Тепловая мощность системы отопления


Начало выполнения подготовки проекта отопления, как жилых загородных домов, так и производственных комплексов, следует с теплотехнического расчёта. В качестве источника тепла предполагается тепловая пушка.

Что представляет собой теплотехнический расчёт?

Расчёт тепловых потерь является основополагающим документом, призванным решать такую задачу, как организация теплоснабжения сооружения. Он определяет суточное и годовое потребление тепла, минимальную потребность жилого либо промышленного объекта в тепловой энергии и тепловые потери для каждого помещения.
Решая такую задачу, как теплотехнический расчёт, следует учитывать комплекс характеристик объекта:

  1. Тип объекта (частный дом, одноэтажное либо многоэтажное здание, административное, производственное или складское).
  2. Количество проживающих в здании либо работающих в одну смену человек, количество точек подачи горячей воды.
  3. Архитектурная часть (габариты крыши, стен, полов, размеры дверных и оконных проёмов).

  4. Специальные данные, например, количество рабочих дней в году (для производств), продолжительность отопительного сезона (для объектов любого типа).
  5. Температурные режимы в каждом из помещений объекта (их определяет CHиП 2.04.05-91).
  6. Функциональное назначение (складское производственное, жилое, административное или бытовое).
  7. Конструкции крыши, наружных стен, полов (тип утепляющих прослоек и применяемых материалов, толщина перекрытий).

Зачем нужен теплотехнический расчёт?

  • Чтобы определить мощность котла.
    Предположим, Вы приняли решение снабдить загородный дом либо предприятие системой автономного отопления. Чтобы определиться с выбором оборудования, в первую очередь потребуется рассчитать мощность отопительной установки, которая понадобится для бесперебойной работы горячего водоснабжения, кондиционирования, систем вентиляции, а также эффективного обогрева здания. Определяется мощность автономной отопительной системы, как общая сумма тепловых затрат на обогрев всех помещений, а также тепловых затрат на прочие технологические нужды. Отопительная система должна обладать определённым запасом мощности, чтобы работа при пиковых нагрузках не сократила срок её службы.
  • Для выполнения согласования на газификацию объекта и получения ТУ.
    Получить разрешение на газификацию объекта необходимо в том случае, если используется природный газ в качестве топлива для котла. Для получения ТУ потребуется предоставить значения годового расхода топлива (природного газа), а также суммарные значения мощности тепловых источников (Гкал/час).

    и показатели определяются в результате проведения теплового расчёта. Согласование проекта на осуществление газификации объекта – это более дорогостоящий и продолжительный метод организации автономного отопления, по отношению к монтажу отопительных систем, функционирующих на отработанных маслах, установка которых не требует согласований и разрешений.
  • Для выбора подходящего оборудования.
    Данные теплового расчёта являются определяющим фактором при выборе приборов для отопления объектов. Следует учитывать множество параметров – ориентацию по сторонам света, габариты дверных и оконных проёмов, размеры помещений и их расположение в здании.

Как происходит теплотехнический расчёт

Можно воспользоваться упрощённой формулой, чтобы определить минимально допустимую мощность тепловых систем:

Qт (кBт/час) =V * ΔT * K /860, где

Qт – это тепловая нагрузка на определённое помещение;
K – коэффициент теплопотерь здания;
V – объём (в м3) отапливаемого помещения (ширина комнаты на длину и высоту);
ΔT – разница (обозначена С) между необходимой температурой воздуха внутри и температурой снаружи.

Такой показатель, как коэффициент потерь тепла (К), зависит от изоляции и типа конструкции помещения. Можно использовать упрощённые значения, рассчитанные для объектов разных типов:


  • K = от 0,6-ти до 0,9-ти (повышенная степень теплоизоляции). Небольшое количество окон, снабжённых сдвоенными рамами, стены из кирпича с двойной теплоизоляцией, крыша из высококачественного материала, массивное основание пола;
  • К = от 1-го до 1,9-ти (теплоизоляция средней степени). Двойная кирпичная кладка, крыша с обычной кровлей, небольшое количество окон;
  • K = от 2-х до 2,9 (низкая теплоизоляция). Конструкция сооружения упрощённая, кирпичная кладка одинарная.
  • K = 3-х – 4-х (отсутствие теплоизоляции). Сооружение из металлического или гофрированного листа либо упрощённая деревянная конструкция.

Определяя разницу между требуемой температурой внутри обогреваемого объёма и температурой снаружи (ΔT), следует исходить из степени комфорта, которую Вы желаете получить от тепловой установки, а также из климатических особенностей того региона, в котором находится объект. В качестве параметра по умолчанию принимаются значения, определённые CHиП 2.04.05-91:

  • +18 – общественные здания и производственные цеха;
  • +12 – комплексы высотного складирования, склады;
  • + 5 – гаражи, а также склады без постоянного обслуживания.

Расчёт по упрощённой формуле не позволяет учитывать различия тепловых потерь здания в зависимости от типа ограждающих конструкций, утепления и размещения помещений. Так, например, больше тепла потребуют комнаты с большими окнами, высокими потолками и угловые помещения. В то же время минимальными тепловыми потерями отличаются помещения, которые не имеют внешних ограждений. Желательно использовать следующую формулу при расчёте такого параметра, как минимальная тепловая мощность:


Qт (kВт/час)=(100 Вт/м2 * S (м2) * K1 * K2 * K3 * K4 * K5 * K6 * K7)/1000, где

S – площадь комнаты, м2;
Bт/м2 – удельная величина потерь тепла (65-80 ватт/м2). В этот показатель входят утечки тепла через вентиляцию, поглощения стенами, окнами и прочие виды утечек;
К1 – коэффициент утечки тепла через окна:

  • при наличии тройного стеклопакета К1 = 0,85;
  • если стеклопакет двойной, то К1 = 1,0;
  • при стандартном остеклении К1 = 1,27;

К2 – коэффициент потерь тепла стен:

  • высокая теплоизоляция (показатель К2 = 0,854);
  • утеплитель толщиной 150 мм либо стены в два кирпича (показатель К2=1,0);
  • низкая теплоизоляция (показатель К2=1,27);

К3 – показатель, определяющий соотношение площадей (S) окон и пола:

  • 50% КЗ=1,2;
  • 40% КЗ=1,1;
  • 30% КЗ=1,0;
  • 20% КЗ=0,9;
  • 10% КЗ=0,8;

К4 – коэффициент температуры вне помещения:

  • -35°C K4=1,5;
  • -25°C K4=1,3;
  • -20°C K4=1,1;
  • -15°C K4=0,9;
  • -10°C K4=0,7;

К5 – количество выходящих наружу стен:

  • четыре стены К5=1,4;
  • три стены К5=1,3;
  • две стены К5=1,2;
  • одна стена К5=1,1;

К6 – тип теплоизоляции помещения, которое располагается над отапливаемым:

  • обогреваемое К6-0,8;
  • теплая мансарда К6=0,9;
  • не отапливаемый чердак К6=1,0;

К7 –высота потолков:

  • 4,5 метра К7=1,2;
  • 4,0 метра K7=1,15;
  • 3,5 метра К7=1,1;
  • 3,0 метра К7=1,05;
  • 2,5 метра K7=1,0.

Приведём в качестве примера расчёт минимальной мощности отопительной автономной установки (по двум формулам) для отдельно стоящего сервисного помещения СТО (высота потолка 4м, площадь 250 м2, объём 1000 м3, окна большие с обычным остеклением, теплоизоляция потолка и стен отсутствует, конструкция – упрощённая).

По упрощённому расчёту:

Qт (кВт/час) = V * ΔT * K/860=1000 *30*4/860=139,53 кВт, где

V – объем воздуха в отапливаемом помещении (250 *4), м3;
ΔT – разница показателей между температурой воздуха извне комнаты и требуемой температурой воздуха внутри помещения (30°С);
К – коэффициент теплопотерь строения (для зданий без теплоизоляции К = 4,0);
860 – перевод в кВт/час.

Более точный расчёт:

Qт (кВт/час) = (100 Вт/м2 * S (м2) * K1 * K2 * K3 * K4 * K5 * K6 * K7)/1000 = 100*250*1,27*1,27*1,1*1,5*1,4*1*1,15/1000=107,12 кВт/час, где


S – площадь помещения, для которого выполняется расчёт (250 м2);
K1 – параметр утечки тепла через окна (стандартное остекление, показатель К1 равен 1,27);
К2 – значение утечки тепла через стены (плохая теплоизоляция, показатель К2 соответствует 1,27);
К3 – параметр соотношения габаритов окон к площади пола (40%, показатель К3 равен 1,1);
K4 – значение температуры снаружи (-35 °C, показатель K4 соответствует 1,5);
K5 – количество стен, которые выходят наружу (в данном случае четыре К5 равен 1,4);
К6 – показатель, определяющий тип помещения, расположенного непосредственно над отапливаемым (чердак без утепления К6=1,0);
K7 – показатель, определяющий высоту потолков (4,0 м, параметр К7 соответствует 1,15).

Как можно видеть из произведённого расчёта, вторая формула предпочтительнее для расчёта мощности отопительных установок, поскольку она учитывает гораздо большее количество параметров (особенно если необходимо определить параметры маломощного оборудования, предназначенного для эксплуатации в небольших помещениях). К полученному результату надо приплюсовать небольшой запас по мощности для увеличения срока эксплуатации теплового оборудования.
Выполнив несложные расчёты, Вы сможете без помощи специалистов определить необходимую мощность автономной отопительной системы для оснащения объектов жилого или промышленного назначения.

Купить тепловую пушку и другое обогреватели можно на сайте компании или посетив наш розничный магазин.

 

Источник: www.Komplektacya.ru

Тепловой расчёт отопления: общий порядок


Классический тепловой расчёт отопительной системы являет собой сводный технический документ, который включает в себя обязательные поэтапные стандартные методы вычислений.

Но перед изучением этих подсчётов основных параметров нужно определиться с понятием самой системы отопления.

Система отопления характеризуется принудительной подачей и непроизвольным отводом тепла в помещении.

Основные задачи расчёта и проектирования системы отопления:

  • наиболее достоверно определить тепловые потери;
  • определить количество и условия использования теплоносителя;
  • максимально точно подобрать элементы генерации, перемещения и отдачи тепла.

При постройке системы отопления необходимо первоначально произвести сбор разнообразных данных о помещении/здании, где будет использоваться система отопления. После выполнить расчёт тепловых параметров системы, проанализировать результаты арифметических операций.

На основании полученных данных подобирают компоненты системы отопления с последующей закупкой, установкой и вводом в эксплуатацию.

Примечательно, что указанная методика теплового расчёта позволяет достаточно точно вычислить большое количество величин, которые конкретно описывают будущую систему отопления.

В результате теплового расчёта в наличии будет следующая информация:

  • число тепловых потерь, мощность котла;
  • количество и тип тепловых радиаторов для каждой комнаты отдельно;
  • гидравлические характеристики трубопровода;
  • объём, скорость теплоносителя, мощность теплового насоса.

Тепловой расчёт – это не теоретические наброски, а вполне точные и обоснованные итоги, которые рекомендуется использовать на практике при подборе компонентов системы отопления.

Нормы температурных режимов помещений

Перед проведение любых расчётов параметров системы необходимо, как минимум, знать порядок ожидаемых результатов, а также иметь в наличии стандартизированные характеристики некоторых табличных величин, которые необходимо подставлять в формулы или ориентироваться на них.

Выполнив вычисления параметров с такими константами, можно быть уверенным в достоверности искомого динамического или постоянного параметра системы.

Для системы отопления одним из таких глобальных параметров является температура помещения, которая должна быть постоянной в независимости от периода года и условий окружающей среды.

Согласно регламенту санитарных нормативов и правил есть различия в температуре относительно летнего и зимнего периода года. За температурный режим помещения в летний сезон отвечает система кондиционирования, принцип ее расчета подробно изложен в этой статье.

А вот комнатная температура воздуха в зимний период обеспечивается системой отопления. Поэтому нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.

В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате.

Для нежилых помещений офисного типа площадью до 100 м2:


  • 22-24°С – оптимальная температура воздуха;
  • 1°С – допустимое колебание.

Для помещений офисного типа площадью более 100 м2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.

Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов.

И всё же для конкретных помещений квартиры и дома имеем:

  • 20-22°С – жилая, в том числе детская, комната, допуск ±2°С –
  • 19-21°С – кухня, туалет, допуск ±2°С;
  • 24-26°С – ванная, душевая, бассейн, допуск ±1°С;
  • 16-18°С – коридоры, прихожие, лестничные клетки, кладовые, допуск +3°С

Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п.

Расчёт теплопотерь в доме


Согласно второму началу термодинамики (школьная физика) не существует самопроизвольной передачи энергии от менее нагретых к более нагретым мини- или макрообъектам. Частным случаем этого закона является “стремление” создания температурного равновесия между двумя термодинамическими системами.

Например, первая система – окружающая среда с температурой -20°С, вторая система – здание с внутренней температурой +20°С. Согласно приведённого закона эти две системы будут стремиться уравновеситься посредством обмена энергии. Это будет происходить с помощью тепловых потерь от второй системы и охлаждения в первой.

Под теплопотерями подразумевают непроизвольный выход тепла (энергии) от некоторого объекта (дома, квартиры). Для обычной квартиры этот процесс не так “заметен” в сравнении с частным домом, поскольку квартира находиться внутри здания и “соседствует” с другими квартирами.

В частном доме через внешние стены, пол, крышу, окна и двери в той или иной степени “уходит” тепло.

Зная величину теплопотерь для самых неблагоприятных погодных условий и характеристику этих условий, можно с высокой точностью вычислить мощность системы отопления.

Итак, объём утечек тепла от здания вычисляется по следующей формуле:

Q=Qпол+Qстена+Qокно+Qкрыша+Qдверь+…+Qi, где

Qi – объём теплопотерь от однородного вида оболочки здания.

Каждая составляющая формулы рассчитывается по формуле:

Q=S*∆T/R, где

  • Q – тепловые утечки, В;
  • S – площадь конкретного типа конструкции, кв. м;
  • ∆T – разница температур воздуха окружающей среды и внутри помещения, °C;
  • R – тепловое сопротивление определённого типа конструкции, м2*°C/Вт.

Саму величину теплового сопротивления для реально существующих материалов рекомендуется брать из вспомогательных таблиц.

Кроме того, тепловое сопротивление можно получить с помощью следующего соотношения:

R=d/k, где

  • R – тепловое сопротивление, (м2*К)/Вт;
  • k – коэффициент теплопроводности материала, Вт/(м2*К);
  • d – толщина этого материала, м.

В старых домах с отсыревшей кровельной конструкцией утечки тепла происходят через верхнюю часть постройки, а именно через крышу и чердак. Проведение мероприятий по утеплению потолка или теплоизоляции мансардной крыши решают эту проблему.

В доме существуют ещё несколько видов тепловых потерь через щели в конструкциях, систему вентиляции, кухонную вытяжку, открывания окон и дверей. Но учитывать их объём не имеет смысла, поскольку они составляют не более 5% от общего числа основных утечек тепла.

Определение мощности котла

Для поддержки разницы температур между окружающей средой и температурой внутри дома необходима автономная система отопления, которая поддерживает нужную температуру в каждой комнате частного дома.

Базисом системы отопления выступают разные виды котлов: жидко- или твердотопливные, электрические или газовые.

Котел – это центральный узел системы отопления, который генерирует тепло. Основной характеристикой котла есть его мощность, а именно скорость преобразования количество теплоты за единицу времени.

Произведя расчеты тепловой нагрузки на отопление получим требуемую номинальную мощность котла.

Для обычной многокомнатной квартиры мощность котла вычисляется через площадь и удельную мощность:

Ркотла=(Sпомещенияудельная)/10, где

  • Sпомещения – общая площадь отапливаемого помещения;
  • Руделльная – удельная мощность относительно климатических условий.

Но эта формула не учитывает тепловые потери, которых достаточно в частном доме.

Существует иное соотношение, которое учитывает этот параметр:

Ркотла=(Qпотерь*S)/100, где

  • Ркотла – мощность котла;
  • Qпотерь – потери тепла;
  • S – отапливаемая площадь.

Расчетную мощность котла необходимо увеличить. Запас необходим, если планируется использование котла для подогрева воды для ванной комнаты и кухни.

Дабы предусмотреть запас мощности котла в последнюю формулу надо добавить коэффициент запаса К:

Ркотла=(Qпотерь*S*К)/100, где

К – будет равен 1.25,  то есть расчётная мощность котла будет увеличена на 25%.

Таким образом, мощность котла предоставляет возможность поддерживать нормативную температуру воздуха в комнатах здания, а также иметь начальный и дополнительный объём горячей воды в доме.

Особенности подбора радиаторов

Стандартными компонентами обеспечения тепла в помещении являются радиаторы, панели, системы “тёплый” пол, конвекторы и т. д. Самыми распространёнными деталями отопительной системы есть радиаторы.

Тепловой радиатор – это специальная полая конструкция модульного типа из сплава с высокой теплоотдачей. Он изготавливается из стали, алюминия, чугуна, керамика и других сплавов. Принцип действия радиатора отопления сводится к излучению энергии от теплоносителя в пространство помещения через “лепестки”.

Существует несколько методик расчёта радиаторов отопления в комнате. Нижеприведённый перечень способов отсортирован в порядке увеличения точности вычислений.

Варианты вычислений:

  1. По площади. N=(S*100)/C, где N – количество секций, S – площадь помещения (м2), C – теплоотдача одной секции радиатора (Вт, берётся из тех паспорта или сертификата на изделие), 100 Вт – количество теплового потока, которое необходимо для нагрева 1 м2 (эмпирическая величина). Возникает вопрос: а каким образом учесть высоту потолка комнаты?
  2. По объёму. N=(S*H*41)/C, где N, S, C – аналогично. Н – высота помещения, 41 Вт – количество теплового потока, которое необходимо для нагрева 1 м3 (эмпирическая величина).
  3. По коэффициентам. N=(100*S*к1*к2*к3*к4*к5*к6*к7)/C, где N, S, C и 100 – аналогично. к1 – учёт количества камер в стеклопакете окна комнаты, к2 – теплоизоляция стен, к3 – соотношение площади окон к площади помещения, к4 – средняя минусовая температура в наиболее холодную неделю зимы, к5 – количество наружных стен комнаты (которые “выходят” на улицу), к6 – тип помещения сверху, к7 – высота потолка.

Это максимально точный вариант расчёта количества секций. Естественно, что округление дробных результатов вычислений производится всегда к следующему целому числу.

Гидравлический расчёт водоснабжения

Безусловно, “картина” расчета тепла на отопление не может быть полноценной без вычисления таких характеристик, как объём и скорость теплоносителя. В большинстве случаев теплоносителем выступает обычная вода в жидком или газообразном агрегатном состоянии.

Расчет объема воды, подогреваемой двухконтурным котлом для обеспечения жильцов горячей водой и нагрева теплоносителя, производится путем суммирования внутреннего объема отопительного контура и реальных потребностей пользователей в нагретой воде.

Объём горячей воды в отопительной системе рассчитывается по формуле:

W=k*P, где

  • W – объём носителя тепла;
  • P – мощность котла отопления;
  • k – коэффициент мощности (количество литров на единицу мощности, равен 13.5, диапазон – 10-15 л).

В итоге конечная формула выглядит так:

W = 13.5*P

Скорость теплоносителя – заключительная динамическая оценка системы отопления, которая характеризует скорость циркуляции жидкости в системе.

Эта величина помогает оценить тип и диаметр трубопровода:

V=(0.86*P*μ)/∆T, где

  • P – мощность котла;
  • μ – КПД котла;
  • ∆T – разница температур между подаваемой водой и водой обратном контуре.

Используя вышеизложенные способы гидравлического расчёта, удастся получить реальные параметры, которые являются “фундаментом” будущей системы отопления.

Пример теплового расчёта

В качестве примера теплового расчёта в наличии есть обычный 1-этажный дом с четырьмя жилыми комнатами, кухня, санузел, “зимний сад” и подсобные помещения.

Обозначим исходные параметры дома, необходимые для проведения расчетов.

Габариты здания:

  • высота этажа – 3 м;
  • малое окно фасадной и тыльной части здания 1470*1420 мм;
  • большое окно фасада 2080*1420 мм;
  • входные двери 2000*900 мм;
  • двери тыльной части (выход на террасу) 2000*1400 (700 + 700) мм.

Общая ширина постройки 9.5 м2, длинна 16 м2. Отапливаться будут только жилые комнаты (4 шт.), санузел и кухня.

Начинаем с расчёта площадей однородных материалов:

  • площадь пола – 152 м2;
  • площадь крыши – 180 м2 , учитывая высоту чердака 1.3 м и ширину прогона – 4 м;
  • площадь окон –  3*1.47*1.42+2.08*1.42=9.22 м2;
  • площадь дверей – 2*0.9+2*2*1.4=7.4 м2.

Площадь наружных стен будет равна 51*3-9.22-7.4=136.38 м2.

Переходим к расчёту теплопотерь на каждом материале:

  • Qпол=S*∆T*k/d=152*20*0.2/1.7=357.65 Вт;
  • Qкрыша=180*40*0.1/0.05=14400 Вт;
  • Qокно=9.22*40*0.36/0.5=265.54 Вт;
  • Qдвери=7.4*40*0.15/0.75=59.2 Вт;

А также Qстена эквивалентно 136.38*40*0.25/0.3=4546. Сумма всех теплопотерь будет составлять 19628.4 Вт.

В итоге подсчитаем мощность котла: Ркотла=Qпотерь*Sотаплив_комнат*К/100=19628.4*(10.4+10.4+13.5+27.9+14.1+7.4)*1.25/100=19628.4*83.7*1.25/100=20536.2=21 кВт.

Расчёт количества секций радиаторов произведём для одной из комнат. Для всех остальных вычисления аналогичны. Например, угловая комната (слева, нижний угол схемы) площадь 10.4 м2.

Значит, N=(100*к1*к2*к3*к4*к5*к6*к7)/C=(100*10.4*1.0*1.0*0.9*1.3*1.2*1.0*1.05)/180=8.5176=9.

Для этой комнаты необходимо 9 секций радиатора отопления с теплоотдачей 180 Вт.

Переходим к расчёту количества теплоносителя в системе – W=13.5*P=13.5*21=283.5 л. Значит, скорость теплоносителя будет составлять: V=(0.86*P*μ)/∆T=(0.86*21000*0.9)/20=812.7 л.

В результате полный оборот всего объёма теплоносителя в системе будет эквивалентен 2.87 раза в один час.

Подборка статей по тепловому расчету поможет определиться с точными параметрами элементов отопительной системы:

  1. Расчет системы отопления частного дома: правила и примеры расчёта
  2. Теплотехнический расчет здания: специфика и формулы выполнения вычислений + практические примеры

Выводы и полезное видео по теме

Простой расчёт отопительной системы для частного дома представлен в следующем обзоре:

Все тонкости и общепринятые методики просчёта теплопотерь здания показаны ниже:

Ещё один вариант расчёта утечек тепла в типичном частном доме:

В этом видео рассказывается об особенностях циркуляции носителя энергии для обогрева жилища:

Тепловой расчёт отопительной системы носит индивидуальный характер, его необходимо выполнять грамотно и аккуратно. Чем точнее будут сделаны вычисления, тем меньше переплачивать придется владельцам загородного дома в процессе эксплуатации.

Имеете опыт выполнения теплового расчета отопительной системы? Или остались вопросы по теме? Пожалуйста, делитесь своим мнением и оставляйте комментарии. Блок обратной связи расположен ниже.

Источник: sovet-ingenera.com

Что влияет на потри тепла в доме 


На потери тепла влияет множество факторов, к каждому из которых также разработаны коэффициенты:

  • Высота потолков. Если потолки свыше 2,5 м, требуется производить расчет не по площади дома, а по кубатуре. На каждый 1 м3 потребуется 40 Вт тепловой мощности;
  • Качество утепления. Если здание грамотно утеплено, коэффициент не применяется. В противном случае, действуют коэффициенты в зависимости от материала стен: из бетона и блоков – 1,25-1,5, из бревен и бруса – 1,25, из кирпича – 1,1-1,25, из пеноблоков – 1;
  • Количество окон и дверей. На каждое окно необходимо прибавить к мощности котла по 100 Вт, наружных дверей – по 200 Вт;
  • Качество стеклопакетов. Типовые с деревянной рамой – 0,2, пластиковые однокамерные – 0,1, двухкамерные – 0,07, энергосберегающие – 0,057;
  • Расположение комнат. Расчет мощности котла лучше делать для каждой комнаты, при этом учитывать коэффициент 0,1-0,3 для внутренних помещений, 1 – для комнаты с одной наружной стеной, 1,15 – с двумя и 1,22 – с тремя;

Расчет мощности системы отопления – взять “про запас” 


Итак, определив предварительную мощность по площади дома и применив все поправочные коэффициенты, получаем мощность котла, необходимую для отопления конкретного здания. Специалисты рекомендуют к конечному результату применить еще коэффициент 1,2, т.е. прибавить 20% «на запас». Он необходим для покрытия возможных теплопотерь, которые не были учтены в расчетах. 

Расчет отопления зависит также от типа котла. Так, для двухконтурного к конечному результату применяется еще и коэффициент 1,5. Такой запас мощности необходим для обеспечения контура ГВС. 

Немаловажно учитывать материал, из которого изготовлены радиаторы. Обладающие большей теплопроводностью стальные, алюминиевые или биметалические быстрее нагреваются и отдают тепло комнатам (мощность одной секции – 200 Вт). Чугунные радиаторы медленно нагреваются, но способны дольше аккумулировать тепло (мощность одной секции – 150 Вт). Количество секций определяется исходя из мощности котла или по площади дома и факторов, перечисленных выше. Для утепленного дома со стандартной высотой потолков потребуется 1 секция металлического радиатора на каждые 1,8-2 м2 или 1 секция чугунного на каждые 1,1-1,3 м2.

На расчет отопления также влияет материал, из которого смонтирована система отопления. Если для монтажа выбраны металлические трубы, стоит учесть, что они также нагреваются и отдают тепло в комнаты. Используя их, можно сократить количество секций радиаторов в помещениях. Пластиковый или пропиленовый трубопровод теплоотдачей обладает в минимальной степени, но чаще применяется благодаря современному дизайну и простоте монтажа.

Источник: tehinstal.ru

Как правильно рассчитать мощность отопительной системы?

За основу берутся нормы СанПиН, четко регламентирующие температурный предел в жилых помещениях от 18 до 24°С, но это касается централизованного теплоснабжения, хотя конечно, любой владелец автономной отопительной системы вправе сдвинуть предел в любую сторону. Делать этого не рекомендуется, поскольку эти значения являются наиболее оптимальными для создания комфортной обстановки и расхода топлива. Не стоит забывать, что наиболее высокий КПД котельного или другого агрегата, да и всей системы в целом достигается именно при работе в «нормальном» режиме, при регулировании в сторону уменьшения или увеличения, КПД всегда будет снижаться.

Для расчета мощности отопительной системы используются следующие данные:

– Среднегодовая температура для данного региона в отопительный период – данные из соответствующего справочника;

– Роза ветров в этот же период для данного региона – данные из справочника;

– Потери тепла через ограждающие конструкции – данные из справочника для каждого типа материала (саман, кирпич, бетон, древесина и т. д.), в том числе и потери через оконные и дверные проемы;

– Площадь отапливаемых помещений;

– Мощность теплогенератора и отопительных приборов;

– Используемый энергоноситель – газ, электроэнергия, уголь, древесина и др.

– Следует помнить, что расчет системы отопления целесообразно проводить только после того, как выполнены все мероприятия по энергосбережению и устранены возможные утечки тепла. Если рассчитать требуемую мощность, а утепление выполнить позже, то получится, что даже на минимальной мощности, в помещении будет довольно жарко, особенно же это станет ощутимо во время оттепелей и переходных периодов.

По имеющимся справочным данным можно увидеть, какое количество тепла в киловаттах теряется через ограждения при низкой наружной температуре, в каждом из помещений за единицу времени, а, следовательно, отопительная система в среднем должна компенсировать эту потерю. По полученным данным выполняется выбор теплогенератора и отопительных приборов соответствующей мощности.

Расчет мощности радиаторов отопления

Расчет тепловой мощности радиаторов, как и выбор их типа, также как и всей системы отопления выполняется специализированными проектными организациями, в случае же небольшой автономной системы отопления чаще всего используют зависимость, что на каждые 10м2 площади помещения используется 1КВт тепловой мощности отопительного прибора. Исходя из этого, рассчитывается их необходимое количество или количество секций в одном приборе в зависимости от используемого энергоносителя. Для компенсации потерь через проемы, полученный результат увеличивают на 15%.

1. ТЕПЛОВОЙ БАЛАНС ПОМЕЩЕНИЯ

Система отопления, как уже указывалось, предназначена для создания в помещениях здания температурной обстановки, соответствующей комфортной   и   отвечающей   требованиям   технологического   процесса.

Выделяемое человеческим организмом тепло должно быть отдано окружающей среде так, чтобы человек не испытывал при этом ощущений холода или перегрева. Наряду с затратами на испарение с поверхности кожи и легких тепло отдается с поверхности тела конвекцией и излучением. Интенсивность отдачи тепла конвекцией в основном определяется температурой окружающего воздуха, а при отдаче лучеиспусканием— температурой поверхностей ограждений, обращенных в помещение,

Температура помещения зависит от тепловой мощности системы отопления, а также от расположения обогревающих устройств, теплозащитных свойств наружных ограждений, интенсивности других источников поступления и потерь тепла. В холодное время года помещение теряет тепло через наружные ограждения. Кроме того, тепло расходуется на нагревание наружного воздуха, который проникает в помещение через неплотности ограждений, а также на нагревание материалов, транспортных средств, изделий, одежды, которые охлажденными поступают с улицы в помещение. Системой вентиляции в помещение может подаваться воздух с более низкой температурой по сравнению с воздухом помещения, технологические процессы могут быть связаны с испарением жидкостей и другими процессами, сопровождающимися затратами тепла. При установившемся режиме потери равны поступлениям тепла. Тепло поступает в помещение от технологического оборудования, источников искусственного освещения, нагретых материалов и изделий, в результате прямого попадания через оконные проемы солнечных лучей, от людей. В помещении могут быть технологические процессы, связанные с выделением тепла (конденсация влаги, химические реакции и пр.).

Учет всех перечисленных источников поступления и потерь тепла необходим при составлении теплового баланса помещений здания.

Сведением всех составляющих прихода и расхода тепла в тепловом балансе помещения определяется дефицит или избыток тепла. Дефицит тепла AQ указывает на необходимость устройства в помещении отопления.

Баланс составляется для условий, когда возникает наибольший при заданном коэффициенте обеспеченности дефицит тепла. Для гражданских зданий обычно принимают, что в помещении отсутствуют люди, нет освещения и других бытовых тепловыделений, поэтому определяющими расход тепла являются теплопотери через ограждения. В промышленных зданиях принимают в расчет интервал технологического цикла с наименьшими тепловыделениями.

Баланс тепла составляют для стационарных условий. Нестационарность процесса, теплоустойчивость помещений, периодичность работы системы отопления учитывают специальными расчетами на основе теории теплоустойчивости.

Размещено на /

Министерство образования и науки Российской Федерации

Негосударственное образовательное учреждение

Ижевск, 2010

Содержание

Исходные данные и характеристика объекта

– tср.от.пер= -4.4℃.

Температура внутри здания:

– жилая комната tв=20℃

– лестничная клетка tв=16 ℃

– «+2℃ на угловые помещения»

2. Расчет строительных конструкций

Задача расчета строительных конструкций – определение коэффициентов теплопередачи – К Тепловая мощность системы отопления

Тепловая мощность системы отопления (2.1)

где К – это количество тепла, проходящее за единицу времени через 1 м2 ограждения при разнице температур на улице и в помещении в 1 С.

Ro Тепловая мощность системы отопления– термическое сопротивление ограждения.

Тепловая мощность системы отопления (2.2)

где Тепловая мощность системы отопленияв Тепловая мощность системы отопления– коэффициент тепловосприятия у внутренней поверхности стены, [12], таблица 4

Тепловая мощность системы отоплениян Тепловая мощность системы отопления– коэффициент тепловосприятия у наружной поверхности стены, [12], таблица 6

 [м]- толщина отдельного слоя;

Тепловая мощность системы отопления– коэффициент теплопроводности отдельного слоя, принимается по приложению 3 [12] по графе А или Б. Показателем графы служит карта зон влажности приложение 1 [12] и приложение 2 [12]

Контрольной величиной в расчет вводится требуемое термическое сопротивление:

Тепловая мощность системы отопления (2.3)

где tн [C] – наружная температура воздуха, [8], таблица 1.

n – коэффициент на разность температур, [12], таблица 3

Градусо-сутки отопительного периода (ГСОП):

Буква расчета – А

3 = 250мм=0,25м

4 = 20мм=0,02м

1 =120мм=0,120м

tв = 20С [3] таблица

tн = -31С [8] таблица 1

Определение ГСОП Dd:

Dd =(tв-tоп)Z=( 20- (- 4.4))*228= 5563.2(℃. Сут)

Термическое сопротивление из условия энергосбережения:

Тепловая мощность системы отопления

R1, R2,Dd,Dd1, Dd2 – определяем по таб. 1 б [3]

Тепловая мощность системы отопления=0.08 м

Тепловая мощность системы отопления[12] таблица 4

3=0,041 Тепловая мощность системы отопления

4=0,76 Тепловая мощность системы отопления

=2.91 Тепловая мощность системы отопления

Термическое сопротивление из условия энергосбережения:

Тепловая мощность системы отопления

R1, R2,Dd,Dd1, Dd2 – определяем по таб. 1 б [3]

Тепловая мощность системы отопления=0.158 м

Источник: sistema-otopleniya.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.