первом этаже с одновременным использованием туалета на втором этаже, логично сложить объём расхода воды обоими потребителями – 0,12+0,10 = 0,22 литр/секунда.

Важно! На пожарные водопроводы распространяется следующая норма: на одну струю он должен обеспечивать расход  не менее 2,5 литр/сек.

Вполне понятно, что при пожаротушении количество струй от одного пожарного гидранта определяется площадью и типом здания. Для удобства ознакомления информация по этому вопросу тоже размещена в табличной форме.

Таблица 2

Тип здания Требуемое количество струй при пожаротушении
Администрации предприятий (объём до 25 000 кубометров) 1
Общественные здания (объём до 25 000 кубометров, более 10 этажей) 2
Общественные здания (объём до 25 000 кубометров, до 10 этажей) 1
Здание управления (объём до 25 000 кубометров, 10 и больше этажей) 2
Здание управления (от 6 до10 этажей) 1
Жилое здание (от 16 до 25 этажей) 2
Жилое здание (до 16 этажей) 1

Скорость потока

Предположим, что перед нами поставлена задача расчёта тупиковой водопроводной сети при заданном пиковом расходе через неё. Цель вычислений – определение диаметра, при котором будет обеспечена приемлемая скорость перемещения потока по трубопроводу (согласно СНиПу – 0,7 – 1,5 м/сек).

Применяем формулы. Размер трубопровода увязывается со скоростью потока воды и её расходом такими формулами:

S=π*R2 , где

S – площадь поперечного сечения трубы. Единица измерения – метр квадратный; π – известное иррациональное число; R – радиус внутреннего диаметра трубы.

Единица измерения — те же метры квадратные.

На заметку! Для чугунных и стальных труб радиус обычно приравнивают к половине их условного прохода (ДУ). У большинства пластиковых трубных изделий  номинальный наружный диаметр на шаг больше внутреннего диаметра. Например, у полипропиленовой трубы с  внутренним сечением 32 миллиметра наружный диаметр равен 40 миллиметров.

Следующая формула выглядит так:

                                                                              W= V×S, где

W – расход воды в кубометрах; V – скорость потока воды (м/сек.); S – площадь сечения (метры квадратные).

Пример. Выполним расчет трубопровода системы пожаротушения для одной струи, расход воды в которой равен 3,5 литра в секунду. В системе СИ значение этого показателя будет таким: 3,5 л/сек = 0,0035 м3/сек. Такой расход на одну струю нормируется на тушение пожара внутри складских и производственных зданий объёмом от 200 до 400 кубометров и высотой до 50 метров.

Сначала берём вторую формулу и вычисляем минимальную площадь сечения. Если скорость составляет 3 м/сек., этот показатель равен

                                                              S=W/V=0,0035/3= 0,0012 м2

                Тогда радиус внутреннего сечения трубы будет таким:

   R=√S/π=0,019 м.

Таким образом, внутренний диаметр трубопровода должен быть  равен минимум

                                               Dвн. = 2R = 0,038 м =3,8 сантиметров.

Если результат вычислений является промежуточной величиной между стандартными значениями размеров трубных изделий, округление производится в большую сторону. То есть в данном случае подойдёт стандартная стальная труба с ДУ=40 мм.

Как просто узнать диаметр. Для того чтобы выполнить быстрый расчёт, можно использовать ещё одну таблицу, которая непосредственно увязывает расход воды через трубопровод с его условным диаметром. Она представлена ниже.

Таблица 3

Расход, литр/сек. Минимальный ДУ трубопровода, миллиметры
10 50
6 40
4 32
2,4 25
1,2 20
0,6 15
0,20 10

 

Потеря напора

Расчёт потери напора на участке трубопровода известной длины выполняется достаточно просто. Но здесь необходимо использовать изрядное количество переменных. Найти их значения можно в справочниках. А формула выглядит следующим образом:

                                                              P = b×L×(1 +K), где

P – потеря напора в метрах водяного столба. Такая характеристика применима ввиду того, что изменяется давление воды в её потоке; b – гидравлический уклон трубопровода; L – длина трубопровода в метрах; K – специальный коэффициент. Этот параметр зависит от назначения сети.

Данная формула значительно упрощена. На практике падение напора вызывают запорная арматура и изгибы трубопровода. С цифрами, отображающими данное явление в фасонных частях, вы можете ознакомиться, изучив следующую таблицу.

Таблица 4

Эквивалент длины прямого участка трубопровода, метры
Диаметр 300 250 200 150 125 100 80 65 50 40 32 25
Открытый на 50% запорный кран 60 60 60 45 30 30 15 15,0 15 15,0 15 15,0
Открытый на 75% запорный кран 8 8 8 6 4 4 2 2 2 3 3 2
Открытый на 100% запорный кран 2 2 2 1,5 1 1 0,50 0,50 0,5 0,5 0,50 0,5
Обратный клапан 35 25 25 20 15 10 9 8 7 6 5 4
Обратный клапан водоразборный 45 30 30 25 20 15 12 10 9 8 7 6
Коническое сужение 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0
Колено 90 градусов 7 5 4 2,7 2,5 1,7 1,30 0,9 0,70 0,6 0,40 0,3
Отвод 90 градусов 5,5 5 3 2 1,8 1,20 1 0,7 0,50 0,4 0,30 0,2

 

Некоторые элементы вышеуказанной формулы необходимо прокомментировать. С коэффициентом всё просто. Его значения можно узнать из СНиПа № 2.04.01-85.

Таблица 5

Назначение водопровода

Коэффициент
Производственно-противопожарный 0,15
Хозяйственно-питьевой 0,3
Противопожарный 0,1
Хозяйственный производственно- противопожарный 0,2

 

Что же касается понятия «гидравлический уклон», то здесь всё намного сложнее.

Важно! Данная характеристика отображает сопротивление, оказываемое трубой движению воды.

Гидравлический уклон – величина производная от следующих параметров:

  • скорость потока. Зависимость прямо пропорциональная, то есть гидравлическое сопротивление тем выше, чем быстрее движется поток;
  • диаметр трубы. Здесь зависимость уже обратно пропорциональная: гидравлическое сопротивление возрастает с уменьшением сечения ветки инженерной коммуникации;
  • шероховатость стенок. Этот показатель зависит в свою очередь от материала трубы (поверхность ПНД или полипропилена более гладкая, чем у стали). В некоторых случаях немаловажным фактором является возраст труб водопровода. Формирующиеся со временем известковые  отложения и ржавчина увеличивают шероховатость поверхности их стенок.

Использование таблицы Шевелёва

Решить проблему, связанную с определением гидравлического уклона, используя калькулятор, можно полностью с помощью таблицы гидравлического расчёта труб водопровода, разработанной Шевелёвым Ф.А. В ней приведены данные для разных диаметров, материалов и скоростей потока. Помимо этого, в таблице содержатся поправки,  относящиеся к старым трубам. Но здесь следует уточнить один момент: ко всем типам полимерных трубных изделий возрастные поправки  не применяются. Структура поверхности обычного или сшитого полиэтилена, полипропилена и металлопластика не меняется в течение всего периода эксплуатации.

Из-за большого объёма таблицы Шевелёва, полностью публиковать её нецелесообразно. Ниже приведена лишь небольшая выдержка из этого документа для трубы из пластика диаметром 16 миллиметров.

Таблица 6

Скорость, м/сек Расход  литр/сек Гидравлический уклон для трубопровода длиной 1000 метров (1000i)
1,50 0,17 319,8
1,41 0,16 287,2
1,33 0,15 256,1
1,24 0,14 226,6
1,15 0,13 198,7
0,88 0,1 124,7
0,90 0,09 103,5
0,71 0,08 84

При анализе результатов расчёта падения напора необходимо учитывать, что большая часть сантехприборов требует для нормальной работы наличие избыточного давления определённой величины. В СНиПе, принятом 30 лет назад, приводятся цифры для уже устаревшей техники. Более современные модели бытового и санитарного оборудования требуют для нормальной работы, чтобы избыточное давление составляло не менее 0,3 кгс/см2 (или 3 метра напора). Однако, как показывает практика, закладывать  в расчет лучше немного большее значение данного параметра – 0,5 кгс/см2.

Примеры

Для лучшего усвоения информации ниже приведён пример гидравлического расчёта пластикового водопровода. В качестве исходных принимаются следующие данные:

  • диаметр – 16,6 миллиметров;
  • длина – 27 метров;
  • максимально допустимая скорость потока воды – 1,5 м/сек.

На заметку! При сдаче водопровода в эксплуатацию испытания проводятся давлением, равным, как минимум, рабочему, умноженному на коэффициент 1,3. При этом акт гидравлических испытаний конкретной ветки трубопровода должен включать отметки об испытательном давлении, а также о продолжительности испытательных работ.

Гидравлический уклон длины 1000 метров равен (берём значение из таблицы) 319,8. Но поскольку в формулу расчёта падения напора необходимо подставить не 1000i, а просто i, этот показатель необходимо разделить на 1000. В результате получим:

        319,8:1000=0,3198

Для хозяйственно-питьевого водопровода коэффициент К принимается равным 0,3.

После подстановки этих значений, формула будет выглядеть так:

                               Р =0,3198×27×(1+0,3)= 11,224 метра.

Таким образом, на концевом сантехприборе избыточное давление, равное 0,5 атмосферы, будет продуцироваться при давлении  в трубопроводе системы  водоснабжения 0,5+1,122=1,622  кгс/см2. А поскольку давление в магистрали, как правило, не опускается ниже отметки 2,5 – 3 атмосфер, это условие вполне выполнимо.

Гидравлический расчёт трубопроводов систем отопления с помощью программ

Расчёт отопления частного дома – достаточно сложная процедура. Однако специальные программы её значительно упрощают. Сегодня доступен выбор нескольких онлайн сервисов такого типа. На выходе получаются следующие данные:

  • требуемый диаметр трубопроводной линии;
  • определённый вентиль, служащий для балансировки;
  • размеры элементов отопления;
  • значения датчиков перепадов давления;
  • параметры контроля термостатических клапанов;
  • числовые настройки регулирующих деталей.

Программа «Oventrop co» для выбора полипропиленовых труб. Перед её запуском необходимо определить искомые элементы оборудования и задать настройки. По окончании вычислений пользователь получает несколько вариантов реализации системы отопления. В них итерационно вносятся изменения.

Данное программное обеспечение гидравлического расчёта позволяет выбрать трубные элементы магистрали нужного диаметра и определить расход теплоносителя. Оно – надёжный помощник при вычислении как однотрубной, так и двухтрубной конструкции. Удобство работы – вот одно из основных достоинств «Oventrop co». В комплект данной программы входят готовые блоки и каталоги материалов.

Программа «HERZ CO»: расчёт с учётом коллектора. Это программное обеспечение находится в свободном доступе. Оно позволяет производить расчёты вне зависимости от количества труб. «HERZ CO» помогает создавать проекты для ремонтируемых и новых зданий.

Обратите внимание! Здесь есть один нюанс: для создания конструкций  используется гликолевая смесь.

Программа тоже ориентирована на расчёт одно- и двухтрубных систем отопления. С её помощью учитывается действие термостатического вентиля, а также определяются потери давления в отопительных приборах и показатель сопротивления потоку теплоносителя.

Результаты расчётов выводятся в графическом и схематическом виде. В «HERZ CO» реализована функция справки. В программе имеется модуль, выполняющий функцию поиска и локализации ошибок. Пакет программ сдержит каталог данных о приборах для обогрева и об арматуре.

Программный продукт Instal-Therm HCR. С помощью данного программного обеспечения можно рассчитать радиаторы и обогрев поверхностей. В комплект его поставки входит модуль Tece, в котором содержатся подпрограммы для проектирования систем водоснабжения разных типов, сканирования чертежей и расчёта тепловых потерь. Программа оснащена различными каталогами, которые содержат арматуру, батареи, теплоизоляцию и разнообразные фитинги.

Компьютерная программа «ТРАНЗИТ». Данный пакет программ позволяет осуществлять многовариантный гидравлический расчёт нефтепроводов, в которых имеются промежуточные нефтеперекачивающие станции (далее НПС). В качестве исходных данных выступают:

  • абсолютная шероховатость труб, давление в конце магистрали и её протяжённость;
  • упругость и кинематическая вязкость насыщенных паров нефти и её плотность;
  • марка и число насосов, включаемых как на головной станции, так и на промежуточных НПС;
  • раскладка труб по величине диаметра;
  • профиль трубопровода.

Результат расчёта представлен в виде данных о характеристиках самотёчных участков магистрали и о расходе перекачки. Помимо того, пользователю выдаётся таблица, отображающая величину давления до и после любой из НПС.

В заключение необходимо сказать, что выше были приведены самые простые методики расчётов. Профессионалы используют куда более сложные схемы.

Источник: TrubaMaster.ru

Трубопровод называют простым, если он не имеет ответвлений. Простые трубопроводы соединяют в последовательные, параллельные или разветвленные линии. Сложные трубопроводы содержат как последовательные, так и параллельные соединения или разветвления.

Жидкость движется по трубопроводу, если ее энергия в начале трубопровода больше, чем в конце. Этот перепад уровней энергии может быть создан либо работой насоса, либо разностью уровней жидкости в начальном и конечном сечениях трубопровода, либо давлением газа (в пневматических системах).

Под гидравлическим расчетом понимают определение параметров движения жидкости при заданной схеме трубопровода с известными конструкционными элементами, либо определение размеров трубопровода, обеспечивающих необходимые параметры движения жидкости.

Простой трубопровод постоянного сечения:

Гидравлический расчет трубопроводов

Рассмотрим простой трубопровод длиной l, постоянного диаметра d, который содержит ряд местных сопротивлений. Скорость потока в начальном и концевом сечениях одинакова.

Уравнение Бернулли для сечений 1 и 2 имеет вид:

Гидравлический расчет трубопроводов ,

или

Гидравлический расчет трубопроводов .

Вводя обозначения:

× Гидравлический расчет трубопроводов – потребный (располагаемый) напор;

× Гидравлический расчет трубопроводов – статический напор;

× Гидравлический расчет трубопроводов – потери напора,

получим

Гидравлический расчет трубопроводов , (1.52)

что потребный напор складывается из статического напора (геометрической высоты, на которую поднимается жидкость в процессе движения и пьезометрической высоты в конце трубопровода) и суммы всех потерь напора в трубопроводе.

Потери напора определяют как сумму всех потерь в местных сопротивлениях и потерь, связанных с трением при движении жидкости

Гидравлический расчет трубопроводов , (1.53)

где Гидравлический расчет трубопроводов – средняя скорость движения среды по трубопроводу; Q – объемный расход жидкости; S – площадь поперечного сечения трубопровода.

При анализе систем используют графики зависимости потребного напора от расхода [Hпотр=f(Q)], которые называют кривыми потребного напора, либо графики зависимости суммарной потери напора от расхода [Sh=f(Q)], которые называют характеристиками трубопровода. Характеристика трубопровода – это кривая потребного напора, смещенная в начало координат.

Сифонный трубопровод:

Гидравлический расчет трубопроводов

Сифонный трубопровод (сифон) представляет собой короткий трубопровод, движение в котором происходит самотеком по всей его длине, включая участки, расположенные выше уровня жидкости питающего резервуара.

Движение жидкости в сифоне происходит под действием атмосферного давления при наличии вакуума в самой верхней точке трубопровода. Поэтому для поднятия жидкости на некоторую высоту или для переливания ее в приемный резервуар необходимо создать в сифоне разряжение (вакуум). С этой целью сифон предварительно заполняют переливаемой жидкостью или откачивают из него воздух при помощи вакуум-насосов.

Гидравлический расчет сифонов заключается в определении расхода жидкости и предельной величины возвышения трубопровода над уровнем жидкости в расходном баке, при котором этот расход обеспечивается.

Расход жидкости, переливаемой сифоном, равен:

Гидравлический расчет трубопроводов ,

где S – площадь поперечного сечения трубопровода; H – разность уровней жидкости в резервуарах; l – коэффициент потерь на трение; l и d – длина и диаметр сифонного трубопровода, соответственно.

Допустимая высота наивысшей точки сифона определяется из уравнения Бернулли, которое записывают для точек, находящихся на свободной поверхности питающего резервуара и в наивысшем удаленном сечении сифона

Гидравлический расчет трубопроводов .

При скорости перемещения свободной поверхности жидкости в питающем резервуаре близкой к нулю и коэффициенте кинетической энергии равном единице, получим

Гидравлический расчет трубопроводов

или

Гидравлический расчет трубопроводов .

Соединения простых трубопроводов

Последовательное соединение нескольких простых трубопроводов различного диаметра дает простой трубопровод переменного сечения.

Гидравлический расчет трубопроводов

Рис. 1.5. Последовательное соединение трубопроводов

а – схема трубопровода; б – характеристика трубопровода

При подаче жидкости по такому трубопроводу расход во всех последовательно соединенных трубах один и тот же. Полная потеря напора между начальным и конечным сечениями равна сумме потерь напора во всех последовательно соединенных трубах. Для трубопровода, изображенного на рис. 1.5, получим следующие уравнения:

Гидравлический расчет трубопроводов

Эти уравнения определяют правило построения характеристик последовательного соединения труб. При известных характеристиках трубопроводов 1, 2 и 3, для получения характеристики их последовательного соединения (участка между сечениями Н и К) следует сложить потери напора при одинаковых расходах, т.е. сложить ординаты всех трех кривых при одних и тех же значениях, выбранных на оси абсцисс.

В начальном и конечном сечениях рассматриваемого трубопровода скорости движения жидкости различны. Поэтому выражение потребного напора для всего трубопровода должно содержать разности скоростных напоров в крайних сечениях.

Гидравлический расчет трубопроводов .

Параллельное соединение нескольких простых трубопроводов показано на рис. 1.6.

Гидравлический расчет трубопроводов

Рис. 1.6. Параллельное соединение трубопроводов

а – схема трубопровода; б – характеристика трубопровода

Обозначим полные напоры в точках Н и К соответственно через HН и HК, расход в основной магистрали (до разветвления и после слияния) – Q, а в параллельных трубопроводах через Q1, Q2, и Q3; суммарные потери напора в этих трубопроводах через Sh1, Sh2 и Sh3.

Расход в основной магистрали связан с расходами в параллельных трубопроводах следующим очевидным уравнением

Гидравлический расчет трубопроводов .

Потери напора в каждом из трубопроводов представляют собой разность напоров в точках Н и К

Гидравлический расчет трубопроводов .

Из этого следует, что потери напора в параллельных трубопроводах равны между собой

Гидравлический расчет трубопроводов .

Используя уравнение, связывающее расходы в магистральном и параллельных трубопроводах, равенство потерь напора в них, а также соотношения для расчета простых трубопроводов, получим число уравнений, достаточное для определения сопротивлений параллельных вервей и расходов в них.

Из вышесказанного следуют правило построения характеристики параллельного соединения нескольких трубопроводов: суммарная характеристика получается в результате сложения абсцисс характеристик отдельных трубопроводов (Qi) при одинаковых ординатах (Sh).

Изложенные соотношения для параллельных трубопроводов справедливы и в том случае, когда трубопроводы не сходятся в одной точке, а подают жидкость в различные места, но с одинаковыми давлениями и равными уровнями. Если последнее условие не соблюдается, то рассматриваемые трубопроводы нельзя читать параллельными, а следует отнести к разряду разветвленных.

Разветвленное соединение – это совокупность нескольких простых трубопроводов, имеющих одно общее сечение – место разветвления (или смыкания) труб. Рассмотрим основной трубопровод, который в точке М разделяется на несколько трубопроводов, имеющих различные размеры, местные сопротивления, уровни и давления в концевых точках. Найдем связь между давлением в точке М и расходами в ответвлениях, считая направления течения в них заданными.

Гидравлический расчет трубопроводов

Рис. 1.7. Разветвленный трубопровод

а – схема трубопровода; б – кривые потребного напора

Запишем, пренебрегая динамическими напорами, уравнения Бернулли для каждого из ответвлений, начинающихся в точке М

Гидравлический расчет трубопроводов

Так же как и для параллельных трубопроводов,

Гидравлический расчет трубопроводов .

Таким образом, получаем систему четырех уравнений достаточную для определения неизвестных величин: Q1, Q2, Q3 и Hм.

Построение кривой потребного напора для разветвленного трубопровода выполняют сложением кривых потребных напоров для ветвей по правилу сложения характеристик параллельных трубопроводов – сложением абсцисс (Q) при одинаковых ординатах (Hм). Из графика (рис. 1.7, б) видно, что условием подачи жидкости во все ветви является превышение напора в точке разветвления над наибольшим статическим напором в ответвлениях.

Сложный трубопровод состоит из простых трубопроводов с последовательным и параллельным их соединением или с разветвлениями.

При расчетах сложных трубопроводов их разбивают на простые участки, участки с разветвлениями и параллельными трубопроводами и, идя от конечных точек сложного трубопровода к начальной его точке, т.е. против течения, последовательно производят расчеты по приведенным выше уравнениям.

Для сложных кольцевых трубопроводов (системы смежных замкнутых контуров с отборами жидкости в узловых точках или непрерывной раздачей ее на отдельных участках) используют два основных условия:

— баланс расходов, т.е. равенство притока и оттока жидкости для каждой узловой точки;

— баланс напоров, т.е. равенство нулю алгебраической суммы потерь напора для каждого контура при подсчете по направлению движения часовой стрелки. Потери напора считают положительными, если направление подсчета совпадает с направлением движения жидкости, и отрицательными, если направление подсчета противоположно направлению движения жидкости.

Трубопроводы с насосной подачей жидкости

В машиностроении основным является способ принудительной подачи жидкости насосом. Рассмотрим совместную работу насоса с трубопроводом и принцип расчета таких систем.

Гидравлический расчет трубопроводов

Рис. 1.8. Трубопровод с насосной подачей

Трубопровод с насосной подачей может быть разомкнутым, когда жидкость перекачивается из одной емкости в другую или замкнутым, в котором циркулирует одно и то же количество жидкости.

На рис. 1.8, а представлен разомкнутый трубопровод, по которому жидкость перекачивается насосом из нижнего резервуара с давлением p0 в другой резервуар с давлением p3. Высоту расположения оси насоса относительно нижнего уровня z1 называют геометрической высотой всасывания, а трубопровод, по которому жидкость поступает к насосу, всасывающим трубопроводом (линией всасывания). Высоту расположения верхнего уровня жидкости z2, называют геометрической высотой нагнетания, а трубопровод, по которому жидкость движется от насоса, напорным (линией нагнетания).

Составим уравнение Бернулли для потока жидкости во всасывающем трубопроводе, т.е. для сечений 0 и 1

Гидравлический расчет трубопроводов .

Данное уравнение является основным для расчета всасывающих трубопроводов. Оно показывает, что процесс всасывания, т.е. подъем жидкости на высоту z1, сообщение ей кинетической энергии и преодоление всех гидравлических сопротивлений происходит за счет использования (с помощью насоса) давления p0. Так как это давление обычно бывает весьма ограниченным, то расходовать его надо так, чтобы перед входом в насос остался некоторый запас давления p1, необходимый для его нормальной бескавитационной работы.

Уравнение Бернулли для движения жидкости по напорному трубопроводу, т.е. для сечений 2 и 3

Гидравлический расчет трубопроводов .

Левая часть уравнения представляет собой энергию жидкости на выходе из насоса, отнесенную к единице веса.

Энергия потока перед входом в насос может быть вычислена из уравнения всасывающего трубопровода

Гидравлический расчет трубопроводов .

Приращение энергии каждой единицей веса жидкости в насосе называют напором, создаваемым насосом Hнас. Он равен

Гидравлический расчет трубопроводов

или

Гидравлический расчет трубопроводов ,

где Гидравлический расчет трубопроводов – разность уровней жидкости в расходном и приемном баках.

Сравнения полученной формулы с зависимостью для определения потребного напора позволяет сформулировать правило: при установившемся течении жидкости в трубопроводе насос развивает напор, равный потребному

Гидравлический расчет трубопроводов . (1.54)

На этом правиле основывается метод расчета трубопроводов, питаемых насосом, заключающийся в определении точки пересечения характеристики насоса и кривой потребного напора трубопровода. Эта точка получила название рабочей точки.

Для замкнутого трубопровода (рис. 1.8, б) геометрическая высота подъема жидкости равна нулю (Dz=0), следовательно, при равенстве скоростей на входе и выходе из насоса (V1=V2)

Гидравлический расчет трубопроводов ,

т.е. между потребным напором и напором, создаваемым насосом, справедливо то же равенство.

Замкнутый трубопровод обязательно должен иметь расширительный, или компенсационный бачок, соединенный с одним из сечений трубопровода, чаще всего со стороны всасывания насоса, где давление имеет минимальное значение. Он служит для компенсации утечек и предотвращения колебания давления в системе, связанных с изменением температуры.

При наличии расширительного бачка, присоединенного в соответствии с рис. 1.8, б, давление на входе в насос определится из выражения:

Гидравлический расчет трубопроводов .

По величине p1 можно подсчитать давление в любом сечении замкнутого трубопровода. Если давление в бачке изменить на некоторую величину, то во всех точках данной системы давление изменится на ту же самую величину.

Источник: studopedia.ru

Постановка задачи

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.

Гидравлический расчет трубопроводовМноголетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.

Гидравлический расчет трубопроводовУсловный диаметр (проход) трубопровода (DN) – это условная  безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний,  по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:

Гидравлический расчет трубопроводов

Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re<2300), при котором носитель-жидкость движется тонкими слоями, практически не смешивающимися друг с другом;
  • переходный режим (2300<Re<4000), который характеризуется нестабильной структурой потока, когда отдельные слои жидкости перемешиваются;
  • турбулентный поток (Re>4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.

Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.

Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и  их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.

Подбор оптимального диаметра трубопровода

Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока  приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.

Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:

Гидравлический расчет трубопроводов

 При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).

Гидравлический расчет трубопроводов

Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:

Гидравлический расчет трубопроводов

Расчет падения напора и гидравлического сопротивления

Полные потери напора жидкости включают в себя потери на преодоление потоком всех препятствий: наличие насосов, дюкеров, вентилей, колен, отводов, перепадов уровня при течении потока по трубопроводу, расположенному под углом и т.д. Учитываются потери на местные сопротивления, обусловленные свойствами используемых материалов.

Другим важным фактором, влияющим на потери напора, является трение движущегося потока о стенки трубопровода, которое характеризуется коэффициентом гидравлического сопротивления.

Значение коэффициента гидравлического сопротивления λзависит от режима движения потока и шероховатости материала стенок трубопровода. Под шероховатостью понимают дефекты и неровности внутренней поверхности трубы. Она может быть абсолютной и относительной. Шероховатость различна по форме и неравномерна по площади поверхности трубы. Поэтому в расчетах используется понятие усредненной шероховатости с поправочным коэффициентом (k1). Данная характеристика для конкретного трубопровода зависит от материала, продолжительности его эксплуатации, наличия различных коррозионных дефектов и других причин. Рассмотренные выше величины являются справочными.

Количественная связь между коэффициентом трения, числом Рейнольдса и шероховатостью определяется диаграммой Муди.

Для вычисления коэффициента трения турбулентного движения потока также используется уравнение Коулбрука-Уайта, с использованием которого возможно наглядное построение графических зависимостей, по которым определяется коэффициент трения:

Гидравлический расчет трубопроводов

В расчётах используются и другие уравнения приблизительного расчета потерь напора на трение. Одним из наиболее удобных и часто используемых в этом случае считается формула Дарси-Вейсбаха. Потери напора на трение рассматриваются как функция скорости жидкости от сопротивления трубы движению жидкости, выражаемой через значение шероховатости поверхности стенок трубы: 

Гидравлический расчет трубопроводовПотери давления по причине трения для воды рассчитывают по формуле Хазена — Вильямса:

Гидравлический расчет трубопроводов

Расчет потерь давления

Рабочее давление в трубопроводе – это на большее избыточное давление, при котором обеспечивается заданный режим технологического процесса. Минимальное и максимальное значения давления, а также физико-химические свойства рабочей среды, являются определяющими параметрами при расчёте расстояния между насосами, перекачивающими носитель, и производственной мощности.

Расчет потерь на падение давления в трубопроводе осуществляют по уравнению:

Гидравлический расчет трубопроводов

Примеры задач гидравлического расчета трубопровода с решениями

 

Задача 1

В аппарат с давлением 2,2 бар по горизонтальному трубопроводу с эффективным диаметром 24 мм из открытого хранилища насосом перекачивается вода. Расстояние до аппарата составляет 32 м. Расход жидкости задан – 80 м3/час. Суммарный напор составляет 20 м. Принятый коэффициент трения равен 0,028.

Рассчитайте потери напора жидкости на местные сопротивления в данном трубопроводе.

Исходные данные:

Расход Q = 80 м3/час = 80·1/3600 = 0,022 м3/с;

эффективный диаметр d = 24 мм;

длина трубы l = 32 м;

коэффициент трения λ = 0,028;

давление в аппарате Р = 2,2 бар = 2,2·105 Па;

общий напор Н = 20 м.

Решение задачи:

Скорость потока движения воды в трубопроводе рассчитывается по видоизмененному уравнению:

w=(4·Q) / (π·d2) = ((4·0,022) / (3,14·[0,024]2)) = 48,66 м/с

Потери напора жидкости в трубопроводе на трение определяются по уравнению:

HТ = (λ·l) / (d·[w2/(2·g)]) = (0,028·32) / (0,024·[48,66]2) / (2·9,81) = 0,31 м

Общие потери напора носителя рассчитываются по уравнению и составляют:

hп = H — [(p2-p1)/(ρ·g)] — Hг = 20 — [(2,2-1)·105)/(1000·9,81)] — 0 = 7,76 м

Потери напора на местные сопротивления определяется как разность:

7,76 — 0,31=7,45 м

Ответ: потери напора воды на местные сопротивления составляют 7,45 м.

 

Задача 2

По горизонтальному трубопроводу центробежным насосом транспортируется вода. Поток в трубе движется со скоростью 2,0 м/с. Общий напор составляет 8 м.

Найти минимальную длину прямого трубопровода, в центре которого установлен один вентиль. Забор воды осуществляется из открытого хранилища. Из трубы вода самотеком изливается в другую емкость. Рабочий диаметр трубопровода равен 0,1 м. Относительная шероховатость принимается равной 4·10-5.

Исходные данные:

Скорость потока жидкости W = 2,0 м/с;

диаметр трубы d = 100 мм;

общий напор Н = 8 м;

относительная шероховатость 4·10-5.

Решение задачи:

Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.

Значение скоростного напора определяется по соотношению:

w2/(2·g) = 2,02/(2·9,81) = 0,204 м

Потери напора воды на местные сопротивления составят:

∑ζМС·[w2/(2·g)] = (4,1+1)·0,204 = 1,04 м

Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):

hп = H — (p2-p1)/(ρ·g) — = 8 — ((1-1)·105)/(1000·9,81) — 0 = 8 м

Полученное значение потери напора носителя на трение составят:

8-1,04 = 6,96 м

Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10-3 Па·с,  плотность воды – 1000 кг/м3):

Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10-3) = 200000

Согласно рассчитанному значению Re, причем 2320 <Re< 10/e, по справочной таблице рассчитаем коэффициент трения (для режима гладкого течения):

λ = 0,316/Re0,25 = 0,316/2000000,25 = 0,015

Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:

l = (Hоб·d) / (λ·[w2/(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м

Ответ:требуемая длина трубопровода составит 213,235 м.

 

Задача 3

В производстве транспортируют воду при рабочей температуре 40°С с производственным расходом Q = 18 м3/час. Длина прямого трубопровода l = 26 м, материал — сталь. Абсолютная шероховатость (ε) принимается для стали по справочным источникам и составляет 50 мкм. Какой будет диаметр стальной трубы, если перепад давления на данном участке не превысит Δp = 0,01 мПа (ΔH = 1,2 м по воде)? Коэффициент трения принимается равным 0,026.

Исходные данные:

Расход Q = 18 м3/час = 0,005 м3/с;

длина трубопровода l=26 м;

для воды ρ = 1000 кг/м3, μ = 653,3·10-6 Па·с (при Т = 40°С);

шероховатость стальной трубыε = 50 мкм;

коэффициент трения λ = 0,026;

Δp=0,01 МПа;

ΔH=1,2 м.

Решение задачи:

Используя форму уравнения неразрывности W=Q/F и уравнение площади потока F=(π·d²)/4 преобразуем выражение Дарси – Вейсбаха:

∆H = λ·l/d·W²/(2·g) = λ·l/d·Q²/(2·g·F²) = λ·[(l·Q²)/(2·d·g·[(π·d²)/4]²)] = =(8·l·Q²)/(g·π²)·λ/d5 = (8·26·0.005²)/(9,81·3,14²)· λ/d5 = 5,376·10-5·λ/d5

Выразим диаметр:

d5 = (5,376·10-5·λ)/∆H = (5,376·10-5·0,026)/1,2 = 1,16·10-6

d = 5√1,16·10-6 = 0,065 м.

Ответ: оптимальный диаметр трубопровода составляет 0,065 м.

 

Задача 4

Проектируются два трубопровода для транспортировки невязкой жидкости с предполагаемой производительностью Q1 = 18 м3/час и Q2 = 34 м3/час. Трубы для обоих трубопроводов должны быть одного диаметра.

Определите эффективный диаметр труб d, подходящих под условия данной задачи.

Исходные данные:

Q1 = 18 м3/час;

Q2 = 34 м3/час.

Решение задачи:

Определим возможный интервал оптимальных диаметров для проектируемых трубопроводов, воспользовавшись преобразованным видом уравнения расхода:

d = √(4·Q)/(π·W)

Значения оптимальной скорости потока найдем из справочных табличных данных. Для невязкой жидкости скорости потока составят 1,5 – 3,0 м/с.

Для первого трубопровода с расходом Q1 = 18 м3/час возможные диаметры составят:

d1min = √(4·18)/(3600·3,14·1,5) = 0,065 м

d1max = √(4·18)/(3600·3,14·3.0) = 0,046 м

Для трубопровода с расходом 18 м3/час подходят трубы с диаметром поперечного сечения от 0,046 до 0,065 м.

Аналогично определим возможные значения оптимального диаметра для второго трубопровода с расходом Q2 = 34 м3/час:

d2min = √(4·34)/(3600·3,14·1,5) = 0,090 м

d2max = √(4·34)/(3600·3,14·3) = 0,063 м

Для трубопровода с расходом 34 м3/час возможные оптимальные диаметром могут быть от 0,063 до 0,090 м.

Пересечение двух диапазонов оптимальных диаметров находится в интервале от 0,063 м до 0,065 м.

Ответ: для двух трубопроводов подходят трубы диаметром 0,063–0,065 м.

 

Задача 5

В трубопроводе диаметром 0,15 м при температуре Т = 40°C движется поток воды производительностью 100 м3/час. Определите режим течения потока воды в трубе.

Дано:

диаметр трубы d = 0,25 м;

расход Q = 100 м3/час;

μ = 653,3·10-6 Па·с (по таблице при Т = 40°С);

ρ = 992,2 кг/м(по таблице при Т = 40°С).

Решение задачи: 

Режим течения потока носителя определяется по значению числа Рейнольдса (Re). Для расчета Re определим скорость движения потока жидкости в трубе (W), используя уравнение расхода:

W = Q·4/(π·d²) = [100/3600] · [4/(3,14·0,25²)] = 0,57 м/c

Значение числа Рейнольдса определим по формуле:

Re = (ρ·W·d)/μ = (992,2·0,57·0,25) / (653,3·10-6) = 216422

Критическое значение критерия Reкр по справочным данным равно 4000. Полученное значение Re больше указанного критического, что говорит о турбулентном характере течения жидкости при заданных условиях.

Ответ: режим потока воды – турбулентный.

Источник: pkfdetal.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.