Ноль через заземление



Снова о заземлении или как правильно подключить землю к нулю.

После последней статьи о заземлении мне пришло сразу несколько вопросов на эту тему. Постараюсь ответить на них в этом посте.

Мне сделали заземление и ввели в щит в гараже. А электрик, который делает проводку по дому говорит что надо в розетках соединять заземление с нулем. Зачем это делать? Ведь насколько я понимаю, заземление нужно для защиты?

Скажите что лучше ставить автомат или УЗО? Меня электрик уговаривает поставить и то и другое! Зачем мне УЗО, если у меня есть заземление?

Соединять заземляющий контакт с нулевым непосредственно в розетках категорически нельзя. В этом случае, если у вас пропадает нулевой контакт в этой розетке, ток пойдет через заземляющий контакт и на корпусах бытовой техники может появиться опасный потенциал.

Схема для частного дома приведена ниже.


схема щита дома

У вас в щите должны быть две клемные планки. Одна рабочий ноль (N), вторая – земля (PE). Так вот, проводник от контура заземления надо подключить к планке PE , а от нее пустить перемычку на ноль до вводного автомата.

Еще раз повторю что приведенная схема актуальна для частного дома. В квартирах ситуация несколько иная , но заземление с нулем никогда не соединяется в розетках, распаячных коробках и т.п. А строго до счетчика.

Соединять заземление с нулем нужно обязательно. В противном случае у вас получится система заземления ТТ, которая используется только в передвижных установках. При такой схеме, автомат в вашем щите может просто не сработать в случае пробоя фазы на заземленный предмет, например корпус техники.

Да, УЗО (устройство защитного отключения) действительно надо ставить вместе с автоматическими выключателями. Дело в том что у них разное назначение, автоматический выключатель срабатывает при коротком замыкании или перегрузке.

А УЗО срабатывает при небольшой утечке тока, например если человек прикоснется к проводу или корпусу прибора, находящегося под напряжением. О этом подробнее в следующих статьях.

Есть вопрос ? Задавайте.

 

homeenergy.ru

Для чего необходимо заземление


Если энергоснабжение в помещении организовано в соответствии с ПУЭ, на входе, в распределительном щитке установлены защитные автоматы.

Защитные автоматы

Эти выключатели срабатывают при превышении установленной силы тока: нагревается биметаллическая пластина, происходит ее деформация, и контакты автомата механически размыкаются.

Важно! Именно для этого, автоматы устанавливаются в разрыв фазного проводника. Нулевая шина может быть подключена напрямую.

Происходит разрыв цепи, находящейся под напряжением, электроустановка (или вся цепь) обесточивается, обеспечивая безопасность. Как это работает на практике, и что такое заземление в данной цепочке?

Заземление, это электрический контакт между линией, специально выделенной в электросети, и реальной (физической) землей. То есть шина заземления имеет электрический контакт с грунтом. Одновременно, любая установка, вырабатывающая или распределяющая электрический ток, соединена нулевым проводом с той же землей.

Мы с вами рассматриваем однофазные сети, в которых для питания используются две линии: ноль и фаза. Трехфазные системы в быту применяются редко, поэтому знание этих систем необходимо лишь профессионалам.


Даже если к вам в дом заведено три фазы (такое встречается в частном секторе), для конечного потребления все равно используется два провода: ноль и фаза.

Схема

Допустим, у вашей электроустановки (холодильник, бойлер, стиральная машина), особенно с металлическим корпусом, произошла утечка фазы. То есть, провод под напряжением касается корпуса (отсоединился контакт, нарушена изоляция, протекла вода). Прикоснувшись к электроприбору, вы будете поражены электрическим током. Кроме того, сопротивление в точке касания мизерное, вследствие чего произойдет мгновенный нагрев провода, и возгорание электроприбора.

Если ваш бойлер заземлен, электрический ток потечет по пути наименьшего сопротивления, то есть по контуру: фаза — «земля» — нулевая шина. Сила тока спонтанно возрастет, и сработает аварийное отключение в автомате защиты. Никто не пострадает, материальный ущерб не будет нанесен.

Схема 2

Если вы имеете поверхностные знания устройства электроустановок, возникает вопрос: а зачем нужно заземление, если то же самое произойдет между фазным и нулевым проводом? И собственно, чем отличается заземление от зануления?

Разберем ситуацию со схемами

С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.


Схема 3

Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата. Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор. По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.

Представим ситуацию, когда нулевой провод по какой-то причине разорван:

  • потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
  • механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
  • несанкционированное вмешательство доморощенного «электрика»;
  • авария на подстанции (возможно отключение только нулевой шины).

На схеме это выглядит следующим образом:

Схема 4

При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной. Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию. При этом утечки тока на физическую землю нет, и защитный автомат не сработает.


Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.

А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена. Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба — это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе. Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.

Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.

Для справки: Обычно используется цветовая маркировка проводов:

  1. Фаза — коричневого или белого цвета.
  2. Рабочий ноль — синего цвета.
  3. Защитное заземление — желто-зеленая оболочка.

Провод

Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.

Как отличить рабочий ноль и защитное заземление

Разумеется, проверять сопротивление между «нулевым» и «земляным» проводами не следует, особенно если энергосистема под напряжением. В общую щитовую вас тоже никто не пустит. Поэтому, проверять правильность разведения нуля и земли, будем с помощью мультиметра (бытового тестера).

Поскольку точки ввода заземляющих устройств (ноль на подстанции и шина заземления в доме) находятся на удалении друг от друга, между ними есть определенное сопротивление. Грунт, даже влажный, не является идеальным проводником. Если организовать электрическую цепь без нагрузки, мы увидим разницу в потенциалах.

Подключаем измерительный прибор к фазному контакту и рабочему нолю. На схеме это будет цепь «А». Фиксируем значение.

Схема 5

Сразу же подключаем тестер к фазному проводу и контакту защитного ноля. На схеме это цепь «Б». Разницы в потенциале нет: прибор зафиксирует одинаковое значение напряжения. Почему так произошло? При объединении рабочего и защитного ноля, ток в обоих вариантах измерения, фактически протекает по одному и тому же проводу. Сопротивление не меняется, потерь нет, падения напряжения не происходит.


Если ваши результаты измерения показали одинаковое напряжение – проводка подключена с нарушениями Правил устройства электроустановок.

Что произойдет при разнесенном рабочем ноле и защитном заземлении?

Схема 6

При подключении прибора к фазе и нолю, падения напряжения практически нет (на схеме это цепь «А»). Вы увидите действительное значение рабочего напряжения в сети. Подключив тестер к фазному проводу и защитному заземлению, вы замеряете потенциал в длинной цепи. Чтобы замкнуть круг, электрический ток (на схеме цепь «Б») проходит по реальному грунту между точками физических контактов «земли». Учитывая сопротивление грунта, произойдет падение напряжения от 5% до 10%. Прибор покажет более низкое напряжение.

Это говорит о том, что ваша электропроводка организована правильно, у вас имеется настоящее разнесенное защитное заземление. При наличии правильно подобранных автоматов, электрооборудование и пользователи надежно защищены.

Мы разобрались, в чем разница между заземлением и занулением. Польза от правильной организации электроснабжения очевидна.

А как быть, если в вашем доме вообще не предусмотрено защитное заземление


Понятное дело, при проведении капитального ремонта, электрики заменят проводку в соответствии с Правилами устройства электроустановок. Как минимум, в вашем вводном щитке появится три независимых провода: фаза, рабочий ноль и защитное заземление. Останется лишь заменить проводку в розеточной сети.

Но капитальный ремонт может быть выполнен через несколько лет, а вы уже сегодня пользуетесь бойлером и стиральной машинкой без заземления, или того хуже — с защитным занулением. Выход один: организовывать заземление самостоятельно. Если вы живете в частном доме — техническая сторона вопроса существенно упрощается. А вот для многоэтажек, стоимость и сложность работ зависит от этажа.

Как вариант — организовать вскладчину с соседями шину заземления, с распаячными коробками на каждой лестничной клетке.

Заземление

Шина должна быть неразъемной до самого ввода в грунт. Вблизи фундамента, желательно не в дорожном покрытии, а на клумбе, организуется контур заземления согласно Правилам устройства электроустановок. Каждый жилец подъезда может подключится общей шине и завести «землю» в квартиру. Далее есть два варианта:

  1. Организовать контактную группу заземления в распределительном щитке, и заменить всю электропроводку на трехжильную.
  2. Внутри плинтуса, протянуть земляной кабель под каждую розетку, и завести его в монтажные коробочки.

При любом способе, вы защитите и свои электроприборы, и главное — свое здоровье.

Важно! Как нельзя организовывать защитное заземление

То, что «землю» нельзя брать из рабочего ноля, понятно из нашего материала. Есть любители заземлиться на трубы водоснабжения или отопления. Теоретически – стальная труба имеет связь с грунтом. На практике, по стояку могут быть вставки из полипропиленовых труб, и никакого контакта с «реальной землей» нет.

Кроме того, что вы не получаете надежного заземления, ставятся под удар соседи, которые могут получить удар током, просто взявшись за батарею отопления.

profazu.ru

Варианты соединения нейтрали

Электрическая сеть, которая предназначена для электроснабжения содержит источник электроэнергии, преобразователи этой энергии, а также потребителей. Поскольку используется три фазы при схеме соединения «звезда» появляется узел соединения общий для них. Если такой узел есть с каждой стороны электрической цепи, причем эти узлы соединяет провод, последний называется, либо «нейтралью», либо «нулевым проводом». Его режим работы весьма важен для функционирования сети электроснабжения. Существует несколько режимов для нулевого провода:

  • Потенциал нейтрали равен потенциалу земли, в результате чего получается глухозаземленный нулевой провод.
  • Нейтраль надежно изолирована, между ней и землей возможны небольшие по величине токи утечки. В результате получается изолированный нулевой провод.
  • Нейтраль является частью электрической цепи, которая также включает сопротивление с некоторым достаточно малым импедансом и сопротивление земли.

От использования одного из перечисленных соединений нулевого провода с землей в сети электроснабжения зависят:

  • аварийные токи и скачки напряжения в фазах при их повреждениях;
  • система релейной защиты от замыкания фазы на землю;
  • схема защиты от скачков напряжения;
  • параметры заземления, используемого на подстанции;
  • безопасность выполняемых работ;
  • надежность функционирования всех электрических машин и прочего электрического оборудования в электрической сети, связанных с нейтралью.
  • Нулевой провод с «глухим» заземлением используется главным образом в электросетях с напряжениями 380 Вольт и начиная с 110 киловольт и выше.
  • Изолированный нулевой провод используется главным образом в электросетях с напряжениями 6, 10 и 35 киловольт.

Стоит отметить, что вы можете выполнять это своими руками или заказать электромонтажные работы у мастеров на сайте Kabanchik.ua. Но, тем не менее, разобраться в основах, изучив мат часть.

Нулевой провод в сети электроснабжения 380 Вольт

Документально для этих сетей заданы такие стандарты:

  • МЭК 364 «Электрические установки зданий»;
  • ГОСТ 30331.1-95 – ГОСТ 30331.9-95.

В соответствии с ГОСТ 30331.2-95 в электрических схемах используются такие обозначения:

Обозначения

Широко распространена система заземления с использованием нейтрального провода, которая именуется как TN-C (на изображении ниже).

Система заземления TN-C

В системе TN-C заземление сделано на трансформаторной подстанции. К нему присоединены фазные обмотки трансформаторов, обеспечивающих электропитание нагрузок фазным напряжением 220 Вольт. Подача напряжения к нагрузкам обеспечивают фазные провода и провод PEN, присоединенный к заземлению на подстанции. Система TN-C отличается от других подобных систем TN-S, TN-C-S, TT и IT дешевизной и простотой. Но по электрической безопасности она хуже.

Это объясняется ее появлением в те довольно-таки далекие времена, когда от замыканий на корпус спасали предохранители и автоматические выключатели. Время срабатывания этих защитных устройств, которое довольно велико, определяет и время воздействия на живой объект поражающего тока при тех или иных повреждениях и контактах этих объектов с поврежденными токоведущими частями оборудования или электросети. Большим по величине должен быть и ток срабатывания. Также при использовании провода PEN для заземления возможно появление высокого потенциала на всех устройствах, заземленных через него.

Например, при авариях на воздушных линиях электропередачи, когда провод одной из фаз обрывается и падает на землю. До срабатывания защиты на устройствах, заземленных через провод PEN, будет опасное для жизни напряжение. Еще более фатальными могут быть последствия при обрыве связи нулевого провода с заземлением на подстанции, например при его перегорании. Это обеспечит гарантированное появление фазного напряжения на всем оборудовании, заземленном через перегоревший провод. А устройства защитного отключения при этом не могут быть использованы.

Более дорогой, но и более безопасной является система TN-S (на изображении далее). Ее улучшенная безопасность обеспечена устройствами защитного отключения. Они будут гарантированно срабатывать по причине использования дополнительного провода, через который не текут аварийные токи.

Система заземления TN-S

В некоторых электросетях используется смешанная система заземления нулевого провода, в которой учтены признаки, а также достоинства и недостатки двух предыдущих систем заземления нейтрали. Это система заземления TN-C-S, пример которой на изображении далее:

Смешанная система заземления

По схеме TT применяется отдельное заземление без проводной связи с заземлением на питающей трансформаторной подстанции. В такой схеме необходимо применять устройства защитного отключения. Они будут надежно срабатывать, поскольку измеряют напряжение относительно отдельного заземления. Автоматические выключатели и предохранители будут малоэффективны в качестве защитных устройств.

К заземлению на подстанции в земле будет течь ток. Поэтому на отдельном заземлении появится довольно большой потенциал. Он, скорее всего, будет представлять опасность для жизни в случае прикосновения к электрооборудованию, присоединенному к этому отдельному заземлению. Схема TT приведена на изображении ниже.

Система заземления TT

В схеме IT на трансформаторной подстанции заземление присоединено к общему узлу фазных обмоток через резистор. Его сопротивление может быть от сотен Ом до единиц килоом. С целью защиты применяется провод не связанный с нейтралью. У однофазных потребителей при замыкании на корпус токи получаются небольшими по величине, потому что протекают по цепи с резистором, через который обмотки присоединены к заземлению. Использование устройств защитного отключения еще больше усиливает эту наиболее безопасную схему, показанную на изображении ниже.

Безопасная схема использования устройств отключения

Не существует такого решения с заземлением нулевого провода, который успешно решает все необходимые задачи. Поэтому для каждого случая лучше всего применять наиболее подходящую схему.

  • Схемы TN-C и TN-C-S существуют, но только по причине того, что были первыми и привязаны к объектам давно построенным. Для новых решений не следует их применять. Они наиболее опасны при авариях как источник поражения током и как источник пожара. При авариях токи значительны по величине, сильно разветвляются и создают по этой причине значительные электромагнитные излучения.
  • Для капитальных объектов, в которых со временем не будут вноситься какие-либо изменения, схема TN-S является наиболее подходящей.
  • Если сеть электроснабжения подвержена частым переделкам или является временной, для нее рекомендуется схема TT.
  • В том случае, когда надежность электроснабжения является наиболее значимым приоритетом надо использовать схему IT.
  • Для увеличения надежности рекомендуется выполнять несколько заземлений разнесенных по направлению нулевого провода.

Как заземляется провод в сетях с высоким напряжением?

В сетях с напряжением 6-35 киловольт схема заземления нулевого провода выбирается исходя из тех аварийных ситуаций, которые могут возникать при замыканиях на землю. То же самое относится и к более высоковольтным сетям. Поскольку такие электросети в своем большинстве состоят из линий электропередачи, бесперебойность электроснабжения потребителей в них является приоритетной задачей. В общем, заземление нулевого провода в таких электрических сетях окажет влияние на:

  • величину тока на месте аварии;
  • аварийные скачки напряжения в двух работоспособных фазах при замыкании на землю в третьей фазе;
  • характеристики изоляции электрических машин и прочего электрического оборудования;
  • характеристики оборудования для защиты от перенапряжений;
  • непрерывность подачи электроэнергии потребителям;
  • параметры заземляющих контуров на подстанциях в пределах нейтрали;
  • безопасность во время однофазных замыканий работников и функционирующего электрического оборудования.

При более подробном рассмотрении перечисленных пунктов потребуется несколько больших статей, или даже книга. По этой причине в рамках настоящей небольшой статьи более детально они не рассматриваются.

podvi.ru

Какие бывают схемы заземления квартиры и частного дома

Любые технические системы, включая электрооборудование жилых помещений, постоянно совершенствуются. Этот творческий процесс привел к тому, что внутри современных зданий работает электропроводка, выполненная:

  1. в строгом соответствии с одним из нескольких действующих нормативов заземления;
  2. с нарушениями правил технической эксплуатации.

Эти технологии необходимо обязательно учитывать при работе с домашней проводке. Иначе возникнут многочисленные ошибки, которые осложнят поиск фазы, нуля и заземления. На втором вопросе обратим внимание чуть позже, а сейчас рассмотрим первый.

Варианты заземления жилых помещений

Для питания электрической энергией предусмотрены две системы электроснабжения:

  1. однофазные;
  2. трехфазные.

В бытовых целях чаще всего используют однофазные цепи. Поиск провода с потенциалом фазы, нуля или земли у них такой же, как и в трехфазных схемах. Поэтому дальше будем анализировать только их.

Правила эксплуатации предусматривают следующие варианты выполнения электрической проводки для жилых зданий:

  • TN-C;
  • Нормальный режим работы электрооборудования в системе TN-C

  • TN-S;
  • Аварийный режим работы электрооборудования в системе TN-S

  • TN-C-S;
  • Аварийный режим работы электрооборудования в системе TN-C-S

  • ТТ.
  • Схема проводки дома по системе заземления ТТ

Поиск фазы, нуля м заземления в каждом случае имеет свои особенности. Поэтому следует их выполнять применительно к конкретной схеме электроснабжения.

Особенности монтажа и эксплуатации проводников

Фазный провод в домашней проводке

Во всех случаях потенциал фазы приходит от электрической трансформаторной подстанции отдельной жилой. Он может разрываться переключающими устройствами: предохранителями, автоматическими выключателями или рубильниками, расположенными на трансформаторной подстанции, вводном щите здания, подъездном или квартирном электрическом щитке.

Фазный провод всегда проходит через счетчики учета электрической энергии. Защиты фазы создаются для работы в автоматическом режиме с учетом соблюдения принципа селективности. Их срабатывание или ручное отключение переключающего устройства приводит к снятию этого потенциала с подключенной ниже схемы.

Провод рабочего нуля

Занимаясь анализом этого вопроса следует учитывать особенности схемы заземления.

Система TN-C

Рабочий ноль подводится от трансформаторной подстанции PEN проводником, который заземлен на ее контуре и объединяет в себе среднюю точку (нейтраль) трехфазной системы и потенциал земли.

В трехфазной сети он идет цельным проводом без коммутирующих устройств. Разрывать его без снятия напряжения с подключенной схемы нельзя, ибо сразу создастся перераспределение токов, ведущее к опасному перекосу напряжений. Такой режим принято называть «Обрыв нуля».

Обрыв нуля в трехфазной сети

Поэтому его монтажу и креплению уделяется повышенное внимание. В однофазной же сети отключение рабочего нуля не ведет к перенапряжению схемы, но исключает возможность работы электрооборудования даже при поданном потенциале фазы.

Рабочий ноль тоже проходит через счетчики учета электроэнергии. Он никакими переключателями в квартирной проводке не должен разрываться, кроме вводных пакетников или автоматов и специальных защит типа УЗО, дифавтоматов.

Система TN-S

Рабочий ноль идет отдельной жилой кабеля от трансформаторной подстанции до вводного распределительного щита здания с соблюдением требований повышенной надежности. В однофазную систему квартир он поступает от подъездного распред щитка.

Система TN-С-S

В этой схеме рабочий ноль N поступает от трансформаторной подстанции в составе PEN проводника и выделяется из него на главной защитной шине от вводного щита здания.

В квартирный щиток ноль поступает от подъездного щита.

Система TT

Здесь надо учитывать, что рабочий ноль приходит в составе PEN проводника от трансформаторной подстанции и работает так же, как в схеме TN-C. Только в нее искусственным путем введен защитный проводник PE, идущий от индивидуального контура заземления.

Провод заземления

Его принято называть РЕ проводником. Он полностью отсутствует в схеме TN-C, работает во всех других системах заземления.

Отдельная категория электриков распространяет советы по созданию провода заземления во всех квартирах, включая и не подготовленные для этих целей со старой проводкой TN-C. Предлагается его монтаж к заземленным строительным конструкциям: лифтовому оборудованию, водопроводу, теплоснабжению или другим металлическим магистралям.

Эти рекомендации нарушают схему электроснабжения, изменяют алгоритм работы защитных устройств в аварийном режиме, когда образуются дополнительные, не учтенные точки стекания потенциалов, ведущие к повреждению электрического оборудования.

РЕ проводник во всех схемах создается с повышенной надежностью, без включения переключающих устройств. Разрывать его в действующей схеме запрещено.

О цветовой маркировке проводов

Внутри стран Евросоюза принят стандарт IEC 60446 на цветовое обозначение жил кабелей и проводов.

Назначение жилы кабеля или провода Цветовое обозначение
РЕ проводник защитного нуля, заземление Желто зеленые чередующиеся полосы
Нейтраль трехфазной схемы, рабочий ноль Однородный синий или чередующиеся сине-белые полосы
Фазный провод Другие отличные от нейтрали с заземлением цвета, включая белый, черный, серый, красный, коричневый

Розетка и кабель

Эти сведения могут облегчить поиск фазы, нуля и заземления, но полностью полагаться на них нельзя:

  1. мы живем в другой стране;
  2. маркировка кабельной продукции часто не соответствует этим правилам;
  3. все, что сделали до нас другие электрики требует тщательной проверки.

Способы электрических проверок домашней сети

После напоминания основных схем прокладки электропроводки внутри жилых зданий можно заняться описанием поиска фазы, нуля и заземления. Однако следует еще вспомнить о резервных жилах, которые могут содержаться в кабеле и быть просто изолированными.

Опытные электрики часто осуществляют внутренний осмотр электрической схемы, продергивают провода и кабели, визуально оценивают их направление.

Мы рассмотрим наиболее простые электрические проверки, которые позволяют достоверно оценить потенциал каждого провода.

Как найти фазу

Определение ее потенциала можно выполнять различными приборами, а принцип проверки описан отдельной статьей.

Емкостный индикатор

Такой одноконтактный индикатор напряжения изготовлен в виде отвертки с указательной лампочкой. Он имеет два контакта. Через них протекает ток утечки потенциала фазы сквозь встроенный токоограничивающий резистор и тело оператора.

Работа емкостного указателя напряжения

Величина тока в несколько миллиампер не создает опасности для здоровья человека, но зажигает светодиод или неоновую лампочку. Если же потенциал фазы на замеряемом проводе отсутствует, то свечения просто не будет.

Двухполюсный индикатор

Его работа основана на том, что загорание встроенной лампочки происходит от тока, созданного приложением двух отдельных контактов к потенциалам фазы и рабочего нуля или контура земли.

Работа двухполюсного указателя напряжения

Если в проверяемой цепи отсутствует потенциал фазы, то свечения не будет. Например, лампочка индикатора не загорится, если контакты приложены к нулю и заземлению или резервному проводу.

В двухпроводной схеме TN-C горение индикатора будет свидетельствовать о наличии фазы на одном из проверяемых проводов. Чтобы ее определить потребуется делать замер на дополнительном заземлении, например, водопроводном кране, имеющем контакт с землей.

Когда имеем три жилы однофазной сети и между ними работаем двухполюсным индикатором, то увидим его свечение в двух позициях. Общий провод для обоих случаев и станет фазой.

Контрольная лампа

Сразу укажу, что это запрещенный современными правилами безопасности способ проверки, но раньше им широко пользовались. Да и сейчас среди электриков много почитателей этого метода потому, что между контролькой и простой лампой накаливания очень много общего, а нагрузка, создаваемая ее нитью, позволяет выявлять ошибки, связанные с плохими контактами в схеме.

Проверка напряжения контрольной лампой

Принцип проверки потенциала фазы в этой ситуации такой же, как у двухполюсного индикатора напряжения.

Пользоваться контрольной лампой не рекомендую, а привожу методику чисто для ознакомления и расширения вашего кругозора. Рекомендую использовать проверенный индикатор напряжения.

Вольтметр

В быту чаще всего используют цифровой мультиметр в этом режиме или аналоговый стрелочный тестер. Прибор позволяет измерять напряжение в вольтах, судить о его величине. Замеры выполняют по технологии двухполюсного индикатора.

Дополнительные рекомендации

Все перечисленные методики работают при подаче напряжения на схему от включенных автоматических выключателей. Если их отключать, то фаза пропадает. Этим приемом тоже пользуются электрики, используя любой индикатор.

Как появляются две фазы в розетке

Этот вопрос задают, когда при замере видят свечение емкостного индикатора сразу на обоих ее контактах. Возникает ошибочный вывод, что в схему проникло линейное напряжение.

Однако не все так сложно, а подобный случай может встретиться в практике любого электрика. Чтобы в нем не допустить ошибок рекомендую ознакомится со специально написанной статьей на эту тему.

Как определить ноль

Исходим из того, что провод с потенциалом фазы уже найден, а нам нужно точно указать ноль, не спутать его с заземлением или резервными жилами, учтя наличия и отсутствия электрических связей с землей.

Схема TN-C

В двухпроводной системе достаточно:

  • точно определить фазу индикатором;
  • вызвонить электрическую связь оставшегося провода нуля с контуром земли.

Трехпроводные схемы

Здесь нам придется воспользоваться тем, что рабочий ноль:

  1. разрывается вводным автоматическим выключателем. предохранителями или пакетным переключателем;
  2. проходит через электрический счетчик;
  3. отключается защитами типа УЗО.
Первый признак

На вводе в квартиру отключается подача напряжения фазой и нулем, а затем выполняется прозвонка оставшихся проводов на контур земли. Цепи рабочего нуля не должны звониться из-за созданного разрыва, но станут — при его устранении.

Ноль на счетчике

В отдельных случаях, когда служба энергонадзора допустила возможность контроля проводов, подходящих к клеммам прибора, допускается их визуальный осмотр и продергивание по участкам. Это работа под напряжением. Она требует соответствующей квалификации.

Срабатывание УЗО

Поскольку такая защита обеспечивает разрыв нулевого провода, то ею тоже можно воспользоваться для определения провода рабочего нуля, как и в первом случае.

Как разобраться с оставшимися концами

Провод заземления

Здесь нам тоже придется прозванивать его потенциал на корпус земли. При поиске следует учитывать то обстоятельство, что в нем нет никаких отключающих устройств. Он накоротко подсоединен к контуру заземления.

При всех манипуляциях с любыми переключающими устройствами связь РЕ проводника с контуром земли сохраняется.

housediz.ru

Про заземление и зануление дляМой горький опыт электрика позволяет мне утверждать: Если у Вас “заземление” сделано как надо – то есть в щитке есть место присоединения “заземляющих” проводников, и все вилки и розетки имеют “заземляющие” контакты – я вам завидую, и вам не о чем беспокоиться.

Правила подключения заземления

В чем же состоит проблема, почему нельзя подключать провод заземления на трубы отопления или водоснабжения?

Реально в городских условиях блуждающие токи и пр. мешающие факторы столь велики, что на батарее отопления может оказаться что угодно. Однако основная проблема, в том, что ток срабатывания автоматов защиты достаточно велик. Соответственно один из вариантов возможной аварии – пробой накоротко фазы на корпус с током утечки как раз где-то на границе срабатывания автомата, то есть, в лучшем случае 16 ампер. Итого, делим 220в на 16А – получаем 15 ом. Всего каких-то тридцать метров труб, и получите 15 ом. И потек ток куда-то, в сторону не пиленого леса. Но это уже не важно. Важно то, что в соседней квартире (до которой 3 метра, а не 30, напряжение на кране почти те же 220.), а вот на, скажем, канализационной трубе – реальный ноль, или около того.

А теперь вопрос – что будет с соседом, если он, сидя в ванной (соединившись с канализацией посредством открывания пробки) коснется крана? Угадали?

Приз – тюрьма. По статье о нарушении правил электробезопасности повлекшем жертвы.

 

Не надо забывать, что нельзя делать имитацию схемы “заземления” , соединяя в евророзетке “нулевой рабочий” и “нулевой защитный” проводники, как иногда практикуют некоторые “умельцы”. Такая замена крайне опасна. Не редки случаи отгорания “рабочего нуля” в щите. После этого на корпусе Вашего холодильника, компьютера и т.д. очень прочно размещается 220В.

Последствия будут примерно такими же, как и с соседом, с той разницей, что за это ни кто ответственности нести не будет, кроме того, кто сделал такое соединение. А как показывает практика, это делают сами же хозяева, т.к. считают себя достаточными специалистами, чтобы не вызывать электриков.

“Заземление” и “зануление”

altОдним из вариантов “заземления” является “зануление”. Но только не как в случае описанном выше. Дело в том, что на корпусе распределительного щита, на Вашем этаже имеется нулевой потенциал, а если точнее, нулевой провод, проходящий через этот самый щиток, просто-напросто имеет контакт с корпусом щита посредством болтового соединения. Нулевые проводники с расположенных на этом этаже квартир, тоже присоединяются к корпусу щита. Давайте рассмотрим этот момент поподробнее. Что мы видим, каждый из этих концов заведен под свой болт (на практике правда часто встречается по парное соединение этих концов). Вот как раз туда и надо подсоединять наш новоиспеченный проводник, который в последствии будет называться “заземлением”.

В этой ситуации тоже есть свои нюансы. Что мешает “нулю” отгореть на входе в дом. Собственно говоря, ни чего. Остается лишь надеяться, что домов в городе меньше чем квартир, а значит и процент возникновения такой проблемы значительно меньше. Но это опять же русский “авось”, который проблему не решает.

Контур заземления

Контур заземленияЕдинственно правильное решение, в этой ситуации. Взять металлический уголок 40х40 или 50х50, длинной метра 3, забить его в землю, чтобы за него не запинались, а именно, копаем яму на два штыка лопаты в глубину и максимально забиваем туда наш уголок, а от него провести провод ПВ-3 (гибкий, многожильный), сечением не менее 6 мм. кв. до, Вашего распределительного щита.

В идеале “контур заземления” должен состоять из 3х – 4х уголков, которые свариваются металлической полосой той же ширины. Расстояние между уголками должно составлять 2 м.

Только не надо сверлить в земле дыру метровым буром и опускать туда штырь. Это не правильно. Да и КПД такого заземления близко к нулю.

Но, как и в любом способе здесь есть свои минусы. Вам, конечно, повезло, если Вы живете в частном доме, или хотя бы, на первом этаже. А как быть тем, кто живет этаже на 7-8? Запастись 30-ти метровым проводом?

Так как же найти выход из создавшейся ситуации? Боюсь, что ответ на этот вопрос Вам не дадут даже самые опытные электромонтажники.

Что требуется для разводки по дому

Для разводки по дому Вам понадобится медный провод заземления, соответствующей длины, и сечением не менее 1,5 мм. кв. и, конечно, розетка с “заземляющим” контактом. Короб, плинтус, скоба – дело эстетики. Идеальный вариант, это когда Вы делаете ремонт. В этом случае я рекомендую выбрать кабель с тремя жилами в двойной изоляции, лучше ВВГ. Один конец провода заводится под свободный болт шины распределительного щита, соединенной с корпусом щита, а второй – на “заземляющий” контакт розетки. При наличии в щите УЗО заземляющий проводник не должен нигде на линии иметь контакта с N проводником (в противном случае будет срабатывать УЗО).

Не надо так же забывать, что “земля” не имеет права разрываться, посредством каких либо выключателей.

Читайте также по этой теме: Заземление и зануление – в чем разница?

electrik.info


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.