Расчет давления в трубопроводе


Гидравлический расчет является важной составляющей процесса выбора типоразмера трубы для строительства трубопровода. В нормативной литературе по проектированию этот ясный с точки зрения физики вопрос основательно запутан. На наш взгляд, это связано с попыткой описать все варианты расчета коэффициента трения, зависящего от режима течения, типа жидкости и ее температуры, а также от шероховатости трубы, одним (на все случаи) уравнением с вариацией его параметров и введением всевозможных поправочных коэффициентов. При этом краткость изложения, присущая нормативному документу, делает выбор величин этих коэффициентов в значительной степени произвольным и чаще всего заканчивается номограммами, кочующими из одного документа в другой.

С целью более подробного анализа предлагаемых в документах методов расчета представляется полезным вернуться к исходным уравнениям классической гидродинамики (1).

Потеря напора, связанная с преодолением сил трения при течении жидкости в трубе, определяется уравнением:


Расчет давления в трубопроводе
где: L и D длина трубопровода и его внутренний диаметр, м; ? – плотность жидкости, кг/м3; w –  средняя объемная скорость, м/сек, определяемая по расходу Q, м3/сек:
Расчет давления в трубопроводе
λ –  коэффициент гидравлического трения, безразмерная величина, характеризующая соотношение сил трения и инерции, и именно ее определение и есть предмет гидравлического расчета трубопровода. Коэффициент трения зависит от режима течения, и для ламинарного и турбулентного потока определяется по-разному.

Для ламинарного (чисто вязкого режима течения) коэффициент трения определяется теоретически в соответствии с уравнением Пуазейля: 
λ = 64/Re (2)

где: Re – критерий (число) Рейнольдса.

Опытные данные строго подчиняются этому закону в пределах значений Рейнольдса ниже критического (Re < 2320).

При превышении этого значения возникает турбулентность. На первом этапе развития турбулентности (3000 < Re < 100000) коэффициент трения также очень точно определяется классическим уравнением Блязиуса:
λ = 0,3164 Re -0,25 (3)

В несколько расширенном диапазоне чисел Рейнольдса (4000 < Re < 6300000) применяют уравнение ВТИ, также ставшее классическим:
λ = 1,01 lg(Re) -2,5 (4)


Для значений Re > 100000 предложено много расчетных формул, но практически все они дают один и тот же результат [1 – 3].

На рис.1 показано, как «работают» уравнения (2) – (4) в указанном диапазоне чисел Рейнольдса, который достаточен для описания всех реальных случаев течения жидкости в гидравлически гладких трубах. 

Рис. 1
Расчет давления в трубопроводе

Шероховатость стенки трубы влияет на гидравлическое сопротивление только при турбулентном потоке, но и в этом случае, из-за наличия ламинарного пограничного слоя существенно сказывается только при числах Рейнольдса, превышающих некоторое значение, зависящее от относительной шероховатости ξ/D, где ξ – расчетная высота бугорков шероховатости, м. 

Труба, для которой при течении жидкости выполняется условие:
Расчет давления в трубопроводе

считается гидравлически гладкой, и коэффициент трения определяется по уравнениям (2) – (4).

Для чисел Re больше определенных неравенством (5) коэффициент трения становится величиной постоянной и определяется только относительной шероховатостью по уравнению:


Расчет давления в трубопроводе
которое после преобразования дает:
Расчет давления в трубопроводе
Гидравлическое понятие шероховатости не имеет ничего общего с геометрией внутренней поверхности трубы, которую можно было бы инструментально промерить. Исследователи наносили на внутреннюю поверхность модельных труб четко воспроизводимую и измеряемую зернистость, и сравнивали коэффициент трения для модельных и реальных технических труб в одних и тех же режимах течения. Этим определяли диапазон эквивалентной гидравлической шероховатости, которую следует принимать при гидравлических расчетах технических труб. Поэтому уравнение (6) точнее следует записать:
Расчет давления в трубопроводе

где: ξ э – нормативная эквивалентная шероховатость (Таблица 1).

Таблица 1 [1, 2]


Вид трубопровода

ξ э, мм

Стальные новые оцинкованные

0,1 – 0,2

Стальные старые, чугунные старые, керамические

0,8 – 1,0

Чугунные новые

0,3

Бетонированные каналы

0,8 – 9,0

Чистые трубы из стекла

0,0015 – 0,01

Резиновый шланг

0,01 – 0,03

Данные таблицы 1 получены для традиционных на тот период материалов трубопроводов.

В период 1950-1975 годов западные гидродинамики аналогичным способом определили ξ э труб из полиэтилена и ПВХ разных диаметров, в том числе и после длительной эксплуатации. Получены значения эквивалентной шероховатости в пределах от 0,0015 до 0,0105 мм для труб диаметром от 50 до 300 мм [3]. В США для собранного на клеевых соединениях трубопровода из ПВХ этот показатель принимается 0,005 мм [3]. В Швеции, на основе фактических потерь давления в пятикилометровом трубопроводе из сваренных встык полиэтиленовых труб диаметром 1200 мм, определили, что ξ э = 0,05 мм [3]. В российских строительных нормах в случаях, относящихся к полимерным (пластиковым) трубам, их шероховатость либо совсем не упоминается [5 – 8], либо принимается: для водоснабжения и канализации — «не менее 0,01 мм» [9], для газоснабжения ξ э = 0,007 мм [10]. Натурные измерения потерь давления на действующем газопроводе из полиэтиленовых труб наружным диаметром 225 мм длиной более 48 км показали, что ξ э< 0,005 мм [11].


Вот, пожалуй, и все, чем положения классической гидродинамики могут помочь при анализе нормативной документации, посвященной гидравлическому расчету трубопроводов. Напомним, что

Re = w D/ν                   (7)

где: ν — кинематическая вязкость жидкости, м2/сек.

Первый вопрос, который следует решить раз и навсегда — являются ли полимерные (пластиковые) трубы, имеющие, как показано выше, уровень шероховатости, от ≈ 0,005 мм для труб малых диаметров, до ≈ 0,05 мм для труб большого диаметра, гидравлически гладкими.

В Таблице 2 для труб различных диаметров по уравнениям (5) и (7) определены значения расходных скоростей движения воды при температуре 20°С (ν = 1,02*10-6 м2/сек), выше которых труба не может считаться гидравлически гладкой. Для полимерных (пластиковых) труб шероховатость плавно повышали с увеличением диаметра, как это оговорено выше; для новых и старых стальных труб — принимали минимальные значения из Таблицы 1. Отметим, что критические скорости в старых стальных трубопроводах в 10 раз ниже, чем в новых, и их шероховатость не может не учитываться при расчете гидравлических потерь напора.

Таблица 2


Расчет давления в трубопроводе

Для трубопроводов внутри зданий предельными значениями скорости воды в трубопроводах являются:

Для наружных сетей мы таких ограничений в нормативной документации [4 – 9] не нашли, но если оставаться пределах, определенных таблицей 2, можно сделать однозначный вывод – полимерные (пластиковые) трубы являются, безусловно, гладкими.

Оставляя предельное значение скорости, w = 3 м/сек, определим, что при течении воды в трубах диаметром 20-1000 мм число Рейнольдса лежит в диапазоне 50000-2500000, то есть для расчета коэффициента трения течения воды в полимерных (пластиковых) трубах вполне корректно использовать уравнения (3) и (4). Уравнение (4) вообще охватывает весь диапазон режимов течения.

В нормативной документации, посвященной проектированию систем водоснабжения [4 – 9], уравнение для определения удельных потерь напора (Па/м либо м/м) дается в развернутом относительно диаметра трубы и скорости движения воды виде:


Расчет давления в трубопроводе
где: К — набор всевозможных коэффициентов, n и m – показатели степеней при диаметре D, м и скорости w, м/сек. 
Уравнение Блязиуса (3), наиболее удобное для подобного преобразования, для воды при 20°С при 3000 < Re < 100000 принимает вид:
Расчет давления в трубопроводе
но оно действует при Re < 100000. Для расчетов при Re > 100000 следует пользоваться модификацией уравнения (4).

В ISO TR 10501 [4] для пластмассовых труб при 4000 < Re < 150000 предлагается:
Расчет давления в трубопроводе
Для диапазона чисел Рейнольдса 150000< Re < 1000000 проводится незначительная модификация (см. рис. 1) уравнения:
Расчет давления в трубопроводе
СНиП 2.04.02-84 [8] без указания диапазона режима течения дает уравнение, которое подстановкой соответствующих коэффициентов для пластмассовых труб принимает вид:
Расчет давления в трубопроводе
которое после проверки и выполнения различных условий, для ряда режимов течения воды в шероховатых трубах (b ≥ 2) превращается в уравнение:


λ = 0,5 /( lg(3,7D/ ξ )) 2 
что в точности совпадает с уравнением (61).

Обозначения в уравнении (12) здесь не расшифровываем, потому что они многоступенчато зависят одно от другого и с трудом понимаются из текста оригинала.

Таким образом, с небольшими вариациями коэффициентов и показателей степеней уравнения (9 – 12) базируются на классических уравнениях гидродинамики.

Приняв скорость движения воды в трубопроводе w=3 м/сек, рассчитаем потери давления J, м/м (табл. 3, рис. 2) в полимерных (пластиковых) трубах разных диаметров по четырем рассмотренным выше подходам. При расчетах по СП 40-102-2000 (уравнение 12) уровень шероховатости в зависимости от диаметра трубпринимался как в таблице 2.

Расчет давления в трубопроводе

Рис. 2

Расчет давления в трубопроводе

Как видно из табл.3 и рис.2, расчеты по ISO TR 10501 практически совпадают с расчетами по уравнениям классической гидродинамики, расчеты по российским нормативным документам, также совпадая между собой, дают несущественно завышенные по сравнению с ними результаты. Непонятно, почему составители СП 40-102-2000 в части гидравлического расчета полимерного водопровода отошли от рекомендаций более раннего документа СНиП 2.04.02-84 и не учли рекомендаций международного документа ISO TR 10501. 


Уравнения (9 – 11) охватывают все реально возможные режимы течения воды в гладких трубах и удобны тем, что легко могут быть решены относительно любой входящей в них величины (J, w и D). Если это сделать относительно D:
Расчет давления в трубопроводе
где: К — коэффициент, а n и m — показатели степеней при диаметре D и скорости w, то можно предварительно выбрать диаметр трубопровода по рекомендованной для данного типа сети скорости w, м/сек, c учетом допустимых потерь напора для данной протяженности трубопровода ( ∆ Нг = J*L, м).

Пример:

Определить внутренний диаметр пластмассового трубопровода длиной 1000 м, при wмакс = 2 м/сек и ∆ Нг = 10 м (1 бар), то есть J = 10/1000 = 0,01 м.

Выбрав, например, коэффициенты уравнения (11), получаем:
Расчет давления в трубопроводе
При этом расход составит Q=460 м3/час. Если полученный расход велик или мал, достаточно скорректировать значение скорости. Взяв, например, w=1,5 м/сек, получим D=0,188 м и Q=200 м3/час.


Расход в трубопроводе определяется потребностями потребителя и устанавливается на этапе проектирования сети. Оставив этот вопрос проектировщикам, сравним удельные потери давления в стальном (новом и старом) и пластмассовом трубопроводах при равных расходах для различных диаметров труб.
Расчет давления в трубопроводе

Как видно из таблицы 4, учитывая неизбежное старение стальной трубы в процессе эксплуатации, для труб малых и средних диаметров полиэтиленовую трубу можно выбирать на одну ступень наружного диаметра меньше. И только для труб диаметром 800 мм и выше, вследствие относительно меньшего влияния абсолютной эквивалентной шероховатости на потери напора, диаметры труб нужно выбирать из одного ряда.

Литература:

  1. Н.З.Френкель, Гидравлика, Госэнеогоиздат, 1947.
  2. И.Е.Идельчик, Справочник по гидравлическому сопротивлению фасонных и прямых частей трубопроводов, ЦАГИ, 1950.
  3. L.-E. Janson, Plastics pipes for water supply and sewage disposal. Boras, Borealis, 4th edition, 2003.
  4. ISO TR 10501 Thermoplastics pipes for the transport of liquids under pressure – Calculation of head losses.
  5. СП 40-101-2000 Проектирование и монтаж трубопроводов из полипропилена «рандом сополимер».
  6. СНиП 41-01-2003 (2.04.05-91) Отопление, вентиляция и кондиционирование.
  7. СНиП 2.04.01-85 Внутренний водопровод и канализация зданий.
  8. СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения.
  9. СП 40-102-2000 Проектирование и монтаж трубопроводов систем водоснабжения и канализации из полимерных материалов.
  10. СП 42-101-2003 Общие положения по проектированию и строительству газораспределительных систем из металлических и полиэтиленовых труб.
  11. Е.Х.Китайцева, Гидравлический расчет стальных и полиэтиленовых газопроводов, Полимергаз, №1, 2000.

Авторы: Владимир Швабауэр, Игорь Гвоздев, Мирон Гориловский
Источник: (Журнал «Полимерные трубы»)

www.aquaspray.ru

Формулы для расчета потерь давления по длине

Данная автоматизированная система позволяет произвести расчет потерь напора по длине online. Расчет производится для трубопровода, круглого сечения, одинакового по всей длине диаметра, с постоянным расходом по всей длине (утечки или подпитки отсутствуют). Расчет производится для указанных жидкостей при температуре 20 град. С. Если вы хотите рассчитать потери напора при другой температуре, или для жидкости отсутствующей в списке, перейдите по указанной выше ссылке – Я задам кинематическую вязкость и эквивалентную шероховатость самостоятельно.

Для получения результата необходимо правильно заполнить форму и нажать кнопку рассчитать. В ходе расчета значения всех величин переводятся в систему СИ. При необходимости полученную величину потерь напора можно перевести в потери давления.

Порядок расчета потерь напора

    Вычисляются значения:

  • средней скорости потока
  • Вычисление средней скорости потока жидкости
    где Q – расход жидкости через трубопровод, A – площадь живого сечения, A=πd2/4, d – внутренний диаметр трубы, м

  • числа Рейнольдса – Re
  • Формула для определения числа Рейнольдса
    где V – средняя скорость течения жидкости, м/с, d – диаметр живого сечения, м, ν – кинематический коэффициент вязкости, кв.м/с, Rг – гидравлический радиус, для круглой трубы Rг=d/4, d – внутренний диаметр трубы, м

Определяется режим течения жидкости и выбирается формула для определения коэффициента гидравлического трения.

  • Для ламинарного течения Re<2000 используются формула Пуазеля.
  • Коэффициент гидравлического сопротивления при ламинарном режиме течения

  • Для переходного режима 2000<Re<4000 – зависимость:
  • Коэффициент Дарси для переходного режима

  • Для турбулентного течения Re>4000 универсальная формула Альтшуля.
  • где к=Δ/d, Δ – абсолютная эквивалентная шероховатость.

Коэффициент потерь при турбулентном режиме

Потери напора по длине трубопровода вычисляются по формуле Дарси — Вейсбаха.

Формула для определения потерь напора по длине

Потери напора и давления связаны зависимостью.

Потери давления по длине можно вычислить используя формулу Дарси — Вейсбаха.

Формула для определения потерь давления по длине трубопровода Дарси — Вейсбаха

После получения результатов рекомендуется провести проверочные расчеты. Администрация сайта за результаты онлайн расчетов ответственности не несет.


www.hydro-pnevmo.ru

Трубы, соединяющие между собой различные аппараты химических установок. С помощью них происходит передача веществ между отдельными аппаратами. Как правило, несколько отдельных труб с помощью соединений создают единую трубопроводную систему.

Трубопровод – это система труб, объединенных вместе с помощью соединительных элементов, применяемая для транспортировки химических веществ и иных материалов. В химических установках для перемещения веществ, как правило, используются закрытые трубопроводы. Если речь идет о замкнутых и изолированных деталях установки, то они также относится к трубопроводной системе или сети.

В состав замкнутой трубопроводной системы могут входить:

  1. Трубы.
  2. Соединительные элементы труб.
  3. Герметизирующие уплотнения, соединяющие два разъемных участка трубопровода.

Все вышеперечисленные элементы изготавливаются отдельно, после чего соединяются в единую трубопроводную систему. Помимо этого трубопроводы могут быть оснащены обогревом и необходимой изоляцией, изготовленной из различных материалов.

Выборе размера труб и материалов для из изготовления осуществляется на основе технологических и конструктивных требований, предъявляемых в каждом конкретном случае. Но для стандартизации размеров труб была проведена их классификация и унификация. Основным критерием стало допустимое давление при котором возможна эксплуатация трубы.

Условный проход DN

Условный проход DN (номинальный диаметр) – это параметр, который используется в системах трубопровода как характеризующий признак, с помощью которого происходит подгонка деталей трубопровода, таких как трубы, арматура, фитинги и другие.

Номинальный диаметр является безразмерной величиной, однако численно приблизительно равен внутреннему диаметру трубы. Пример обозначения условного прохода: DN 125.

Так же условный проход не обозначается на чертежах и не заменяет собой реальные диаметры труб. Он примерно соответствует диаметру в свету у определенных частей трубопровода (рис. 1.1). Если говорить о числовых значениях условных переходах, то они выбраны таким образом, что пропускная способность трубопровода увеличивается в диапазоне от 60 до 100% при переходе от одного условного прохода к последующему.

Рис. 1.1 Условный диаметр

Расчет давления в трубопроводе

Общепринятые номинальные диаметры:

3, 4, 5, 6, 8, 10, 15, 20, 25, 32, 40, 50, 65, 80, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000.

Размеры этих условных проходов установлены с расчетом на то, чтобы не возникало проблем с припасовкой деталей друг к другу. Определения номинальный диаметр на основе значения внутреннего диаметра трубопровода, выбирается то значение условного прохода, которое ближе всего находится к диаметру трубы в свету.

Номинальное давление PN

Номинальное давление PN – величина, соответствующая максимальному давлению перекачиваемой среды при 20 °C, при котором возможна длительная эксплуатация трубопровода, имеющего заданные размеры.

Номинальное давление является безразмерной величиной.

Как и номинальный диаметр, номинальное давление было градуировано на основе практики эксплуатации накопленного опыта (табл. 1.1).

Номинальное давление для конкретного трубопровода выбирается на основе реально создаваемого в нем давления, путем выбора ближайшего большего значения. При этом фитинги и арматура в этом трубопроводе также должны соответствовать такой же ступени давления. Толщина стенок трубы рассчитывается исходя из номинального давления и должна обеспечивать работоспособность трубы при значении давления равном номинальному (табл. 1.1).

Допустимое избыточное рабочее давление pe,zul

Номинальное давление используется только для рабочей температуры 20°C. С повышением температуры нагрузочные способности трубы снижаются. Вместе с этим соответственно снижается и допустимое избыточное давление. Значение pe,zul показывает максимальное избыточное давление, которое может быть в трубопроводной системе при повышении значения рабочей температуры (рис. 1.2).

Рис. 1.2 График допустимых избыточных давлений

Расчет давления в трубопроводе

Материалы для трубопроводов

При выборе материалов, которые будут использоваться для изготовления трубопроводов, берутся в расчет такие показатели, как характеристики среды, которая будет транспортироваться по трубопроводу и рабочее давление, предполагаемое в данной системе. Стоит так же учитывать возможность корродирующего воздействия со стороны перекачиваемой среды на материал стенок трубы.

Практически все трубопроводные системы и химические установки производятся из стали. Для общего применения в случае отсутствия высоких механических нагрузок и корродирующего действия для изготовления трубопроводом используется серый чугун или нелегированные конструкционные стали.

В случае более высокого рабочего давления и отсутствия нагрузок с коррозионно активным действием применяется трубопровод из улучшенной стали или с использованием стального литья.

Если корродирующее воздействие среды велико или к чистоте продукта предъявлены высокие требования, то трубопровод изготавливается из нержавеющей стали.

Если трубопровод должен быть устойчив к воздействию морской воды, то для его изготовления используются медно-никелевые сплавы. Также могут применяться алюминиевые сплавы и такие металлы как тантал или цирконий.

Все большее распространение в качестве материала трубопровода получают различные виды пластмасс, что обуславливается их высокой стойкостью к коррозии, малому весу и легкости в обработке. Такой материал подходит для трубопровода со сточными водами.

Фасонные части трубопровода

Трубопроводы, изготовленные из пластичных материалов пригодных для сварки, собираются на месте монтажа. К таким материалам можно отнести сталь, алюминий, термопласты, медь и т.д.. Для соединения прямых участков труб используются специально изготовленные фасонные элементы, например, колена, отводы, затворы и уменьшения диаметров (рис. 1.3). Эти фитинги могут быть частью любого трубопровода.

Рис. 1.3 Фасонные элементы трубопровода

Расчет давления в трубопроводе

Соединения труб

Для монтирования отдельных частей трубопровода и фитингов используются специальные соединения. Также используются для присоединения к трубопроводу необходимой арматуры и аппаратов.

Соединения выбираются (рис. 1.4) в зависимости от:

  1. материалов, которые используются для изготовления труб и фасонных элементов. Основной критерий выбора – возможность сварки.
  2. условий работы: низкого или высокого давления, а также низкой или высокой температуры.
  3. производственных требований, которые предъявляются к трубопроводной системе.
  4. наличия разъемных или неразъемных соединений в трубопроводной системе.
Рис. 1.4 Типы соединения труб

Расчет давления в трубопроводе

Линейное расширение труб и его комплектация

Геометрическая форма предметов может быть изменена как путем силового воздействия на них, так и при изменении их температуры. Данные физические явления приводят к тому, что трубопровод, который монтируется в ненагруженном состоянии и без температурного воздействия, в процессе эксплуатации под давлением или воздействием температур претерпевает некоторые линейные расширения или сжатия, которые негативно сказываются на его эксплуатационных качествах.

В случае, когда нет возможности компенсировать расширение, происходит деформация трубопроводной системы. При этом могут возникнуть повреждения фланцевых уплотнений и тех мест соединения труб между собой.

Тепловое линейное расширение

При компоновке трубопроводов важно учитывать возможное изменение длины в результате повышения температуры или так называемого теплового линейного расширения, обозначаемого ΔL. Данное значение зависит от длины трубы, которая обозначается Lo и разности температур Δϑ =ϑ2-ϑ1 (рис. 1.5).

Расчет давления в трубопроводе

В вышеприведенной формуле а – это коэффициент теплового линейного расширения данного материала. Этот показатель равен величине линейного расширения трубы длиной 1 м при повышении температуры на 1°C.

Элементы компенсации расширения труб

Благодаря специальным отводам, которые ввариваются в трубопровод, можно компенсировать естественное линейное расширение труб. Для этого используются компенсирующие U-образные, Z-образные и угловые отводы, а также лирные компенсаторы (рис. 1.6).

Рис. 1.6 Компенсирующие трубные отводы

Расчет давления в трубопроводе

Они воспринимают линейное расширение труб за счет собственной деформации. Однако такой способ возможен только с некоторыми ограничениями. В трубопроводах с высоким давлением для компенсации расширения используются колени под разными углами. Из-за давления, которое действует в таких отводах, возможно усиление коррозии.

Волнистые трубные компенсаторы

Данное устройство состоит из тонкостенной металлической гофрированной трубы, которая называется сильфоном и растягивается в направлении трубопровода (рис. 1.7).

Данные устройства устанавливаются в трубопровод. Предварительный натяг используется в качестве специального компенсатора расширения.

Рис. 1.7 Волнистый трубный компенсатор

Расчет давления в трубопроводе

Если говорить про осевые компенсаторы, то они способны компенсировать только те линейные расширения, которые происходят вдоль оси трубы. Чтобы избежать бокового смещения и внутреннего загрязнения используется внутреннее направляющее кольцо. Для того чтобы защитить трубопровод от внешних повреждений, как правило, используется специальная облицовка. Компенсаторы, которые не содержат внутреннее направляющее кольцо, поглощают боковые сдвиги, а также вибрацию, которая может исходить от насосов.

www.ence-pumps.ru

Как рассчитать необходимый диаметр трубы

Цель расчета диаметра трубопровода по расходу: Определение диаметра и сечения трубопровода на основе данных о расходе и скорости продольного перемещения воды.

Выполнить такой расчет достаточно сложно. Нужно учесть очень много нюансов, связанных с техническими и экономическими данными. Эти параметры взаимосвязаны между собой. Диаметр трубопровода зависит от вида жидкости, которая будет по нему перекачиваться.

Однако увеличение движения потока вызовет потери напора, которые требуют создание дополнительной энергии, для перекачки. Если очень сильно ее уменьшить, могут появиться нежелательные последствия.

С помощью формул ниже можно как рассчитать расход воды в трубе, так и, определить зависимость диаметра трубы от расхода жидкости.

Когда выполняется проектирование трубопровода, в большинстве случаев, сразу задается величина расхода воды. Неизвестными остаются две величины:

  •  Диаметр трубы;
  • Скорость потока.

Сделать полностью технико-экономический расчет очень сложно. Для этого нужны соответствующие инженерные знания и много времени. Чтобы облегчить такую задачу при расчете нужного диаметра трубы, пользуются справочными материалами. В них даются значения наилучшей скорости потока, полученные опытным путем.

Расчет необходимого диаметра трубы

Итоговая расчетная формула для оптимального диаметра трубопровода выглядит следующим образом:

d = √(4Q/Πw)
Q – расход перекачиваемой жидкости, м3/с
d – диаметр трубопровода, м
w – скорость потока, м/с

Подходящая скорость жидкости, в зависимости от вида трубопровода

Прежде всего учитываются минимальные затраты, без которых невозможно перекачивать жидкость. Кроме того, обязательно рассматривается стоимость трубопровода.

При расчете, нужно всегда помнить об ограничениях скорости двигающейся среды. В некоторых случаях, размер магистрального трубопровода должен отвечать требованиям, заложенным в технологический процесс.

На габариты трубопровода влияют также возможные скачки давления.

Когда делаются предварительные расчеты, изменение давление в расчет не берется. За основу проектирования технологического трубопровода берется допустимая скорость.

Когда в проектируемом трубопроводе существуют изменения направления движения, поверхность трубы начинает испытывать большое давление, направленное перпендикулярно движению потока.

Такое увеличение связано с несколькими показателями:

  • Скорость жидкости;
  • Плотность;
  • Исходное давление (напор).

Причем скорость всегда находится в обратной пропорции к диаметру трубы. Именно поэтому для высокоскоростных жидкостей требуется правильный выбор конфигурации, грамотный подбор габаритов трубопровода.

К примеру, если перекачивается серная кислота, значение скорости ограничивается до величины, которая не станет причиной появления эрозия на стенках трубных колен. В результате структура трубы никогда не будет нарушена.

Скорость воды в трубопроводе формула

Объёмный расход V (60м³/час или 60/3600м³/сек) рассчитывается как произведение скорости потока w на поперечное сечение трубы S (а поперечное сечение в свою очередь считается как S=3.14 d²/4): V = 3.14 w d²/4. Отсюда получаем w = 4V/(3.14 d²). Не забудьте перевести диаметр из миллиметров в метры, то есть диаметр будет 0.159 м.

Формула расхода воды

В общем случае методология измерения расхода воды в реках и трубопроводах основана на упрощённой форме уравнения непрерывности, для несжимаемых жидкостей:

Расход воды через трубу таблица

Расход через трубу

Зависимость расхода от давления

Нет такой зависимости расхода жидкости от давления, а есть — от перепада давления. Формула выводится просто. Имеется общепринятое уравнение перепада давления при течении жидкости в трубе Δp = (λL/d) ρw²/2, λ — коэффициент трения (ищется в зависимости от скорости и диаметра трубы по графикам или соответствующим формулам), L — длина трубы, d — ее диаметр, ρ -плотность жидкости, w — скорость. С другой стороны, есть определение расхода G = ρwπd²/4. Выражаем из этой формулы скорость, подставляем ее в первое уравнение и находим зависимость расхода G = π SQRT(Δp d^5/λ/L)/4, SQRT — квадратный корень.

Коэффициент трения ищется подбором. Вначале задаете от фонаря некоторое значение скорости жидкости и определяете число Рейнольдса Re=ρwd/μ, где μ — динамическая вязкость жидкости (не путайте с кинематической вязкостью, это разные вещи). По Рейнольдсу ищете значения коэффициента трения λ = 64/Re для ламинарного режима и λ = 1/(1.82 lgRe — 1.64)² для турбулентного (здесь lg — десятичный логарифм). И берете то значение, которое выше. После того, как найдете расход жидкости и скорость, надо будет повторить весь расчет заново с новым коэффициентом трения. И такой перерасчет повторяете до тех пор, пока задаваемое для определения коэффициента трения значение скорости не совпадет до некоторой погрешности с тем значением, что вы найдете из расчета.

vseprotruby.ru

Виды давления

Данный показатель бывает следующих видов: пробным, условным, расчётным и рабочим. Не понимая их принципиальные отличия, корректно рассчитать давление в трубе, продуцируемое транспортируемой жидкостью, будет очень сложно. И не исключено, что при подборе подходящих элементов инженерной коммуникации перед хозяином возникнут проблемы, без решения которых о комфортном пребывании в доме останется только мечтать.

  • Пробное. Измеряется этот простой показатель, когда проводятся испытания конструкции. Он является основой для отслеживания поведения элементов системы водоснабжения при изменении давления. Такой подход – ни что иное, чем своего рода генеральная страховка перед этапом прокладки сети.
  • Условное. Используется данный параметр, когда рассчитывается прочность трубопроводов, функционирующих под давлением определённого уровня при температуре жидкости +20ًС.
  • Расчётное. Под таковым понимается максимальное избыточное давление, создаваемое внутри водопровода транспортируемой по нему жидкостью. При этом воздействию подвергаются все элементы инженерной коммуникации. А толщина стенки водопроводной трубы определяется именно с учётом расчётного давления. От этого зависит продолжительность эксплуатации системы, а также её функциональность, и, что превыше всего, безопасность обитателей дома.
  • Рабочее. Это уровень наружного или внутреннего обязательно максимального давления, фиксируемого при транспортировке воды при нормальных (читай, стандартных) условиях.

Расчёт давления в трубопроводе на простом примере

Не так уж и далеки времена, когда подключение водопровода осуществлялось к водонапорной башне. Давление в водопроводной сети создаётся благодаря именно данному сооружению. Единица измерения этой характеристики – атмосфера. Из школьного курса физики известно, что давление зависит исключительно от высоты башни, а объем ёмкости, находящейся наверху конструкции, никакой роли при этом не играет.

Существует ещё одна единица измерения данного параметра – метр водяного столба. Если заполнить водой вертикально стоящую десятиметровую трубу, давление в её нижней точке, опять же, вне зависимости от диаметра трубы, будет составлять одну атмосферу.

Рассмотрим пример с семиэтажным домом. Его высота – 21 метр. То есть, один этаж – это 3 метра. Водонапорная башня высотой 21 метр создаст на 1-м этаже давление 2.1 атмосферы. Величина этого параметра в трубе на 2-м этаже будет составлять 1,8 атмосферы. Получается это так: вычитаем из числа 21 высоту одного этажа (у нас это 3 метра) и делим остаток на 10. Результаты дальнейших расчётов покажут, что на 7-м этаже давления уже не будет. Логика подсказывает: чтобы обеспечить водой квартиры, которые располагаются на последнем этаже, необходимо будет возвести более высокую башню. А что делать с подводом воды, например, в 25-этажный дом? Строить такие высокие конструкции никто не будет. Единственный выход – оснащение современных систем водоснабжения глубинными насосами.

raschet-davleniya-vody-v-truboprovode-2s.jpg

Рассчитать давление на выходе данного агрегата несложно. Возьмем в качестве примера насос, мощности которого достаточно для поднятия воды на 40 метров. Если погрузить его в скважину на глубину 15 метров, на поверхности земли будет создано давление (40-15)/10=2,5 атмосфер. Применяя вышеуказанную методику, можно будет прийти к выводу, что насос такой мощности справится с обеспечением водой всех квартир 7-ми этажного дома.

Формула расчета толщины трубы от действия давления

При движении воды возникает сопротивление, вызываемое её трением о стенки трубы и, кроме того, о различные преграды. Называется это явление гидравлическим сопротивлением трубопровода. Предыдущий пример наглядно продемонстрировал, что давление воды на разных высотах различно, и этот фактор следует учитывать при выполнении расчёта толщины трубы, то есть её диаметра. Вычисление данного параметра, исходя из заданной потери напора, выполняется по следующей упрощённой формуле:

Dвн. = k × Lтр./ Pд.× (W×Vп./2g), где

Dвн. – внутренний диаметр трубопровода;

k – коэффициент гидравлического сопротивления;

Lтр. – длина трубопровода;

Pд. – допускаемая или заданная потеря давления между начальным и конечным участками магистрали;

W- удельный вес воды;

Vп. – скорость потока;

g – константа, известная из курса физики средней школы – ускорение силы тяжести.

raschet-davleniya-vody-v-truboprovode-3s.jpg

Уровень потерь давления в фасонных частях трубопровода и арматуре с достаточной степенью точности можно определить по потерям, фиксируемым в прямой трубе с идентичным условным проходом и эквивалентной длины.

Как рассчитываются стенки трубы по давлению

Данный показатель стальных труб, транспортирующих жидкость под избыточным давлением, рассчитывается в два этапа. На первом из них вычисляется параметр, получивший название «расчётная толщина стенки». На втором выполняется операция сложения ранее полученного числа с толщиной износа от коррозии.

Таким образом, обобщённую формулу расчёта толщины стенок можно представить в таком виде:

Th = CTh + Cw, где

Th – искомый параметр;

CTh – расчётная толщина стенок;

Cw – коррозионный износ.

Для вычисления расчётной толщины стенки трубы в зависимости от давления используется следующая формула:

CTh = Pi × Dнар./230×AS×RWS + P

Pi- внутреннее избыточное давление;

Dнар. – внешний диаметр трубы;

AS – напряжение на разрыв (допустимое);

RWS – коэффициент прочности шва.

raschet-davleniya-vody-v-truboprovode-7s.jpg

Для расчета стенки трубы по давлению (параметр Th) осталось лишь прибавить к CTh значение параметра Cw. Взять его можно из справочника.

Диаметр трубы и давление

Правильность определения сечения труб по важности сопоставима с их выбором по материалу изготовления. При некорректном выполнении расчёта диаметра и давления, в трубе возникнет турбулентность воздуха, присутствующего в ней, а также в потоке воды. С последствиями данного явления многие из нас сталкивались: когда открывается кран, жидкость в ветке водопровода начинает двигаться с повышенным шумом. Но это не самое страшное. Гораздо опаснее то, что на внутренней поверхности трубы формируются известковые отложения в большом количестве.

Помимо этого, не забывайте о зависимости давления от диаметра трубы. Эта корреляция может не лучшим образом повлиять на пропускную способность водопровода. Как проявляется данный фактор, всем нам тоже знакомо: при откручивании одновременно нескольких кранов в частном доме, не говоря уже о квартире в многоэтажном здании, напор воды заметно падает. Существует две причины подобной неприятности:

raschet-davleniya-vody-v-truboprovode-6s.jpg

  • падение давления во всей системе;
  • заниженный диаметр подключенных труб.

Как рассчитать домашний водопровод

На практике давление в системе водоснабжения обычно ассоциируется у рядового обывателя с объёмом поставляемой за единицу времени воды, иными словами с пропускной способностью инженерной коммуникации. Поэтому расчёт бытового водопровода будет рассмотрен именно с этой точки зрения.

За исходные принимаются паспортные данные по расходу воды находящихся в жилье агрегатов и приборов. Общее водопотребление определяется путём их суммирования. Не забываем и о водоразборных кранах. Их расход добавляется к ранее полученной цифре.

После получения численного значения расхода воды в доме, необходимо, принимая во внимание эти данные, приобрести трубу с диаметром, обеспечивающим нужным напором и, соответственно, объемом воды все одновременно работающие водоразборные устройства.

raschet-davleniya-vody-v-truboprovode-1s.jpg

Если планируется подключить водопровод к городской сети, выбор у хозяина отсутствует – он вынужден пользоваться тем, чем располагает. Совсем иначе выглядит ситуация с питающимся от скважины частным домом. Тогда следует приобретать насос, технические характеристики которого обеспечат в водопроводе давление, соответствующее расходам. Выбор производится на основе паспортных данных подобного агрегата.

В заключение необходимо отметить, что если трубы подобраны корректно, а при их монтаже были соблюдены все правила, тогда бесперебойная работа системы водоснабжения будет нормой.

Источник: http://trubamaster.ru

belaruspartisan.by


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.